Для чего нужен гидротрансформатор в акпп – Гидротрансформатора акпп – Как устроена коробка-автомат с гидротрансформатором — ДРАЙВ — Автоблог 24premier.ru — автоновости, обзоры, ремонт

Содержание

Гидротрансформатор — Википедия

Модель гидротрансформатора в разрезе

Гидротрансформа́тор (турботрансформатор (уст.), преобразователь крутящего момента) — гидравлическое устройство, служащее для преобразования (изменения) крутящего момента от двигателя к трансмиссии. В отличие от гидромуфты гидротрансформатор способен увеличивать момент на ведомом валу в зависимости от действующего на него сопротивления.

Является одним из элементов гидромеханических трансмиссий, в составе которых применяется на транспортных средствах с двигателем внутреннего сгорания от легковых машин до тепловозов. Гидротрансформаторы получили широкое распространение в автомобильной технике, обеспечивая плавное трогание автомобиля с места и уменьшая передачу ударных нагрузок от трансмиссии на вал двигателя. Чаще всего используется с АКП или вариаторами.

Принципиальная схема гидротрансформатора

Любой гидротрансформатор состоит из:

  • Осевого лопастного насоса, жестко связанного с корпусом гидротрансформатора. Насос обеспечивает движение жидкости.
  • Турбины, жестко соединенной с ведомым валом. Турбина вращается под действием потока жидкости от насоса.
  • Так называемого статора (реактора, направляющего аппарата) — специальной крыльчатки, установленной на пути жидкости непосредственно на выходе из турбины. Статор закреплен на обгонной муфте (муфте свободного хода), позволяющей ему свободно вращаться только в одну сторону (в ту же, в какую вращается турбина).

При работе гидротрансформатора жидкость разгоняется насосным колесом и движется по сложной траектории, которую можно разделить на две простые составляющие: относительную (скорость направлена радиально от оси к периферии насосного колеса и от периферии к оси турбинного колеса), переносную (вращение вместе с насосным и турбинным колёсами). В зависимости от соотношения этих составляющих гидротрансформатор может работать на разных режимах.

Различают три режима работы гидротрансформатора:

  • Режим трансформации крутящего момента. Соотношение переносной и относительной скоростей потока выходящего с турбинного колеса такое, что абсолютная скорость направлена на вогнутую поверхность лопаток реактора. На реакторе создаётся крутящий момент, стремящийся провернуть его в сторону заклинивания муфты свободного хода. Реактор оказывается неподвижным. При этом лопатки реактора разворачивают относительную составляющую потока с турбинного колеса так, что его кинетическая энергия добавляется к кинетической энергии переносного движения, что создаёт увеличенный крутящий момент на турбинном колесе. Частный случай - стоп-режим, когда неподвижно и турбинное колесо. При этом в потоке, выходящем с турбинного колеса практически отсутствует переносная составляющая. При увеличении частоты вращения турбинного колеса возрастает центробежная сила, препятствующая перемещению потока с периферии к оси турбинного колеса. Кинетическая энергия относительной составляющей потока, выходящего с турбинного колеса, уменьшается. При этом уменьшается коэффициент трансформации. Когда он становится близок к единице, гидротрансформатор переходит в режим гидромуфты.
  • Режим гидромуфты. Соотношение относительной и переносной составляющих становится таким, что абсолютная скорость потока, выходящего с турбинного колеса, направлена на выпуклую поверхность лопаток реактора. При этом создаётся крутящий момент, проворачивающий реактор в направлении расклинивания муфты свободного хода. Реактор вращается вместе с турбинным колесом и не изменяет направление относительной составляющей потока. Крутящий момент с насосного колеса на турбинное передаётся без изменения.
  • Режим блокировки. Система управления подаёт сигнал на блокировку фрикционной муфты гидротрансформатора. Насосное и турбинное колеса жёстко соединяются и вращаются как одно целое. У потока жидкости при этом отсутствует относительная составляющая.

Описание принципа работы гидротрансформатора можно посмотреть в этом видео Гидротрансформатор АКПП. Вся правда о принципе работы.

Гидротрансформатор в разрезе. Слева виден «бублик» насоса и турбины, между ними виден светло-серый реактор и его подшипник с обгонной муфтой. Справа сцепление блокиратора.

Все детали собраны в общем корпусе, расположенном, как правило, на маховике двигателя машины. Хотя, бывают и исключения. Например, в трансмиссиях автобуса ЛиАЗ-677 и трактора ДТ-175С передача крутящего момента от двигателя к гидротрансформатору происходит через карданный вал. Гидротрансформатор наполнен маслом, которое активно перемешивается при его работе.

Насосное колесо жёстко связано с корпусом гидротрансформатора, при вращении вала двигателя оно создаёт внутри гидротрансформатора поток масла, который вращает колесо статора (реактора) и турбину.

Конструктивным отличием гидротрансформатора от гидромуфты является наличие статора (реактора). Статор установлен на обгонной муфте. При значительной разнице оборотов насоса и турбины статор (реактор) автоматически блокируется и передаёт на насосное колесо больший объём жидкости. Благодаря статору (реактору) происходит увеличение крутящего момента до трёх раз[1] при старте с места.

Турбина жёстко связана с валом АКП.

Благодаря тому, что передача крутящего момента внутри гидротрансформатора происходит без жёсткой кинематической связи, исключаются ударные нагрузки на трансмиссию и автомобиль приобретает большую плавность хода. Негативным эффектом гидротрансформатора является «проскальзывание» турбинного колеса по отношению к насосному — это приводит к повышенному выделению тепла (в некоторых режимах гидротрансформатор может выделять больше тепла, чем сам двигатель) и увеличению расхода топлива.

Блокировка гидротрансформатора[править | править код]

Для повышения топливной экономичности в конструкцию современных гидротрансформаторов вводится механизм блокировки, позволяющий жёстко связать насос и турбину. При заблокированном гидротрансформаторе АКП работает в режиме жёсткой кинематической связи двигателя и трансмиссии аналогично МКП. В электронно-управляемых АКП момент включения блокировки определяет компьютер, поэтому она может быть включена практически в любой момент согласно управляющей программе.

