Бензиновый инжекторный двигатель – схемы подачи питания бензиновых и дизельных двигателей автомобиля, а также устройство и принцип работы, что такое обратка

Содержание

Подача топлива в инжекторных двигателях, описание отличий типов систем впрыска

Инжекторные двигатели отличаются отсутствием карбюратора, вместо которого выступают новые системы подачи топливных смесей. При надавливании на педаль газа происходит автоматическое регулирование поступления воздуха в топливные цилиндры.

Контроль бензиновых растворов производит специальное электронное устройство, внедренное в двигатель. Подача топлива в инжекторном двигателе отличается конструктивными особенностями, способствующими уменьшению количества вредных веществ, выбрасываемым в атмосферу.

Отличия работы инжекторных двигателей

Принцип подготовки воздушно-топливных смесей полностью отличается от предыдущих. Для создания высокого давления в подаваемых смесях топливный бак имеет встроенный электрический бензонасос. Бензин под давлением поступает в специальный отсек — рампу с форсунками для впрыска в цилиндры, где происходит смешивание его с воздухом.

В зависимости от количества поступившего бензина, температуры двигателя, скорости вращения коленчатого вала электронное управляющее устройство (ЭБУ) регулирует такие параметры:

  1. Состав топливной смеси.
  2. Количество впрыскиваемой жидкости и объем воздуха.
  3. Расчет интервала, через который происходит открытие клапана на форсунке.

Топливо подается под автоматическим контролем. Электронное управление является мозговым центром автомобиля.

Автоматизация контроля поступления топлива в систему питания инжекторного мотора позволяет улучшить основные показатели машины:

  • скорость разгона;
  • показатели загрязнения экологии;
  • общий расход бензина.

Описание преимуществ инжекторных систем

По сравнению с карбюраторами системы питания инжекторного двигателя имеют следующие достоинства:

  1. Более тщательная дозировка количества топливной смеси позволяет существенно экономить общий расход.
  2. Использование датчиков, следящих за характеристиками топливных смесей и выхлопных газов, приводит к снижению токсичности выхлопа.
  3. Опережение зажигания, регулировка угла в соответствии с режимами двигателя способствует росту мощности почти на 10%.
  4. При изменениях нагрузки происходит мгновенная корректировка системой впрыска состава топливно-воздушной смеси.
  5. Наличие гарантированного облегченного запуска при любой погоде.
  6. Уменьшение количества углеводородов в отработанных газах

Недостатки инжекторных двигателей:

  • высокие цены на ремонт и обслуживание;
  • многие узлы и детали не подлежат восстановлению, возникает необходимость их полной замены;
  • повышенные требования к качеству бензина;
  • потребность в специализированном диагностическом, обслуживающем и ремонтном оборудовании.

Корректировка функций двигателя контроллером ЭБУ

Современные двигатели впрыскивающего типа используют обособленные форсунки, предназначенные для цилиндров. Бензонасос инжекторного двигателя создает необходимое давление, топливо через открытые клапаны форсунок поступает в специальную камеру для сжигания.

Электронный блок управления (ЭБУ) осуществляет регулирование момента открытия каждой форсунки. Встроенная система специальных приборов — датчиков служит для передачи необходимой информации управляющему устройству.

Данные, используемые ЭБУ:

  1. Расход воздуха.
  2. Расположение дроссельной заслонки.
  3. Контроль охлаждающей жидкости.
  4. Расположение коленчатого вала.
  5. Кислород в газах.
  6. Наличие детонации.
  7. Состояние распределительного вала.

Количество расхода воздуха влияет на автоматический перерасчет наполненности цилиндров отдельного цикла. При поломке считывающего прибора перерасчет производится по специальным таблицам аварийного состояния.

Загруженность двигателя, количество оборотов, наполненность цилиндров в одном цикле рассчитываются при помощи информации, предоставляемой датчиком расположения заслонки дросселя, отражающих угол ее открытия.

Прибор, отражающий нагрев охлаждающей жидкости, помогает откорректировать впрыск, зажигание, участвует в управлении электрической вентиляцией. При отказе датчика используются температурные данные, присущие определенному периоду действия силового агрегата, находящиеся в специальной таблице.

Датчик положения коленвала является прибором, без которого невозможно передвижение всей машины. При выходе из строя данного прибора автомобиль не в состоянии добраться даже до ближайшего СТО. С его помощью синхронизируется вся система, производится расчет оборотов движка, определяется расположение коленчатого вала в любой момент работы двигателя.

Кислородный прибор поставляет данные о насыщенности отработавших газов элементом О2. После получения сведений ЭБУ корректирует состав направляемого топлива, его количество. Международные нормы контроля выбросов Евро-2 и Евро-3 требуют использовать данные приборов, следящих за кислородом. Евро-3 предполагает наличие двух кислородных приборов, расположенных после каталитического катализатора и перед ним.

При сигнале специального датчика о возникновении детонации ЭБУ гасит ее путем корректировки угла опережения зажигания. Эксплуатация мотора с детонацией приводит к ускоренному сгоранию топлива. Возникают ударные нагрузки на двигатель, нагрев всех элементов, дымный выброс, прогорание поршней и клапанов, увеличение расхода топлива, снижение мощности силового агрегата. Такая работа мотора крайне нежелательна.

Датчик, контролирующий распределительный вал, подает информацию, необходимую для создания синхронности при впрыске.

В зависимости от встроенной системы впрыска силовые агрегаты комплектуются приборами, помогающими выявлять причины отсутствия поступления бензина в движок. Дополнительные приборы осуществляют контроль за выбросами.

Управляющий механизм также корректирует функционирование рабочих узлов:

  • системы зажигания;
  • вентилятора системы охлаждения;
  • регулятора холостого хода;
  • бензонасоса;
  • форсунок;
  • клапана адсорбера, предназначенного для улавливания паров бензина.

При запуске силового агрегата остатки паров автоматически направляются в камеру для последующего сжигания.

Благодаря четкому взаимодействию всех механизмов производится точное впрыскивание топлива. Состав и количество топливной смеси отрегулированы благодаря отлаженной работе ЭБУ.

Описание видов систем питания

Системы впрыска имеют несколько разновидностей:

  1. Одноточечные, при которых имеется одна форсунка и несколько цилиндров.
  2. Многоточечные, здесь каждый цилиндр снабжен своей форсункой.
  3. Непосредственные системы основаны на работе по принципу дизелей, где подача топлива производится форсунками прямо в цилиндры.

Схема системы питания одноточечного типа:

При применении одноточечных систем или моновпрыска используется минимальное количество управляющей электроники. На основании данных, полученных с датчиков, ЭБУ изменяет условия подачи топлива. При одноточечном впрыске существенно экономится бензин, улучшается состав выхлопа, повышается надежность двигателя. К недостаткам такого типа системы относится снижение приемистости двигателя, наблюдается скопление топлива на стенках коллектора в виде осадка.