АКП, произведённые в XX веке, включали блокировку гидротрансформатора только при достижении достаточно большой скорости (более 70 км/ч). Современные АКП включают блокировку гидротрансформатора с достаточно низких скоростей (от 20 км/ч), что позволяет экономить топливо не только при движении по шоссе, но и при городской эксплуатации автомобиля. Также блокировка гидротрансформатора применяется, подобно МКПП, для торможения двигателем. В этом случае подача топлива в двигатель прекращается на время блокировки, вал двигателя вращается за счёт движения автомобиля. На тракторах блокировка гидротрансформатора используется для запуска двигателя трактора «с толкача» либо когда трактор работает в стационарном режиме.

Необходимо отметить, что хотя блокировка гидротрансформатора приносит ощутимую экономию топлива, она имеет некоторые недостатки:

  • прямая кинематическая связь способствует передаче ударных нагрузок между двигателем и трансмиссией;
  • частое включение блокировки приводит к износу фрикционов АКП;
  • загрязнение масла АКП продуктами износа фрикционов блокировки;
  • ухудшение плавности хода при переключении передач АКП.

Гидротрансформаторы широко используются на транспорте: от легковых автомобилей и лёгких вилочных погрузчиков до сверхтяжёлых специальных грузовых шасси. Чаще всего работают с планетарными коробками передач, хотя встречаются и сочетания с обычными двух- и трёхвальными конструкциями. Популярность снабжённых гидротрансформатором машин в зависимости от региона может очень сильно различаться. Так, на конец XX века в Западной Европе около 20 % легковых автомобилей имели гидротрансформатор. Подавляющее большинство гидротрансмиссий средней и большой мощности в Европе разработано и строится фирмой Voith в Германии.

В то же время в США их доля составляла порядка 80 %. В последние годы из легкового автомобилестроения гидротрансформаторы вытесняются автоматизированными или «роботизированными» механическими коробками передач.

В СССР, а позднее в СНГ использовались в гидродинамических трансмиссиях автомобилей «Волга», «Чайка» и ЗИЛ, многоцелевых тягачах МЗКТ и КЗКТ, семействе БелАЗ, автобусах ЛАЗ-695Ж и ЛиАЗ-677, на тракторах ДТ-175С и Т-330 и на ряде маневровых тепловозов (ТГМ3, ТГМ6, ТГК2) и магистральных локомотивов — ТГ102, ТГ16, ТГ22. Кроме того, гидротрансформаторы используются в трансмиссиях некоторых типов подъёмных кранов и экскаваторов с канатным приводом рабочих органов, в приводах рудничных и карьерных ленточных конвейеров. Также гидротрансформаторы устанавливались в привод гребных винтов самого мощного в СССР речного буксира-толкача Маршал Блюхер, что позволяло двигателям теплохода-гиганта эффективно работать на малых скоростях без применения гребных винтов регулируемого шага (реализация которых на речных судах весьма затруднительна).

В системах объёмного гидропривода встречаются агрегаты, носящие название гидравлических трансформаторов, но не имеющие по конструкции ничего общего с гидродинамическими трансформаторами. Пример — агрегат НС53, стоящий на самолёте Ан-124 «Руслан» и некоторых других, состоит из двух одинаковых гидромашин (мотор-насосов) с общим валом, каждая из которых подключена к своей автономной гидросистеме. В какой из систем больше давление — машина той системы вращает вал и передаёт механическую энергию другой машине, которая создаёт давление в своей системе. Такая конструкция позволяет передавать энергию из системы в систему без обмена жидкостью, что при разгерметизации или загрязнении одной гидросистемы исключает отказ другой. На самолётах Airbus аналогичный агрегат называется power transfer unit (PTU).

  • Гидравлика, гидромашины и гидроприводы: Учебник для машиностроительных вузов/ Т. М. Башта, С. С. Руднев, Б. Б. Некрасов и др. — 2-е изд., перераб. — М.: Машиностроение, 1982.
  • Гейер В. Г., Дулин В. С., Заря А. Н. Гидравлика и гидропривод: Учебник для вузов. — 3-е изд., перераб. и доп. — М.: Недра, 1991.
  • Лепешкин А. В., Михайлин А. А., Шейпак А. А. Гидравлика и гидропневмопривод: Учебник, ч.2. Гидравлические машины и гидропневмопривод. / под ред. А. А. Шейпака. — М.: МГИУ, 2003. — 352 с.
  • Самолёт Ан-124-100: Руководство по технической эксплуатации. Книга 5, раздел 029 — гидравлический комплекс.

Ремонт гидротрансформатора - Это важно знать

Гидродинамический трансформатор ("Гидротрансформатор" или "ГДТ") - это герметично заваренный узел, передающий крутящий момент от двигателя - к автоматической трансмиссии при помощи двух вращающихся в масле турбин. Раньше этот узел носил название гидромуфта, потому что не трансформировал вращение в дополнительный момент, а лишь соединял как муфта (сцепление) двигатель с колесами.

Название "Гидротрансформатор" или Torque Converter произошло от того, что при разгоне происходит примерно 2-х кратное увеличение вращающего момента за счет такого-же кратного уменьшения скорости вращения. Чем выше скорость (и меньше ускорение) - тем меньше эта кратность.

Немного об истории Гидротрансформатора:

  • Первая гидромуфта была изобретена в 1902 году и установлена в 1907-м на скоростном судне.
  • В 1928 году фирма "Lysholm-Smith" первой применила гидромуфту для автобусов.
  • В 1940 году гидромуфтами стали оснащаться первые легковые авто Oldsmobile.
  • А с 1946-47 годов – гидромуфта стала использоваться серийно в производстве автомобилей (США).

Для чего нужен Гидротрансформатор в АКПП?

ГДТ позволяет отказаться от педали сцепления, обеспечивает плавность разгона и как дополнительная опция - увеличивает крутящий момент при разгоне, также позволяет двигателю работать во время остановки при включенной передаче. Это можно увидеть на примере двух вентиляторов (один из которых включен вращение передается от работающего вентилятора к не работающему. На этом примере наглядно виден основной принцип работы гидротрансформатора.

Гидротрансформатор осуществляет гидравлическое сцепление между двигателем и автоматической коробкой передач. В отличии от механического сцепления в МКПП, ГДТ передает крутящий момент от ведущего вала к ведомому не через механическое трение фрикционов, а посредством гидравлического давления масла. Как ветер вращает крылья мельницы. Наглядно о принципе работы ГДТ рассказывают многочисленные видео.

Когда скорости вращения входного и выходного валов сравняются (а это конструктивно наступает после 60-70 км/ч), включается механическая блокировка ГДТ, с помощью фрикционной накладки вращение масла останавливается, а валы двигателя и трансмиссии соединяются напрямую. Гидротрансформатор в этом режиме выключается и передает уже 100% вращения. Сравнимо с отжиманием сцепления после переключения скорости.

Фактически, пока ГДТ работает - он тратит кинетическую энергию двигателя на вращение масла и как следствие - на нагрев масла от трения. А в момент, когда он блокируется - истирается накладка и эта пыль вымывается маслом. Эти две побочных функции ГДТ и являются главными проблемами, которые влияют на жизнь автоматической трансмиссии.

КПД Гидротрансформаторов.

- Средний КПД типичных 3-х и 4-х ступенчатых АКПП 20-го века при режиме "городской езды" составлял от 75 до 85%. ГДТ выключался на скорости ок. 60 км/час. В момент, когда включается блокировка - КПД агрегата сразу подтягивается к 100%. Пока нагрузку от двигателя к трансмиссии передает вращающееся масло - КПД этого узла составляет около 60-70%.

Чем быстрее включается блокировка - тем выше средний КПД автомата.

В последних конструкциях 5-ти и 6-ти ступенчатых АКПП с введением интеллектуальной электронной системы управления и линейных соленоидов средний кпд ГДТ удалось довести до рекордных 94-95%.

Оптимизация достигается за счет того, что муфта блокировки подключается так рано, как это возможно (иногда уже со 2-й скорости) и разблокируется как можно позднее при снижении скорости. Практически приближаясь к режиму работы педали сцепления на МКПП.

Регулируемое проскальзывание муфты

"Режим регулируемого проскальзывания" фрикциона блокировки - это режим, когда фрикцион (или несколько - по моде введенной Мерседесом) управляемый тонконастроенным линейным соленоидом и компьютером поджимается на такое расстояние к корпусу, что между ними остается тончайшая пленка масла, которая достаточна для проскальзывания и отвода температуры от трущейся поверхности, но заставляет корпус вращаться. Очень похоже на проскальзывание сцепления при агрессивном разгоне с МКПП или на регулируемое притормаживание колес.

Таким образом фрикцион совместно с крыльчатками турбин раскручивает вал трансмиссии, что кроме увеличения КПД, приводит к дополнительному нагреву и загрязнению масла продуктами износа этого фрикциона.

Если раньше разгонял машину поток масла между крыльчатками турбин, а муфта блокировки только помогала, то в ГДТ 21-го века все чаще разгоняют машину фрикционы "проскальзывающие" с тончайшими зазорами, заполненными маслом, а турбины - только помогают. Идея, придуманная фирмой Мерседес, используется и в современных 7-ми и 8-ми ступенчатых АКПП.

То есть введено революционное изменение самого принципа работы фрикциона. Если фрикционы 20-го века работали в режиме Он-Офф (сцепление происходило как можно короче и с небольшим толчком, чтобы ускорить переключение передач), то новый принцип включения и новые фрикционы ГДТ привели к тому, что блокировка ГТД стала работать по принципу тормозных колодок колеса. То есть с тонкой регулировкой силы и времени сцепления.

Это привело к таким особенностям:

1. Материал нагруженной накладки фрикциона теперь стал не тот, что был у "лениво" работающих бумажных фрикционных накладок 4-х ступок, а - графитовые "хай-энерджи" составы, отличающиеся износо- и температуро-стойкостью и клейкостью. И эти суперстойкие и суперклейкие микрочастицы, оторвавшиеся от фрикциона путешествуют вместе с маслом и "набрызгом" ввариваются-вклеиваются во все неудобные места, начиная от деталей гидротрансформатора, кончая деталями и каналами гидроблока и соленоидов.

2. Полуистертый фрикцион все хуже держит контакт и все сильнее проскальзывает, еще сильнее нагревая корпус "бублика" и масло. А компьютер не понимает, что фрикцион стерт и продолжает заставлять его работать с длительном проскальзывании, что приводит к быстрому перегреву масла, а соответственно и трансмиссии.

Так на первом месте по колличеству ремонтов с большим отрывом стоят бублики 5HP19, которые почти всегда приходят в ремонт с изношенным до металла фрикционом и перегретым хабом привода маслонасоса. Этот участок конструкции приходится вырезать и вваривать новый. Довольно сложная и ответственная работа. (справа)

2А. Самое неприятное последствие от изнашивающегося фрикциона - это его остатки, то есть клеевой слой, с помощью которого накладка приклеивается к металлу. Именно частицы клея фрикциона наиболее вредны для гидроблока и клапанов-золотников.

3. Перегретое масло (свыше 140 градусов) за несколько суток работы убивает резину сальников и уплотнителей и остатки фрикциона. И хотя в новых 6-ти ступенчатых АКПП немецких и американских производителей вместо приклеиваемой на тело поршня фрикционной накладки стали использовать настоящие фрикционные диски с карбоном (см. выше), перегретый фрикцион также истирается и быстро загрязняет масло мельчайшими частицами фрикционного материала. Поэтому плановые замены фрикционов гидротрансформатора - стали обязательной регламентной работой на всех АКПП Мерседеса и коробок производства фирмы ZF.