Схема питания многоточечного впрыска:

Система питания многоточечного впрыска более совершенна. Здесь топливо подается на каждый цилиндр. Данный метод впрыска топлива отличается сложностью, однако мощность двигателя при этом возрастает почти на десять процентов.

При установке двигателей с многоточечным впрыском автомобиль получает ускоренный разгон благодаря настройкам и качественному наполнению цилиндров. Приближение клапанов впуска к форсункам способствует точности подачи топлива, минимизирует вероятность образования топливных осадков.

Впрыскивающие системы непосредственного типа обладают оптимальным сочетанием высокого качества сгорания воздушно-топливных смесей и повышенного КПД. В двигателях непосредственной системы питания более тщательно производится распыление и смешивание с воздушными потоками, происходит более грамотное распределение готовой смеси в зависимости от режимов работы мотора.

К преимуществам относится экономичность расхода топлива, увеличение интенсивности ускорения машины, более чистый выхлоп. К недостаткам можно отнести повышенные требования к качеству бензина. Топливная аппаратура такого двигателя очень капризна.

Проведение техобслуживания систем питания инжекторных двигателей

Мероприятия по техническому обслуживанию систем питания обладают особенностями:

  1. В процессе эксплуатации моторов наиболее часто подвергаются загрязнениям и выходу из строя воздушные фильтры. Каждые тридцать тысяч километров пробега необходимо менять фильтрующий элемент на новый экземпляр. Рекомендуется также регулярно очищать извлеченный узел от грязи и пыли при помощи щетки и встряхивания.
  2. Возникновение рывков при движении машины говорит о необходимости замены фильтра, производящего тонкую очистку топлива. Рекомендуется также производить плановые замены после очередных 30 тыс. км пробега.
  3. Форсунки подвергаются регулярным проверкам, производится замена регулятора холостого хода.

Инжекторный бензиновый двигатель

Инжекторный двигатель – это основной тип двигателя внутреннего сгорания, который используется в современных автомобилях.

По способу подачи топливной смеси все бензиновые двигатели делятся на карбюраторные и инжекторные. В карбюраторных моторах для подачи топлива и образования смеси происходит в механическом приспособлении под названием карбюратор, а в инжекторных двигателях смесь образуется непосредственно в приемном коллекторе, куда топливо впрыскивается при помощи электронно-управляемых форсунок.                                                                       

История применения инжектора на бензиновых двигателях

Первую механическую систему впрыска, прообраз современного инжекторного двигателя, разработала фирма BOSCH. Система была установлена на серийном автомобиле Mercedes Benz 300SL в 1954 году. Изменения в системе подачи топлива не были кардинальными - вместо карбюратора использовался механизм дозирования с одной форсункой, который имел электронное управление. Позже такую конструкцию назовут «моновпрыск». Дозировка подачи происходила более точно по объему, но не в каждый цилиндр отдельно, а централизованно, как в карбюраторе.

Одну из первых систем электронного распределенного впрыска под названием Electrojector разработала американская фирма Bendix Corporation в 1957 году

После изобретения распределенного впрыска подача топлива к каждому цилиндру стала производится индивидуально. В этой системе впрыска образование топливной смеси происходит в непосредственной близости от впускных клапанов каждого цилиндра. Топливо поступает к форсункам по трубопроводу и распыляется ими в коллектор. Работа каждой форсунки регулируется. За счет этого контроль дозировки топлива и впрыска в каждый цилиндр удалось поднять на новый уровень.

Но конструкторы не остановились на этом и разработали систему с непосредственным впрыском топлива. Первый подобный серийный двигатель впервые продемонстрировал концерн Mitsubishi в 1996 году. В нем воздух подводится к границе камеры сгорания и впускного клапана, и только в самом цилиндре он встречается со струей бензина.                                            

Устройство и принцип работы инжекторных двигателей

Мощность двигателя зависит от объема смеси воздуха и бензина, в единицу времени поступающего в камеру сгорания. Необходимость замены карбюратора на более совершенное устройство возникла из-за того, что в механическом устройстве (в данном случае, в карбюраторе) не удается реализовать достаточно быстрый отклик на изменение нагрузки на двигатель.

В Японии электронно-управляемый распределенный впрыск для серийного автомобиля предложила компания Toyota. Это была опция для модели Celica 1974 года

В инжекторной системе подача топлива производится впрыском во впускной коллектор с помощью форсунок. Эта система подачи топливо-воздушной смеси сложнее, но гибче и оперативнее карбюратора.

Схема работы системы впрыска инжекторного бензинового двигателя включает в себя сбор информации, ее обработку и подачу электронного сигнала на исполнительные устройства, в данном случае, на форсунки.

Механическая составляющая этой системы состоит из бензонасоса, перепускного клапана топливной магистрали (регулятора давления), устройства для поддержки холостого хода двигателя, и форсунок.

Форсунки бывают механическими и с электрическим приводом. В качестве привода используется электромагнит или пьезоэлемент.



Форсунка
Форсунка

Бензин распыляется форсункой под давлением через очень маленькое отверстие. С одной стороны, это позволяет добиться высокой точности дозировки и отличного распыла, с другой, качество топлива для инжекторных двигателей имеет огромное значение. Забитое отверстие не сможет хорошо распылять топливо, а значит, и оптимальной горючей смеси не получится.

Ассоциация NASCAR запретила использование карбюраторов на гоночных автомобилях одноименной лиги только в 2012 году

Электронно-управляемая форсунка выполняет команды компьютера и подает необходимое количество топлива в изменяемые в соответствии с текущей нагрузкой, точно рассчитанные промежутки времени. В бензиновых двигателях с распределенным впрыском с форсунками взаимодействуют свечи, играющие роль исполнительного устройства. Получив электрический импульс, форсунка под давлением впрыскивает топливо в цилиндр или впускной коллектор и перекрывает подачу после срабатывания свечи.

Блок управления двигателем Блок управления двигателем

 Роль компьютерного управления в работе системы впрыска

Самой сложной составляющей инжекторных бензиновых двигателей является электронный блок управления. В его схему входят ПЗУ - постоянное запоминающее устройство, ОЗУ - оперативное запоминающее устройство и микропроцессор. Он обрабатывает поступающие от датчиков электронные сигналы, анализирует информацию и сравнивает с данными, хранящимися в памяти компьютера. Встроенная программа учитывает особенности разнообразных режимов работы двигателя и внешние условия, в которых ему приходится работать. Если в информации обнаруживаются расхождения, компьютер выдает команды исполнительным механизмам для коррекции.

Применение распределенного впрыска сделало возможным появление системы отключения части цилиндров двигателей большого объема

Датчики, собирающие информацию о работе двигателя, действуют совместно с ЭБУ.  Они расположены на разных узлах, входящих в конструкцию двигателя. Среди стандартных приборов сбора информации: датчик массового расхода воздуха;
 датчик положения дроссельной заслонки;
 датчик детонации;
 датчик температуры охлаждающей жидкости;
 датчик положения коленчатого вала и другие. На 16-клапанных двигателях дополнительно устанавливается датчик фаз.

Процесс работы инжекторной системы впрыска выглядит следующим образом: датчик расхода воздуха измеряет поступающую в двигатель массу газа и передает данные компьютеру. На основе этой информации и с учетом других текущих параметров - температуры воздуха и самого двигателя, скорости вращения коленчатого вала, степени и скорости открытия дроссельной заслонки - компьютер рассчитывает оптимальное количество топлива на данный объем воздуха и подает электрический импульс необходимой продолжительности на форсунки. Принимая этот импульс, они открываются и под давлением впрыскивают топливо во впускной коллектор.                                 

Достоинства и недостатки инжекторных двигателей

Главное преимущество инжекторных бензиновых двигателей - экономичность. Она составляет 10-20% в сравнении с карбюраторными двигателями. Кроме того, в случае применения инжектора удается получить с того же рабочего объема двигателя большую мощность. Также, бесспорным преимуществом таких двигателей является меньшее содержание вредных веществ в выхлопных газах.

Минусом можно считать то, что в случае появления неисправности в системе инжекторного впрыска, диагностику и ремонт могут производить лишь квалифицированные специалисты. Сложность подобного профессионального обслуживания и является основным недостатком инжекторных бензиновых силовых установок.

Устройство системы питания инжекторного двигателя

Система подачи топлива инжекторного двигателя получила распространение в современных автомобилях и имеет ряд преимуществ перед топливной системой карбюраторного двигателя. В этой статье мы рассмотрим устройство инжектора и узнаем, как работает система подачи топлива инжекторного двигателя и электронная система питания.

Устройство инжектора

Основная задача системы питания инжекторного двигателя заключается в обеспечении подачи оптимального количества бензина в двигатель при разных режимах работы. Подача бензина в двигатель осуществляется с помощью форсунок, которые установлены во впускном трубопроводе.

Устройство инжекторной системы питания

Устройство системы питания инжектора:

1. Электробензонасос – устанавливается в модуле, который располагается в топливном баке. Модуль также включает в себя такие дополнительные элементы, как топливный фильтр, датчик уровня бензина и завихритель.

Электробензонасос предназначен для нагнетания бензина из топливного бака в подающий топливопровод. Управление электробензонасосом осуществляется с помощью контроллера через реле.

2. Топливный фильтр – предназначен для очистки топлива от грязи и примесей, которые могут привести к неравномерной работе двигателя, неустойчивой работе инжектора, загрязнению форсунок. В инжекторных системах к качеству топлива предъявляются высокие требования.

Топливная рампа инжекторного двигателя3. Топливопроводы – служат для подачи топлива от бензонасоса к рампе и обратно от рампы в топливный бак. Соответственно существует прямой и обратный топливопроводы.

4. Рампа форсунок с топливными форсунками – конструкция рампы обеспечивает равномерное распределение топлива по форсункам. На топливной рампе располагаются форсунки, регулятор давления топлива и штуцер контроля давления в топливной системе инжектора.

5. Регулятор давления топлива – предназначен для поддержания оптимального перепада давления, который способствует тому, что количество впрыскивания топлива зависит только от длительности впрыска. Излишки топлива регулятор подает обратно в бак.

Как работает инжекторная система питанияКак работает система питания инжекторного двигателя?

Для стабильной работы двигателя необходимо обеспечить сбалансированное поступление топливовоздушной смеси в камеру сгорания. Приготовление топливовоздушной смеси происходит в впускном трубопроводе, благодаря смешиванию бензина с воздухом. Контроллер с помощью управляющего импульса открывает клапан форсунки и путем изменения длительности импульса регулирует состав топливовоздушной смеси.
Регулятор давления топлива поддерживает перепад давления топлива постоянным, соответственно количество топлива, что подается пропорционально времени, при котором форсунки находятся в открытом состоянии. Контроллер поддерживает оптимальное соотношение топливовоздушной смеси путем изменения длительности импульсов. Если длительность импульса увеличивается – смесь обогащается, если уменьшается – смесь обедняется.

Устройство автомобиля: инжектор

Споры о преимуществах инжекторного двигателя над карбюраторным, давно не актуальны – инжекторные системы воцарились на рынке, а новый автомобиль с карбюратором теперь попросту не найти. И все же не лишним будет разобраться, что же такое «инжектор», и чем обеспечено его тотальное господство на рынке легкового автотранспорта?

История инжектора

Впервые о замене карбюратора принципиально новой системой задумались ещё в самом начале 20-го века авиационные инженеры. Перепробовав все известные типы карбюраторов, они уже к сороковым годам прошлого века пришли с готовой к серийному производству системой инжектора, под давлением подающей топливо в камеру сгорания независимо от гравитации (что важно для самолётов) и точно в требуемом количестве (что позволяет получать меньший расход топлива, большую мощность и снижение уровня вибраций).

К концу второй мировой войны инжекторный двигатель с механическим впрыском можно было встретить на истребителях и бомбардировщиках Германии, Японии, Великобритании, СССР и США.

Кстати, тогда же появилась и столь знакомая многим современным автолюбителям процедура, как промывка инжектора - легендарный японский истребитель А6М «Зеро» требовал чистки форсунок после каждого вылета.

Затем автопроизводители оценили возможности применения впрыска для увеличения мощности двигателя при сохранении его экономичности: в 1940 году итальянцы из Alfa Romeo на своём купе 6C тестируют экспериментальную систему электронного впрыска, а Mercedes-Benz в 1954 году запускает в серию своё легендарное купе 300SL «Крыло Чайки», где была установлена механическая система прямого впрыска топлива.

Впрочем, никто из них не был пионером в создании «инжектора» – те или иные технические решения, примененные в этих автомобилях, отрабатывались на множестве экспериментальных конструкций, начиная с французских двигателей Леона Левассера с механическим впрыском образца 1902 года.

В России же системами инжекторного впрыска на автомобильной технике занимались и в Центральном научно-исследовательском автомобильном и автомоторном институте «НАМИ» и на Горьковском автомобильном заводе. Впрочем, некоторое отставание в области электронных компонентов не позволило удачно развернуть производство электронных систем впрыска в шестидесятых годах. Механический же впрыск в СССР, к сожалению, массово не вышел за рамки авиационных и дизельных двигателей.