Получается, что качество внутренних поверхностей ГДТ напрямую влияет на:

  • динамические характеристики разгона и потери мощности
  • на нагрев масла,
  • на загрязнение масла

и поэтому сейчас ремонт гидротрансформатора с резкой корпуса превратился в регламентную операцию, которую необходимо производить, чтобы заменить полустертый фрикцион и очистить все узлы и сочленения. Очистить этот нагар с помощью жидкостей практически невозможно. Очистка гидротрансформатора без вскрытия это - хобби.

Возрастные АКПП, пережившие период работы с горелым маслом, нуждаются в капремонте ГДТ как непременном условии продления ресурса трансмиссии.

Что изнашивается в гидротрансформаторах?

Проблемы ГДТ можно представить как пирамиду:

Самая распространенная причина, вызывающая необходимость ремонта гидротрансформаторов (низ пирамиды) - износ Фрикционной накладки Поршня блокировки ГДТ - тормоза.

При ремонте старую накладку удаляют, очищают место установки от остатков клея и наклеивают новую фрикционную накладку сцепления.

Без этой накладки или работе со "съеденным" фрикционом гидротрансформатор вполне может выполнять свои функции и мало кто замечает разницу в задержке блокировки, или ее нештатной работе, или перегреве масла.

Но если накладку вовремя не заменить, то отслоившиеся остатки фрикциона и клеевого состава попадают в масло и забивают каналы гидроплиты ("мозги"), приводя к цепной реакции масляного голодания - нагрева - износа - сгорания муфт, ступиц и втулок и т.д.

Гидротрансформаторы 21 века

Что касается нового поколения ГДТ (например для 6-ти ступенчатых АКПП), работающих при температуре 120-130 градусов, где активно используется "режим проскальзывания" , то там возникла новая проблема: Фрикционная накладка уже не приклеивается к поршню , а сама стала сменяемым фрикционным диском (слева), потому что изнашивается теперь быстрее других расходников. Но кроме того, что она изнашивается, она еще загрязняет масло новым материалом - графитовой пылью.

Графитовый фрикцион - гораздо более термо- и износо-стоек и долговечен, чем бумажный, но обладает и совершенно другими абразивными свойствами и "прилипаемостью". А это катастрофически быстро изнашивает тонкие места гидроблока и соленоидов. Каждые 100-150 ткм этот фрикцион ГДТ на разных 6-ти (и выше) ступенчатых АКПП часто приходится менять (В основном - ZF и Mercedes). Чем сильнее надавлена педаль газа, тем больше "заслуга" фрикциона для разгона машины.

Новые гидротрансформаторы для мощных авто имеют два режима работы: Спокойный. Когда нагружена в основном старая добрая пара турбин, разгоняющая машину с помощью вихря масла, а фрикционы блокировки подключаются только для блокировки разовым быстрым замыканием.

И Агрессивный режим. Когда в дело вступают фрикционы, отодвигая в сторону турбины и истираясь тянут колеса за ревущим многолитровым двигателем. Представьте площадь этих "проскальзывающих" фрикционов ГДТ и силу тяги двигателя!

Материалы для этого инновационного графитового (или кевларового) фрикциона много раз модифицировались (щадя масло и гидроблок) и сейчас имеются несколько их типов: HTE, HTS, HTL, XTL. для разного момента, разных настроек компьютера для различных температурных режимов и т.д.

Более редкие проблемы:

  • поломки лопастей колес. (случается не так часто, но приводит к поломке ГДТ). Определяется только при вскрытии.
  • перегрев и разрушение ступицы ГДТ. Заметно при осмотре.
  • разблокировка обгонной муфты, (случается не часто, проверка)
  • полное заклинивание обгонной муфты; (случается не часто, проверка)
  • Замена изношенных подшипников. (случается не часто, но при их поломке разрушается сам ГДТ, проверка)
  • замена сгоревшего хаба, передающего вращение трансмиссии.

Какие работы производятся при разборке ГДТ ?

1. Чтобы выполнить разборку агрегата, требуется срез сборочного сварного шва, соединяющего половинки ГДТ на высокоточном токарном станке, и только после этого производится диагностика и замена деталей.

При разборке производятся все описанные выше дефектовки и замены, а также очистка всех деталей от налета грязи.

2. В сборку гидротрансформаторов входит высокоточная сварка корпуса , проверка на герметичность, радиальное и осевое биение.Зтем производится балансировка ГТД.

Для этих процессов уже недостаточно распространенного заводского токарного или сварочного оборудования. От качества и точности обработки зависит ресурс работы этого сложного узла АТ и все это требует организации специализированного цеха, поставки запчастей и расходников, большого опыта специалистов - системы отдельного бизнеса.

Отремонтированные нашими партнерами ГДТ имеют минимально возможный процент брака и как правило ходят еще до 70-80% своего первоначального ресурса. И почти всегда ремонт оказывается дешевле замены ГДТ, Хотя изредка ( в одном случае из 100) случается, что ГДТ дороже ремонтировать, чем заменить.

О необходимости своевременного ремонта ГДТ не стоит убеждать того, кто уже один раз "попал" на капремонт автомата.

Признаки выхода из строя ГДТ

Обычно это:

  • посторонние вибрации и звуки,
  • рывки при переключении передач, особенно в районе 60-70 км/ч - или двигатель перестает тянуть после набора скорости или до нее тянет необычно долго, протечки масла итд.

Практически невозможно без спецоборудования определить смерть фрикциона ГДТ, что чаще всего и является причиной выхода из строя гидроблока АКПП и как следствие и самой трансмиссии.

Чем мощнее автомобиль, тем короче средний срок службы ГДТ до капремонта.

В ремонт идут обычно гидротрансформаторы легковых автомашин. Но изредка встречаются в ремонте и гидротрансформаторы грузовиков большого диаметра (св 35 см)

Ниже - любопытная сравнительная статистика (2009-2012 год) по популярности гидротрансформаторов в ремонте:

Что такое Гидротрансформатор и зачем он нужен?

Гидротрансформатор - устройство, необходимое автомобилям с автоматической коробкой передач для отделения трансмиссии от двигателя, заменяя сцепление.

Краткое описание


Гидротрансформатор дает возможность машинам с автоматической трансмиссией работать на холостых оборотах, благодаря полному отсоединению трансмиссии от двигателя. Располагается гидротрансформатор между двигателем и трансмиссией.

В данном устройстве для передачи движения от двигателя трансмиссии используется жидкость. При работе двигателя на малых оборотах (остановка на светофоре и т.д.) входящий крутящий момент мал, поэтому для удержания машины на месте достаточно лишь слегка удерживать педаль тормоза.

Внутри гидротрансформатор состоит из 4 элементов:

  • насос
  • турбина
  • реактор
  • трансмиссионная жидкость

 

Корпус гидротрансформатора прикреплен болтами к маховику двигателя, поэтому скорость его вращения равна скорости вращения двигателя. Плавники (они создают давление масла в гидротрансформаторе) так же  соединены с корпусом, поэтому их скорость вращения, тоже совпадает со скоростью работы двигателя.

 

Соединение гидротрансформатора  с трансмиссией и двигателем


Принцип работы насоса в гидротрансформаторе основан на принципе работы центрифуги. Когда происходит вращение гидротрансформатора, то жидкость отбрасывается наружу, создавая разреженное давление в центре и притягивая, тем самым, жидкость к центру. Все это очень напоминает принцип действия стиральной машины, в которой белье и вода прижимаются к стенкам барабана.

Жидкость попадает на лопасти турбины, соединенной с трансмиссией. Таким образом турбина вызывает вращение трансмиссии и машина начинает движение.

 

Достоинства и недостатки наличия гидротрансформатора


Современные гидротрансформаторы могут обеспечивать увеличение крутящего момента в 2-3 раза. Добиться этого возможно только если двигатель работает гораздо быстрее гидротрансформатора.

При движении с высокой скоростью частота вращения трансмиссии уравнивается с частотой работы двигателя. Разница скоростей вращения ведет к потере энергии. Эта причина приводит к перерасходу топлива (по сравнению с машинами с механическими трансмиссиями).

Для устранения данного эффекта в  некоторые машины дополнительно к  гидротрансформатору устанавливают блокировочную муфту. Когда обе половины гидротрансформатора набирают скорость, эта муфта соединяет их жестко, ликвидируя возможные потери производительности.

 

фото, принцип работы, неисправности, замена гидротрансформатора АКПП

В последнее время большим спросом начали пользоваться автомобили с автоматическими коробками передач. И сколько бы ни говорили автомобилисты, что АКПП – это ненадежный механизм, который дорог в обслуживании, статистика утверждает обратное. С каждым годом машин с МКПП становится меньше. Удобство «автомата» оценили многие водители. Что касается дорогого обслуживания, самая ответственная деталь в этой коробке - гидротрансформатор АКПП. Фото механизма и его устройство – далее в нашей статье.

Характеристика

В конструкцию автоматической коробки передач помимо данного элемента входит множество других систем и механизмов. Но основную функцию (это передача крутящего момента) выполняет именно гидротрансформатор АКПП. В просторечии его называют «бубликом» за счет характерной формы конструкции.

гидротрансформатор акпп Стоит отметить, что на автоматических коробках для переднеприводных авто гидротрансформатор АКПП включает в себя дифференциал и главную передачу. Помимо функции передачи крутящего момента «бублик» принимает на себя все вибрации и удары от маховика двигателя, тем самым сглаживая их до минимума.

Конструкция

Давайте рассмотрим, как устроен гидротрансформатор АКПП. Данный элемент состоит из нескольких узлов:

  • Турбинного колеса.
  • Блокировочной муфты.
  • Насоса.
  • Реакторного колеса.
  • Муфты свободного хода.

Все эти механизмы помещены в единый корпус. Насос непосредственно связан с коленвалом двигателя. Турбина сопрягается с шестернями коробки передач. Реакторное колесо размещено между насосом и турбиной. Также в конструкции колеса «бублика» имеются лопасти особой формы. Работа гидротрансформатора АКПП основана на перемещении специальной жидкости внутри (трансмиссионного масла). Поэтому АКПП включает в себя также масляные каналы. Кроме этого, здесь есть свой радиатор. Для чего он нужен, рассмотрим немного позже.

неисправности гидротрансформатора акпп

Что касается муфт, блокировочная предназначена для фиксации положения гидротрансформатора в определенном режиме (например, «паркинг»). Муфта свободного хода служит для вращения реакторного колеса в обратной стороне.

Принцип работы гидротрансформатора АКПП

Как действует данный элемент в коробке? Все действия «бублика» осуществляются по замкнутому циклу. Так, главная рабочая жидкость здесь – это «трансмиссионка». Стоит отметить, что она отличается по вязкости и составу от тех, что используются в механических коробках. Во время работы гидротрансформатора смазка поступает от насоса на турбинное колесо, а затем – на реакторное.

работа гидротрансформатора акпп

Благодаря лопастям жидкость начинает быстрее вращаться внутри «бублика», тем самым увеличивая крутящий момент. Когда частота вращения коленвала увеличивается, угловая скорость турбины и насосного колеса выравнивается. Поток жидкости меняет свое направление. Когда автомобиль набрал уже достаточную скорость, «бублик» будет работать только в режиме гидромуфты, то есть передавать лишь крутящий момент. Когда скорость движения увеличивается, ГТФ блокируется. При этом замывается муфта, и передача момента от маховика на коробку производится напрямую, с одинаковой частотой. Элемент разъединяется снова при переключении на следующую передачу. Так заново происходит сглаживание угловых скоростей до того момента, как скорость вращения турбин не сравняется.

Радиатор

Теперь о радиаторе. Для чего в автоматических коробках он выведен отдельно, ведь на «механике» такой системы не применяют? Все очень просто. На механической коробке масло выполняет лишь смазывающую функцию.

замена гидротрансформатора акпп

При этом его заливают лишь наполовину. Жидкость содержится в поддоне КПП, и в ней смачиваются шестерни. В автоматической коробке масло выполняет функцию передачи крутящего момента (откуда пошло название «мокрое сцепление»). Здесь нет фрикционных дисков – вся энергия идет через турбины и масло. Последнее постоянно двигается в каналах под высоким давлением. Соответственно, маслу необходимо охлаждаться. Для этого и предусмотрен в такой трансмиссии собственный теплообменник.