Схема работы инжектора

Схема инжектора и закономерности его работы, пожалуй, даже проще для понимания, чем принципы работы карбюратора. Если карбюратор – это изящное техническое воплощение целого ряда физических законов в металле, то даже самая современная система инжектора таит в себе всего-лишь насос, подающий топливо сначала в находящуюся под небольшим давлением систему топливных каналов (топливную рампу), а потом (через электрический клапан) в сопло форсунки. Сопло, в свою очередь, распыляет топливо, которое смешивается с воздухом внутри впускного коллектора и через впускной клапан попадает в цилиндр уже в виде топливо-воздушной смеси. Собственно, терминами «инжектор» и «форсунка» сейчас чаще всего обозначают устройство, совмещающее в одном корпусе сопло-распылитель и электрический клапан.

Для понимания принципов работы инжекторного двигателя можно представить себе обычный цикл работы цилиндра четырёхтактного двигателя. При установке на нём карбюратора можно вполне налить топлива в сам карбюратор и отключить его от топливной системы вовсе – двигатель сможет завестись сам, так как топливно-воздушная смесь формируется в карбюраторе под действием втягивающего потока воздуха, который «засасывает» с собой смесь, и она уже готовой попадает во впускной коллектор. Не нужно ни давления, ни особого управления – схема проста и характеризуется тем, что топливная смесь формируется ещё до попадания к впуску в цилиндр.

В схеме с применением инжекторных форсунок смесь «готовится» непосредственно во впускном коллекторе (а в случае прямого впрыска – вообще в самой камере сгорания). В точно заданный системой управления момент открывается электроклапан, разделяющий топливную систему и впускной коллектор. Под давлением, созданным бензонасосом, инжектор распыляет топливную смесь в количестве, строго необходимом для поддержания близкого к стехиометрическому (читай-оптимальному) составу смеси. При этом воздух в коллектор на большей части нетурбированных автомобилей попадает под воздействием разряжения, созданного цилиндром – что позволяет, зная текущую его температуру, точно понимать, сколько топлива можно сжечь, имея данный объем воздуха.

Минус схемы инжектора в том, что смесь получается не настолько гомогенной (однородной и хорошо перемешанной), как на дорогих спортивных карбюраторах, а система управления форсунками требует точной настройки для оптимальной синхронизации работы топливных форсунок, впускных клапанов и цилиндров. Но плюсов системы всё же оказывается больше:

  • растёт экономичность и одновременно мощность за счёт точной дозировки топлива в зависимости от текущей потребности и ситуации.
  • равномернее распределяется топливо и между цилиндрами (мы не берем сейчас многокарбюраторные системы и ранние инжекторы с одной форсункой на несколько цилиндров),
  • автоматизируются процессы настройки двигателя в зависимости от условий эксплуатации,
  • понижается уровень вредных выбросов в атмосферу,
  • расширяются возможности для тюнинга двигателя
  • облегчается диагностика двигателя (с учетом использования электронных технических средств)
  • сборка и настройка инжекторных двигателей в производстве обходится дешевле, чем сборка и настройка карбюраторных систем

С точки зрения водителя, автомобиль с инжекторной системой впрыска, как правило, быстрее реагирует на изменение положения педали газа, легче заводится в условиях, отличных от идеальных, потребляет меньше топлива и обладает более высокой мощностью по сравнению с аналогичным двигателем с карбюраторной системой питания.

Кстати, возможность выбирать – карбюратор или инжектор, когда-то была: на раннем этапе развития систем впрыска применялся в основном центральный (моно, одноточечный, Single-Point injection, SPi) впрыск, форсунка легко ставилась на место карбюратора как опция и работала одновременно на все цилиндры двигателя. Система была проста, надёжна и предполагала расположение форсунки вне зоны высоких температур.

При такой схеме не требовалось сложной электроники или механики для синхронизации работы форсунок на нескольких цилиндрах, но за это приходилось платить отсутствием той универсальности, которую дают более современные системы с распределенным, или многоточечным (Multi-Point Injection, MPi), впрыском.

В итоге именно распределенный впрыск получил наибольшее распространение и сейчас эволюционировал во множество подвидов, как то непосредственный впрыск в камеру сгорания (Direct Fuel injection, DFI) и несколько подвидов обычного распределенного впрыска в зависимости от времени открытия форсунок:

  • при параллельном, или одновременном, впрыске (SMPI) все форсунки в двигателе срабатывают одновременно и независимо от тактов цилиндров, дважды за цикл впрыскивая топливо во впуск соответствующего цилиндра. При данном способе впрыска, часто встречавшемся на автомобилях 90-х годов, форсунки нужны в основном для более точной – по сравнению с центральным впрыском - дозировки топлива. Тем не менее, время между впрыском и попаданием топлива в цилиндр для разных цилиндров оказывается разным (пусть мы и говорим о миллисекундах), что сказывается на неравномерности смеси от цилиндра к цилиндру.
  • при попарно-параллельном – форсунки делятся на группы, срабатывающие в разное время. Таким образом, точка срабатывания форсунки приближается к оптимальному времени впрыска топлива для подготовки смеси – что позволяет сократить разницу в качестве смеси в цилиндрах. За цикл работы двигателя топливо впрыскивается дважды, как и при одновременном впрыске – более того, на время пуска двигатель с попарно-параллельной схемой впрыска переходит в режим одновременного впрыска.
  • при фазированном впрыске или (CIFI) – каждая форсунка управляется независимо от остальных и открывается точно перед тактом впуска. Именно эта система в данный момент является наиболее распространенной, так как позволяет обеспечить точное управление каждой форсункой и использовать оптимальное для каждого цилиндра время впрыска.

Отдельно следует отметить, что система инжекторного впрыска сама по себе универсальна и используется не только для бензиновых автомобилей. Механический впрыск на дизельных двигателях появился едва ли не раньше, чем на бензиновых – с двадцатых годов двадцатого века и поныне только на модельных дизелях и некоторых тракторных моторах используется схема, отличная от инжекторного впрыска.

Например, для дизельных силовых агрегатов крайне распространена прогрессивная система прямого впрыска Common Rail (она же известна как TDI, VCDi, CDI, TCDi, i-DTEC, CRDi – в зависимости от производителя), фактически превращающая топливную рампу в замкнутый аккумулятор для хранения топлива под более высоким, по сравнению с другими системами впрыска, давлением. В результате форсунки подают топливо с ещё большим давлением, что положительно сказывается, в частности, на расходе топлива. Но между прочим, впервые эта «современная» система была применена на британских двигателях для подводных лодок Vickers в 1916 году и в дальнейшем развивалась в основном по пути повышения давления в топливном аккумуляторе.

Система управления инжектора

Системы, координирующие действия каждой отдельной форсунки- инжектора двигателя, бывают как механическими, так и электронными. Собственно, первые массовые системы впрыска на легковых автомобилях появились в пятидесятых годах двадцатого века и довольно долгое время были исключительно механическими (как, например, целое семейство систем Bosch D-Jetronic).

Но по-настоящему эпоха инжекторного впрыска началась только с распространением микроконтроллеров - стоимость их разработки, производства и настройки гораздо ниже в сравнении с аналогичными процессами для механических систем с теми же функциональными возможностями.

Сегодня система управления инжекторным двигателем далеко ушла от алгоритмов работы первых механических систем. Соблазн относительно недорого использовать возможность оперативного изменения дозировки и времени подачи топлива на каждый отдельный инжектор двигателя (форсунку – ведь именно так переводится слово «инжектор») сделал своё – микроконтроллер сейчас собирает данные со множества дополнительных датчиков (от температурных и ДМРВ(Датчик Массового Расхода Воздуха) до датчиков включения кондиционера и отслеживания неровностей дороги). В зависимости от результата анализа этих данных контроллер выдаёт указания целому ряду устройств помимо, собственно, связки «бензонасос-инжектор» - системе зажигания, регулятору холостого хода, системе охлаждения и тому же кондиционеру.

Промывка инжектора

Есть целый ряд проблем, характерных именно для инжекторных двигателей. Это могут быть проблемы, общие для всех типов двигателей, а могут появляться и проблемы с электронными датчиками, вышедшими из строя по разным причинам.
Но главная проблема даже самого надежного инжекторного двигателя в России - сбои из-за засорения системы топливоподачи.

Троение, не связанное с состоянием свечей зажигания, катушек и высоковольтных проводов, трудности запуска зимой, заметное ухудшение приемистости двигателя, разница в нагаре на свечах зажигания из разных цилиндров, повышенный расход топлива и неполное сгорание смеси – всё это действительно может указывать в том числе и на закоксовывание форсунок.

Большая часть операций с системой впрыска инжекторного двигателя, с точки зрения многих официальных производителей, сводится к замене неразборных форсунок новыми, но существуют и методики чистки, охотно предлагаемые различными автосервисами.

Их условно можно разделить на два типа – промывку инжектора и ультразвуковую чистку форсунок. И та, и другая операция выполняется как со снятием топливных форсунок, так и прямо на двигателе.

У каждого способа свои нюансы, но следует помнить, что при промывке форсунок жидкостью без снятия их с двигателя после завершения процедуры рекомендуется заменить свечи и масло (и соответствующий фильтр) в двигателе, предварительно промыв его - что делает операцию весьма накладной. Кроме того, следует учитывать, что ввиду наличия в форсунках сеточки-уловителя, промывка некоторых форсунок может быть возможна только в направлении, обратном обычному распылению.

При снятии форсунок с двигателя замене подлежат уплотнительные резиновые прокладки этих форсунок. При этом для самой чистки потребуется специальный промывочный стенд либо самодельные приспособления, которые заставят форсунку открыть клапан для промывки.

В любом случае есть серьёзный риск повреждения двигателя в результате неверных действий. А в случае обслуживания дизельных двигателей следует учитывать еще и возможность наличия в системе серьёзного остаточного давления.

И все же нельзя сказать, что диагностика и обслуживание инжекторного двигателя существенно сложнее диагностики и обслуживания карбюраторного.

Конечно, для обслуживания карбюраторного двигателя не нужен сканер ошибок или бортовой компьютер. В нем не присутствует того количества датчиков и подсистем, которое мы встречаем в системе управления инжекторным двигателем.

С другой стороны – при наличии нужного оборудования компьютер инжекторного двигателя тут же объясняет, где искать неисправность – и для этого не надо вызывать опытного специалиста-диагноста, а достаточно подключить бортовой компьютер или OBD-сканер.

На ряд же неисправностей, не улавливаемых сканером, существует управа в виде внимательного отношения к собственному авто – изменение поведения автомобиля на дороге, смена звучания двигателя, сбои в работе отдельных систем или внезапно проснувшийся аппетит – всё это указывает на возникшие проблемы и необходимость диагностики. А еще, самый страшный враг «инжектора» - некачественное топливо. Так что внимательно стоит отнестись и к выбору заправочной станции.

Автор
Дмитрий Лонь, корреспондент MotorPage.ru
Издание
MotorPage.Ru

Система питания инжекторного двигателя: характеристика, устройство

Система питания инжекторного двигателя современного автомобиля — это сложнейший «организм», состоящий из датчиков, исполнительных устройств и самого главного — блока управления. Не зря в народе его называют «мозги». Именно блок управления контролирует работу всей системы впрыска топлива.

С его помощью происходит нормальное функционирование двигателя, регулировка угла опережения зажигания, момента впрыска топливовоздушной смеси и многих других параметров.

Описание

За многолетнюю историю автомобилестроения появилось несколько типов впрыска топлива. И конструкции инжекторной системы бензинового двигателя различаются, причём существенно. Дизель достаточно схож в системе впрыска с инжектором.

Но есть огромные отличия в конструкции отдельных механизмов — степень сжатия в дизельном моторе во много раз выше. В целом же первые конструкции инжекторных систем очень сильно были похожи на дизельные.

Центральный впрыск топлива

Моновпрыск — это самый простой механизм. Второе название — центральный впрыск. И он же был первым в истории. Массовое применение получил в США в начале 2 половины ХХ века. Как работает центральный впрыск? Простота — это именно то, что понравилось не только автовладельцам, но и производителям. Конструкция очень схожа с карбюратором, только вместо него применяется форсунка.

Она устанавливается на впускном коллекторе — одна на все цилиндры двигателя, независимо от их общего количества. Топливо поступает в коллектор постоянно, как и воздух. В результате происходит образование топливовоздушной смеси, которая распределяется по цилиндрам.

Плюсы и минусы

Преимущества, которыми обладает центральная система впрыска:

  • простота и дешевизна конструкции;
  • для смены режимов работы достаточно провести регулировку одной форсунки;
  • при смене карбюратора на инжектор (моновпрыск) существенных изменений в систему питания не производится.

К недостаткам относится то, что не выходит достигнуть высоких показаний экологичности. Поэтому на сегодняшний день автомобили с моновпрыском нельзя встретить в продаже и эксплуатации в развитых странах Америки, Европы и Азии. Разве что в странах третьего мира они будут беспрепятственно колесить по дорогам.

И самое большое неудобство — это то, что при выходе из строя форсунки двигатель останавливается и запустить его невозможно.