Неисправности

Выделяют следующие поломки трансмиссии:

Как определить поломку?

Выяснить, какой именно элемент вышел из строя, без демонтажа коробки и ее разбора довольно трудно. Однако предугадать серьезный ремонт можно по нескольким признакам. Так, если наблюдаются неисправности гидротрансформатора АКПП или тормозной ленты, коробка будет «пинаться» при переключении режимов. Машина начинает дергаться, если вы ставите ручку с одного режима на другой (причем когда нога находится на педали тормоза). Также коробка входит сама в аварийный режим. Машина двигается только на трех передачах. Это говорит о том, что коробке нужна серьезная диагностика.

принцип работы гидротрансформатора акпп

Что касается замены гидротрансформатора, она выполняется при полном демонтаже коробки (отсоединяются приводные валы, «колокол» и прочие детали). Этот элемент – самая дорогая составляющая любой АКПП. Цена на новый ГДТ начинается от 600 долларов для бюджетных моделей авто. Поэтому важно знать, как правильно использовать коробку, чтобы максимально отсрочить ремонт.

Как сохранить КПП?

Считается, что ресурс у данной трансмиссии на порядок ниже, чем у механики. Однако специалисты отмечают, что при должном обслуживании узла вам не потребуется ремонт или замена гидротрансформатора АКПП. Так, первая рекомендация – это своевременная замена масла. Регламент – 60 тысяч километров. И если на МКПП масло залито на весь срок эксплуатации, то в «автомате» оно является рабочей жидкостью. Если смазка черная или имеет запах гари, ее нужно срочно заменить.

гидротрансформатор акпп фото

Вторая рекомендация касается соблюдения температурных режимов. Не стоит слишком рано начинать движение – температура масла коробки должна быть не ниже 40 градусов. Для этого переведите рычаг по всем режимам с задержкой в 5-10 секунд. Так вы прогреете коробку и подготовите ее к эксплуатации. На холодном масле ездить нежелательно, так же как и на сильно горячем. В последнем случае жидкость будет буквально гореть (при замене вы услышите запах гари). АКПП не подходит для дрифта и жесткой эксплуатации. Также не стоит на ходу включать нейтральную передачу, а затем снова включать «драйв». Так вы сломаете тормозную ленту и ряд других важных элементов в коробке.

Заключение

Итак, мы выяснили, что собой представляет гидротрансформатор АКПП. Как видите, это весьма ответственный узел в коробке. Именно через него передается крутящий момент на коробку, а затем на колеса. И поскольку масло здесь является рабочей жидкостью, нужно соблюдать регламенты его замены. Так коробка будет радовать вас долгим ресурсом и плавными переключениями.

Диагностика и признаки неисправности гидротрансформатора АКПП :: SYL.ru

С каждым годом численность автомобилей с АКПП возрастает. На то есть свои причины. Автоматическая трансмиссия намного удобней в эксплуатации, нежели механика. С ней водитель не устает в пробках, да и со сцеплением при должной эксплуатации не бывает проблем. Но устройство автоматической коробки немного сложнее механики. Одна из основных составляющих любой АКПП – это гидротрансформатор (в простонародье «бублик»). Со временем он может выходить из строя. Почему это происходит и каковы признаки неисправности гидротрансформатора АКПП? Рассмотрим в нашей сегодняшней статье.

О конструкции

Гидротрансформатор служит для изменения и передачи крутящего момента, что идет от мотора на коробку передач. В конструкцию элемента входит:

  • Насосное колесо.
  • Турбина.
  • Реакторное колесо.
  • Муфта свободного хода.
  • Блокировочная муфта.

ГДТ размещается в отдельном корпусе, который заполнен АТФ-жидкостью. Последняя выполняет функцию не только смазки, но и «мокрого» сцепления (поскольку корзины и диска как такового в автоматической коробке нет).

признаки неисправности гидротрансформатора акпп Работает «бублик» по замкнутому циклу. Сперва АТФ-жидкость попадает на турбинное, а затем на реакторное колесо. Скорость лопастей последнего начинает усиливаться. Поток жидкости направляется на насосное колесо. В итоге увеличивается величина крутящего момента. С ростом частоты вращения коленвала, угловая скорость турбинного и насосного колеса выравнивается. Поток АТФ-жидкости начинает менять свое направление. В это же время срабатывает муфта свободного хода. Начинает вращаться реакторное колесо.

При дальнейшем росте скорости вращения гидротрансформатор блокируется (в работу включает специальная муфта). Так, передача крутящего момента от мотора на коробку производится напрямую. Это происходит до следующего включения или выключения передачи.

Работу гидротрансформатора контролирует электронный блок управления. Он воспринимает информацию со всех датчиков, что находятся в «бублике» и формирует выходной сигнал. При возникновении каких-либо проблем электроника тут же сообщит об ошибке. На практике происходит блокировка гидротрансформатора АКПП. Признаки неисправности могут быть разными. Это как электроника, так и механическая часть. Но если коробка встала в аварийный режим, однозначно ее следует продиагностировать.

Сколько служит?

Обычно гидротрансформатор рассчитан на весь срок службы автоматической коробки. Это 250-300 тысяч километров. Старые «мерседесовские» гидротрансформаторы (4АКПП) могут выхаживать и по 500 тысяч. Неисправности гидротрансформатора АКПП «Тойоты Марк-2» 80-х годов тоже возникают редко. Но как и любой другой механизм, он может выйти из строя раньше. Чтобы предотвратить серьезный ремонт, нужно вовремя выявлять поломку и знать признаки неисправности гидротрансформатора АКПП. Самые характерные из них мы перечислим ниже.