Распределённый впрыск топливной смеси

В таких системах количество форсунок равно числу цилиндров. Все форсунки находятся на впускном коллекторе, топливовоздушная смесь подаётся при помощи общей для всех топливной рампы. В ней происходит смешивание бензина и воздуха. Режимы работы форсунок:

  1. Фазированный впрыск — самые современные системы работают именно с его использованием. Количество форсунок и цилиндров одинаковое, открытие и закрытие электроклапанов происходит в зависимости от того, какой такт проходит двигатель. Наилучшим режимом работы мотора считается такой, при котором открытие форсунки происходит непосредственно перед началом такта впуска. И двигатель работает устойчиво, и достигается высокая экономия бензина. Преимущества такой топливной системы очевидны.
  2. Одновременный впрыск топливовоздушной смеси — открытие форсунок не зависит от такта. Они все открываются одновременно, несмотря на то, что находятся на впускных коллекторах «своих» цилиндров. Это несколько модернизированный моновпрыск, несмотря на то, что форсунок несколько, управление ими происходит так, будто установлена всего одна. В общем, такие конструкции надёжны и работа их стабильна, но по характеристикам уступают более современным конструкциям.
  3. Попарно-параллельный впрыск топливной смеси немного отличается от предыдущего. Главное отличие — открываются не все форсунки разом, а парами. Одна пара открывается перед впуском, вторая — перед выпуском. Именно так обычно работает впрыск. Из употребления такие системы вышли давно, но, например, если выходит из строя датчик фаз, современные инжекторы переходят в аварийный режим (попарно-параллельный впрыск происходит вместо фазированного, так как без параметров этого датчика работа невозможна).
  4. Системы непосредственного впрыска топлива имеют высокую стоимость, но и надёжность у них завидная. Экономичность и мощность двигателя на высоком уровне, регулировка подачи топливовоздушной смеси максимально точная. Мотор может быстро изменить режим работы. Электромагнитные форсунки устанавливаются в ГБЦ, смесь распыляется непосредственно в камеру сгорания цилиндра (отсюда и название системы).

В конструкции отсутствует впускной коллектор и клапан. Реализация конструкции довольно сложная, так как в ГБЦ на каждый цилиндр есть отверстия под свечи, клапаны (2 или 4, в зависимости от типа мотора). Элементарно не хватает места для установки форсунки.

Изначально такие системы впрыска устанавливались на габаритные и мощные двигатели, на бюджетных их не встретить. И ремонт таких систем выливается в круглую сумму.

Система датчиков инжекторных двигателей

Без этих компонентов работа системы впрыска топлива невозможна. Именно датчики сообщают блоку управления всю информацию, которая необходима для работы исполнительных устройств в нормальном режиме. Неисправности системы питания инжекторного двигателя по большей части вызывают именно датчики, так как они могут неверно производить замеры.

  1. Датчик расхода воздуха устанавливается после воздушного фильтра, так как в конструкции имеется дорогостоящая платиновая нить, которая при попадании мелких посторонних частиц может засоряться, отчего показания окажутся неверными. Датчик считает, какое количество воздуха проходит через него. Понятно, что взвесить воздух не представляется возможным, да и объем его измерить проблематично. Суть работы заключается в том, что внутри пластиковой трубки находится платиновая нить. Она нагревается до рабочей температуры (более 600º, именно это значение закладывается в ЭБУ). Поток воздуха охлаждает нить, блок управления фиксирует температуру и, исходя из этого, вычисляет количество воздуха.
  2. Датчик абсолютного давления необходим для более точного снятия показаний о количестве потребляемого двигателем воздуха. Состоит из 2 камер, одна из которых герметична и внутри у неё вакуум. Вторая камера соединена с впускным коллектором. В последнем при впуске разрежение. Между камерами устанавливается диафрагма с пьезоэлементом, который вырабатывает небольшое напряжение во время изменения давления. Это значение напряжения поступает на вход блока управления.
  3. Датчик положения коленвала располагается рядом со шкивом генератора. Если присмотреться, то можно увидеть, что на шкиве есть зубья, причём они расположены на одинаковом расстоянии друг от друга. Суммарное число зубьев — 60, оси соседних расположены на расстоянии 6º. Но если присмотреться ещё внимательнее, то можно увидеть, что 2-х не хватает. Этот промежуток необходим, чтобы датчик фиксировал положение коленвала максимально точно. Датчик вырабатывает напряжение, которое тем больше, чем выше частота вращения.
  4. Датчик фаз (распредвала) работает на эффекте Холла. В конструкции есть диск с вырезанным сегментом и катушка. При вращении диска вырабатывается напряжение. Но в момент, когда прорезь находится над чувствительным элементом, напряжение снижается до 0. В этот момент первый цилиндр находится в ВМТ на такте сжатия. Благодаря датчику фаз точно подаётся искра на свечу и открывается своевременно форсунка.
  5. Датчик детонации расположен на блоке ДВС между 2 и 3 цилиндрами (чётко посередине). Работает на пьезоэффекте — при наличии вибрации происходит генерирование напряжения. Чем сильнее вибрация, тем выше уровень сигнала. Блок управления при помощи датчика изменяет угол опережения зажигания.
  6. Датчик дроссельной заслонки представляет собой переменный резистор, на который подаётся напряжение 5 В. В зависимости от того, в каком положении находится заслонка, напряжение уменьшается. Иногда случаются поломки — в начальном положении показания датчика прыгают. Стирается резистивный слой, ремонт невозможен, эффективнее установить новый.
  7. Датчик температуры ОЖ, от него зависит качество воспламенения топливовоздушной смеси. С его помощью не только происходит коррекция угла опережения зажигания, но и включение электровентилятора.
  8. Лямбда-зонд расположен в системе выпуска отработанных газов. В современных системах, которые удовлетворяют последним экологическим стандартам, можно встретить 2 датчика кислорода. Лямбда-зонд отслеживает количество кислорода в выхлопных газах. У него есть внешняя часть и внутренняя. За счёт напыления из драгметалла можно оценить количество кислорода в выхлопных газах. Внешняя часть датчика «дышит» чистым воздухом. Показания передаются на блок управления и сравниваются. Эффективные замеры возможны только при достижении высоких температур (свыше 400º), поэтому часто устанавливают подогреватель, чтобы даже в момент начала работы двигателя не наблюдалось перебоев.

Исполнительные механизмы инжекторных систем

По названию видно, что эти устройства выполняют то, что им скажет блок управления. Все сигналы от датчиков анализируются, сравниваются с топливной картой (огромной схемой работы при тех или иных условиях), после чего подаётся команда на исполнительный механизм. Следующие исполнительные механизмы входят в состав инжекторной системы:

  1. Электрический бензонасос, установленный в баке. Он нагнетает в рампу бензин под давлением около 3,5 Мпа. Вот какое давление в топливной системе должно быть, при нем распыление смеси окажется наиболее качественным. При повышении оборотов коленвала увеличивается расход бензина, нужно его больше нагнетать в рампу, чтобы удерживать давление на уровне. В нижней части насосов устанавливается фильтр, который нужно менять хотя бы раз в 30000 км пробега.
  2. Электромагнитные форсунки устанавливаются в рампе и предназначены для подачи топливовоздушной смеси в камеры сгорания. Чем дольше открыт клапан форсунки, тем больше смеси поступит в камеру сгорания — именно такой принцип дозирования лежит в основе.
  3. Дроссельный механизм приводится в движение педалью из салона. Но в последние годы набирает популярность электронная педаль газа. Это означает, что вместо тросика используется потенциометр на педали и небольшой электродвигатель на дроссельной заслонке.
  4. Регулятор холостого хода предназначен для контроля количества воздуха, поступающего в топливную рампу при полностью закрытой дроссельной заслонке. На карбюраторных моторах аналогичную функцию выполняет «подсос». Несмотря на то, что топливная система отличается, суть работы остаётся той же — подача смеси и её сгорание.
  5. Модуль зажигания — короб, в котором находится 4 высоковольтные катушки. Хорошая конструкция, но крайне ненадёжная — высоковольтные провода имеют свойство портиться. Намного эффективнее окажется использование для каждой свечи отдельной катушки, выполненной в виде наконечника.

Работа двигателя с инжекторной системой впрыска

А теперь можно рассмотреть и принцип работы системы питания инжекторного двигателя. При включении зажигания происходит переход в рабочий режим всех механизмов и устройств. Первым делом насос нагнетает бензин в рампу до минимального давления, которого хватит для запуска.

А дальше все ждут, когда провернётся коленвал, и с его датчика пойдёт сигнал на блок управления о положении поршней в цилиндрах. Одновременно с этим датчик фаз выдаёт сигнал о том, какой такт совершается. После анализа данных блок управления даёт команду на форсунки (в зависимости от того, в каком цилиндре происходит впуск).

При вращении коленвала постоянно снимаются данные с датчиков и, исходя из них, происходит открывание нужных электромагнитных форсунок на определённый промежуток времени. Смесь воспламеняется, отработанные газы выходят через выпускной коллектор. По тому, какое содержание кислорода в них, можно судить о качестве сгорания топлива.

Если содержание кислорода большое, то смесь сгорает не до конца. Блок управления производит корректировку угла опережения зажигания, чтобы добиться наилучших показаний.

Но вот во время прогрева некоторые датчики не влияют на работу системы управления. Это датчики расхода воздуха, детонации и абсолютного давления. При достижении рабочей температуры включаются они в работу. Причина — во время прогрева невозможно соблюсти все условия, в частности, соотношение бензина и воздуха. Уровень СО в выхлопных газах тоже будет зашкаливать, поэтому контроль всех этих параметров не следует производить.

характеристика и преимущества :: SYL.ru

Введение

Инжекторный двигатель имеет особую систему топливной подачи. Она устанавливается на нынешние бензиновые двигатели вместо карбюраторной системы.

Инжекторный двигательОбщая характеристика

Сегодня инжекторный двигатель, можно сказать, стал абсолютной заменой карбюраторной системы. Он улучшает все показатели машины (расход топлива, экологические характеристики, динамику разгона и т.д.). Кроме того, он дает возможность на протяжении долгого времени соблюдать высокие экостандарты без использования ручных регулировок – только благодаря самостоятельной настройке по кислородному датчику.

Впрыск топлива

Инжекторный двигатель устроен таким образом, что в поток воздуха впрыск топлива осуществляется при помощи специальных форсунок, которые располагаются либо там, где находился карбюратор (т.е. на впускном коллекторе), либо рядом со впускным клапаном каждого цилиндра. Еще они могут находиться в головке цилиндров, тогда впрыск осуществляется в камеру сгорания. Топливо к форсункам подается под давлением, а автомобильный бортовой компьютер в нужные моменты подает токовые импульсы, которые их открывают. При этом количество подающегося топлива определяется тем, насколько импульс тока велик. Его длительность рассчитывают на

Устройство инжекторного двигателяосновании информации, которая дается набором датчиков, контролирующих параметры двигателя. Среди них – его температура, обороты, данные о разрежении, а также о расходе воздуха. Хочется отметить, что такая система питания инжекторного двигателя появилась еще в конце XIX века, но из-за сложной конструкции, а также отсутствия нужных систем управления она тогда не нашла своего применения.

Система подачи топлива

Эта тема заслуживает отдельного внимания. Со специальных датчиков в контроллер поступает информация, которая оповещает о массовом расходе воздуха, температуре охлаждающей жидкости, содержании в отработанных газах кислорода, положении дроссельной заслонки, частоте вращения вала, напряжении в сети, а также о наличии в двигателе детонации, положении распределительного вала, автомобильной скорости. Контроллер на основе данной информации осуществляет управление системой зажигания, подачей топлива, регулятором холостого хода, системой диагностики. Одним словом, этот процесс очень сложный, однако результат превосходит все возможные ожидания. И, соответственно, стоит отметить достоинства, которыми обладает инжекторный двигатель.

Система питания инжекторного двигателяДостоинства

Устройство инжекторного двигателя позволяет тратить меньше топлива. Еще нужно отметить, что у него высокая динамика разгона. Сюда стоит добавить небольшое количество вредных веществ и несомненную стабильность работы. Единственным недостатком данного механизма является сложность его ремонта.

Принцип работы

Инжекторный двигатель способен долго время соблюдать высокие экостандарты (как было сказано ранее) без дополнительных ручных регулировок. Это достигается при помощи системы самостоятельной настройки по данным с датчика кислорода.

Инжекторный и карбюраторный двигатель: в чем разница

Сравнительно недавно под капотом любого автомобильного двигателя, работающего на бензине, можно было найти карбюратор — прибор, отвечающий за наполнение цилиндров топливной смесью. В последнее время ему на смену пришло новое устройство — инжектор.

Однако не каждый знает, в чем состоит отличие между ними. Предлагаемая статья содержит информацию о технических особенностях упомянутых систем.

Исторический экскурс

Первый жидкостный карбюратор, работающий по принципу испарения, был создан в 1872-м, по другим данным — в 1876 году. А через 20 лет (1893) итальянец Донат Банки разработал прибор, в основе которого лежало распыление бензина. Постепенно совершенствуясь и обрастая различными системами, он просуществовал на автомобильных двигателях почти столетие.

Родословная инжектора берет свое начало с тех же времен. Еще начиная с 1902 года, двигатели французского инженера и гонщика Левассера содержали некоторые элементы механического впрыска топлива.

Идею позаимствовали авиационные конструкторы, заинтересованные тем, что работа инжектора не зависит от силы гравитации. К окончанию второй мировой войны инжекторные двигатели появились на некоторых самолетах воюющих сторон, включая и СССР.

Впервые на серийном автомобиле механический принудительный впрыск получил Mercedes-Benz 300SL («Крыло Чайки») в 1954 году. А впрыск топлива с электронным управлением был опробован итальянцами еще до войны.