Звуки, вибрация

Как самостоятельно определить признаки неисправности гидротрансформатора АКПП? В первую очередь, нужно прислушаться к работе самой коробки. Так, при переключении передач может возникать механический звук (шуршание). Поначалу он едва заметен. А при увеличении оборотов двигателя и вовсе пропадает. О чем это говорит? Такие признаки неисправности гидротрансформатора АКПП свидетельствуют о проблеме с упорными подшипниками игольчатого типа. Элемент располагается между крышкой гидротрансформатора и турбинным (либо реакторным) колесом.

неисправности гидротрансформатора акпп Если при переключении передач возникает громкий металлический стук, это говорит о деформации лопаток турбинного колеса. Ремонту такой элемент уже не подлежит.

Если при скоростях 60-90 километров в час возникает легкая вибрация, это говорит о забитом масляном фильтре. Также подобные симптомы происходят из-за некачественной или старой АТФ-жидкости. Решение проблемы – замена фильтра и масла. В большинстве случаев ремонт на этом заканчивается.

Многие применяют частичную замену масла – сливают часть старого и доливают новое, повторяя этапы 2-3 раза. Но специалисты рекомендуют не экономить на полной замене АТФ-жидкости. Она производится на стенде под давлением. гидротрансформатор акпп признаки неисправности тойота В чем плюс такой процедуры? Замена масла будет произведена на 100 процентов, а грязь из коробки полностью вымоется. Повторить это в условиях гаража невозможно – только при наличии стенда.

Аварийный режим

Подразумевает работу трансмиссии только на первых трех скоростях. Как определить неисправность гидротрансформатора АКПП? На современных авто дополнительно высвечивается предупреждение на панели приборов. Коробка может вставать в аварийный режим по разным причинам:

  • Повреждение корпуса КПП.
  • Наличие стружки в АТФ-жидкости.
  • Наличие металлических обломков турбины.
  • Неисправности фрикционной группы и муфты.

Что примечательно, в аварийный режим коробка может входить лишь периодически. Например, после нагрева АТФ-жидкости до определенных температур. Причину нужно искать в датчиках (расхода воздуха, распредвала и даже системы АБС). Если коробка встает в аварию неожиданно, стоит осмотреть целостность электрической проводки.

При переходе с первой на вторую передачу может ощущаться глухой удар в режиме «Д». Эти признаки неисправности гидротрансформатора АКПП вибрацией тоже могут сопровождаться. В данном случае проблема решается сканированием входных и выходных датчиков. Существуют и другие симптомы неисправности гидротрансформатора АКПП. О них мы расскажем далее.

Проблемы с динамикой

Автомобиль может плохо набирать скорость. Причин тому множество, но если рассматривать признаки неисправности гидротрансформатора АКПП («БМВ» в том числе), то это обгонная муфта. Если она вышла из строя, ГДТ следует разобрать и заменить поломанную деталь.

блокировка гидротрансформатора акпп признаки неисправности Иногда случается, что после остановки автомобиль и вовсе не может тронуться. Это говорит о повреждении шлица на турбинном колесе. Выход из ситуации – установка новых шлицов. В запущенных случаях приходится менять полностью турбинное колесо.

Запах горелой пластмассы

Такое может возникать на стоящем автомобиле. Запах горелого пластика ощущается в районе коробки передач. О чем это говорит? Подобные признаки неисправности гидротрансформатора АКПП («Тойоты» в том числе) возникают из-за перегрева и плавления полимерных деталей «бублика». Это является следствием забитого масляного радиатора. Он может находиться как в самой коробке, так и отдельно от нее. Исправная система охлаждения АКПП – залог надежной работы гидротрансформатора.

Двигатель глохнет

При попытке трансмиссии перейти на повышенную или пониженную передачу, мотор начинает глохнуть. Это происходит из-за сбоев в электронике, которая блокирует работу гидротрансформатора. Зачастую виновником проблемы является электронный блок управления. Но о нем мы еще поговорим ниже.

Причины неправильной работы ГДТ

Специалисты выделяют несколько факторов, которые могут влиять на работу гидравлического трансформатора:

  • Кулиса рычага АКПП.
  • Масло (АТФ-жидкость).
  • Электронный блок управления АКПП.

Рассмотрим эти проблемы более подробно.

Кулиса

С годами в АКПП старого типа может выходить из строя кулиса. Такие агрегаты имеют механическую связь селектора с коробкой. Это приводит к затруднению включения нужно режима КПП. Селектор заедает в одном положении. Выход из ситуации – замена селектора и кулисы. В некоторых автомобилях данную операцию можно сделать без демонтажа самой КПП.

Масло

От состояния АТФ-жидкости во многом зависит ресурс и исправность АКПП. Специалисты рекомендуют производить ее замену раз в 40-50 тысяч километров. Однако своевременная замена еще не является залогом продолжительной работы гидротрансформатора. В случае потеков и низкого уровня АТФ-жидкости «бублик» выйдет из строя очень быстро.

гидротрансформатор акпп признаки неисправности вибрация Как произвести быструю диагностику? Нужно запустить двигатель, открыть капот и достать масляный щуп АКПП. На нем есть надпись «Cold» или «НОТ». В первом случае прогревать коробку не обязательно. Если уровень ниже нормы, его срочно нужно возобновить. Заливается жидкость через то же отверстие для щупа.

Обратите внимание и на состояние самого масла. Так можно вовремя определить и предотвратить неисправности, связанные с гидротрансформатором. Наличие стружки на щупе исключено. Если это так, значит, либо вышло из строя турбинное или реакторное колесо, либо износилась торцевая шайба.

Обратите внимание! При эксплуатации АКПП с низким уровнем АТФ-жидкости, возможен перегрев ГДТ.

Периодически осматривайте днище автомобиля, а именно крышку (поддон) автоматической коробки. Иногда уплотнительные прокладки могут давать течь. Эксплуатировать автомобиль с такой неисправностью нежелательно, поскольку уровень масла может упасть в любой момент.

Электронный блок управления

Это основной узел, управляющий работой автоматической коробки. Блок при неисправностях может неправильно выбирать обороты для переключения скоростей либо же полностью блокировать работу трансмиссии. ЭБУ – довольно надежный механизм, но при воздействии определённых факторов он выходит из строя. Это могут быть:

  • Резкие перепады напряжения бортовой сети.
  • Механические удары, вибрации.
  • Повышенная температура.
  • Высокая влажность.
  • Повреждение изоляции и окисление контактов.