С 80-х годов минувшего столетия инжекторные бензиновые двигатели получают массовое распространение в связи с появлением доступных электронных компонентов для создания электронных систем управления двигателем. На современных автомобилях карбюраторные двигатели практически не встречаются, кроме некоторых гоночных болидов.

Принцип работы карбюратора

Сarburation, в переводе с английского, — газификация, насыщение воздуха парами, смесеобразование. А карбюратор — это смеситель, то есть устройство для распыления в воздухе мельчайших частиц топлива.

Как схематично устроен этот прибор? Устройство устанавливается на впускном коллекторе и состоит из двух камер: поплавковой и смесительной, которые соединены между собой трубкой распылителя.

Первая сообщается посредством трубопровода с топливным баком. В нее бензонасосом подается горючее. Постоянный уровень бензина поддерживается с помощью игольчатого клапана и поплавка, подобно впускному устройству унитаза.

Вторая (воздушная) камера включает в себя диффузор (трубка Вентури), распылитель и дроссельную заслонку. Полость перед диффузором сообщается через воздушный фильтр с атмосферой, а смесительная камера — через впускной коллектор с цилиндрами двигателя. На дне распылительной трубки со стороны поплавковой камеры имеется калиброванное отверстие (жиклер), которое отмеряет нужное количество топлива для образования горючей смеси.

При движении поршней в смесительной камере создается разрежение, максимум которого приходится на место сужения диффузора, где находится и отверстие распылителя. Происходит всасывание наружного воздуха из атмосферы и бензина через трубку распылителя. Бензин, попадая в движущийся поток воздуха, распыляется и смешивается с воздушным объемом.

Как работает инжектор

Устройство впрыска топлива (Fuel Injection System) на самом деле более примитивно, чем у карбюратора, являющегося средоточием сложнейших систем, подчиняющихся законам истечения жидкости. Фактически здесь один рабочий элемент — это инжектор или форсунка, что одно и то же.

Форсунка имеет всего два состояния: открыто и закрыто. Открывается она с помощью встроенного электромагнита, закрывается пружиной. Количество подаваемого топлива определяется продолжительностью включения. Бензин подается насосом из бака в общую магистраль (топливную рампу), от которой запитаны инжекторные форсунки.

Для поддержания постоянного давления на рампе имеется клапан, сбрасывающий излишки топлива обратно в бак. Существует несколько вариантов подключения форсунок:

  • Одноточечный (моновпрыск).
  • Многоточечный (распределенный). Разделяется на параллельный (одновременный), попарно-параллельный и фазированный.
  • Прямой или непосредственный впрыск.

Управляет работой инжекторов электронный блок управления (ЭБУ). В его памяти «зашита» микропрограмма, выдающая команды различным исполнительным механизмам двигателя, среди которых и электромагниты форсунок.

Величина подачи бензина регулируется согласно многочисленным параметрам: нагрузке, температуре двигателя, составу выхлопных газов и так далее. Момент впрыска задается датчиками: положения коленвала (ДПКВ), распредвала (датчик Холла), дроссельной заслонки (ДПДЗ) и корректируется в соответствии с условиями движения.

Различия между двумя видами двигателей

Чем отличается инжекторный двигатель от карбюраторного? Два типа бензиновых двигателей внутреннего сгорания (ДВС) отличаются между собой как по способу питания, так и составом входящих компонентов. Инжекторный и карбюраторный двигатель представляют собой «две большие разницы», как говорили в Одессе.

Главное, что характеризует каждую систему — технология смесеобразования и, соответственно, техническое решение. В таблице приводится наиболее важные принципиальные и конструктивные отличия.

ОтличияТип двигателя
ИнжекторКарбюратор
Метод приготовления горючегоВпрыск бензина перед впускным клапаном внутри коллектора или непосредственно в цилиндрПодготовка топливно-воздушной смеси перед впускным коллектором
Подающее устройствоФорсункиКарбюратор
Место установкиНа каждом цилиндре (см. примечание)На впускном коллекторе
Тип бензонасосаЭлектрическийМеханический
Система управленияЭБУОтсутствует

Примечание: При моновпрыске одна общая форсунка устанавливается на впускном коллекторе вместо карбюратора, то есть выполняет его функцию. Однако это решение было промежуточным, и сейчас практически не используется.

Сравнение двух систем

 Принудительный впрыск

  • Инжектор, в отличие от карбюратора, обеспечивает оптимальный состав рабочей смеси в зависимости от режима работы двигателя, поэтому лучше справляется со своей функцией.
  • По динамическим качествам впрысковый мотор превосходит карбюраторный. К примеру, инжекторная Нива ВАЗ-2121 значительно резвее своего карбюраторного аналога.
  • Надежность работы системы впрыска выше. Недостатком карбюраторов является большое количество жиклеров, склонных к засорению. Кроме того, они чувствительны к температурным условиям. Летом страдают повышенным испарением топлива из поплавковой камеры, зимой — от образования и замерзания конденсата.
  • Инжекторный мотор устойчиво заводится даже при значительных отрицательных температурах благодаря электронному управлению. Водители со стажем помнят, каких трудов стоило запустить карбюраторный движок, несмотря на пресловутый «подсос».
  • Карбюраторные двигатели не отвечают современным экологическим требованиям. Электронная система, управляющая инжектором, контролирует содержание вредных выбросов и корректирует состав подаваемой смеси.
  • Поскольку на обычных режимах работы инжекторного ДВС в цилиндры подается обедненная смесь, расход топлива сокращается, поэтому инжектор экономичнее карбюратора.
  • Благодаря тому, что состав и количество подаваемой смеси регулируется электроникой, мощность впрысковых агрегатов повышается. Прибавка составляет до 10%.

Карбюратор

  • Меньшая стоимость устройства. Правда, если сравнивать цены двух новых автомобилей с разными системами подачи топлива, отличаться они будут незначительно.
  • В карбюраторе не образуется нагар. Форсунки инжектора более требовательны к топливу, поскольку работают в тяжелых условиях (высокая температура, особенно у прямого впрыска). Сомнительные заправки желательно объезжать стороной.
  • Значительно проще в обслуживании, поэтому карбюраторные автомобили до сих пор популярны в глубинке, где далеко до ремонтного сервиса, и водитель в случае поломки вынужден устранять неисправность своими руками.

Преимущества инжекторного впрыска неоспоримы: улучшение динамики, невосприимчивость к наружной температуре, меньший ущерб окружающей среде, топливная экономичность при одновременном повышении снимаемой мощности.

Благодаря вышеперечисленным достоинствам инжектор на бензиновых ДВС получил широкое распространение. Сегодня все легковые автомобили оснащаются инжекторной системой питания. Карбюраторные двигатели сохранились только на старых машинах, если не считать некоторых гоночных спорткаров.

Отправить ответ

avatar
  Подписаться  
Уведомление о