Поломки, связанные с электронным блоком, решаются его полной заменой либо установкой новых отдельных управляющих шлейфов.

Неполадки с гидроблоком

Неисправности гидротрансформатора АКПП могут возникать и из-за гидроблока. Внешне он являет собой некую плиту и выглядит следующим образом:

признаки неисправности гидротрансформатора акпп бмвГидроблок служит для передачи АТФ-жидкости под давлением по определенным каналам с целью включить либо выключить конкретную передачу. При неисправностях данная плита может провоцировать вибрации и толчки при смене режима работы трансмиссии. Это основные признаки неисправности гидротрансформатора АКПП. На современных автомобилях неисправность гидроблока отображается на бортовом компьютере. Также плита не терпит высоких и продолжительных нагрузок. Это может быть буксировка тяжелого транспортного средства или старт с двух педалей. неисправность гидротрансформатора акпп симптомы Нередко неисправности гидротрансформатора АКПП возникают зимой. Это является следствием эксплуатации коробки с холодной АТФ-жидкостью. При температуре ниже -5 градусов, автоматическую трансмиссию нужно прогреть. Делается это просто. Нужно поочередно включать все режимы (Паркинг, Нейтраль и Драйв), не начиная движение, с интервалом в 5-10 секунд. Это позволит разогреть масло и не допустить поломок гидротрансформатора АКПП. Рабочая температура для АТФ-жидкости – 75-80 градусов по Цельсию.

Заключение

Итак, мы выяснили основные признаки и причины неисправностей гидротрансформатора АКПП. В большинстве случаев поломка сопровождается ошибками на приборной доске и характерным звуком работы самой коробки. При появлении пинков и вибраций, следует применять детальную диагностику. В зависимости от масштаба проблемы, решается это заменой масла или деталей самого гидротрансформатора (турбинное колесо, подшипники). Своевременное выявление неисправностей позволит вам избежать серьезного ремонта.

Проблемы гидротрансформатора АКПП: основные неисправности

Гидротрансформатор (ГДТ) – агрегат, выполняющий функцию связующего звена между АКПП и двигателем автомобиля. Гидротрансформатор предназначен для плавного бесступенчатого изменения крутящего момента и передачи его на ведущие колеса автомобиля. 

Гидромеханическая АКПП с гидротрансформатором является надежным и проверенным временем решением, однако со временем могут возникать различные неполадки. При этом важно понимать, за что отвечает гидротрансформатор в АКПП, а также какие проблемы возникают с данным узлом во время эксплуатации.

Читайте в этой статье

За что отвечает гидротрансформатор в автомат коробке

Гидротрансформатор характерен для двух типов коробок передач: АКПП и вариатор CVT. Фактически, гидротрансформатор АКПП является сцеплением, соединяя трансмиссию и двигатель. При этом ГДТ преобразует крутящий момент, обеспечивая плавность переключения передач.

Современные гидротрансформаторы под управлением ЭБУ «следят» за давлением рабочей жидкости, частотой и правильностью вращения лопастей, а также другими параметрами.

Что касается устройства гидротрансформатора, корпус ГДТ смонтирован в картере гидромеханической передачи и получает привод на шестерни согласующего редуктора. Гидротрансформатор включает в себя четыре основных элемента.

  • Насосное колесо, соединенное с шестерней и получающее привод от согласующего редуктора и корпуса гидротрансформатора.
  • Турбинное колесо, жестко закрепленное на фланце турбинного вала, являющиеся одновременно ведущим элементом планетарной коробки передач.
  • Статор, он же реактор, соединенный с осью, неподвижно закрепленной на картере через обгонную муфту свободного хода. Муфта имеет наружную обойму с фигурными заклинивающими пазами, к которым пружинками поджимаются ролики. Наружная обойма муфты жестко связана с реактором и вращается с ним как одно целое. Внутренняя обойма муфты установлена  на шлицах оси и подвижно закреплена в картере гидромеханической передачи.
  • Механизм блокировки (фрикционные блокировки ГДТ). Этот узел состоит из корпуса, поршня с уплотнительными кольцами, крышки образующим вместе с поршнем полость заполняемую  маслом, ступицы жестко соединенной  с колесом и валом, двух ведущих стальных и трех ведомых металлокерамических дисков и корпуса, жестко скрепленного болтами с одной стороны с насосным колесом, а с другой с крышкой. Корпус имеет внутренние зубья для установки  ведущих дисков. Во фрикционе ведущие и ведомые диски  укладываются через один, причем первым к опорной поверхности укладывается  диск с металлокерамическим покрытием, имеющим внутренние зубья.    

При работе гидротрансформатора лопаточная система реактора насосного и турбинного колес образует внутренний круг циркуляции, который заполнен маслом (жидкость ATF).

 ГДТ работает в трех режимах:

  • режим трансформации крутящего момента;
  • режим гидромуфты;
  • режим блокировки;

Режим трансформации используется при старте машины с места, при разгоне или подъеме, а также при движении по бездорожью. При этом режиме работы ГДТ реактор неподвижен. Насосное колесо своими лопатками направляет потоки масла на лопатки турбинного колеса и приводит его в движение, но с относительно меньшей скоростью.

На выходе из лопаток турбинного колеса  потоки масла ударяются в неподвижные лопатки реактора. За счет реактивной силы потоков масла крутящий момент увеличивается.

В режиме гидромуфты, вследствие уменьшения нагрузки на турбинном валу, частота вращения турбинного и  насосного колес выравнивается. Реактор начинает вращаться в одном направлении  с турбинным и насосным колесами. Режим гидромуфты используется при движении автомобиля по ровным дорогам с определенной  скоростью.

Режим блокировки включается, как правило, после режимов гидромуфты  на всех передачах.  При переключении передач блокировка автоматически отключается.  В режиме блокировки  в полость бустера фрикционной блокировки  поступает жидкость АТФ.

Жидкость перемещает поршень, сжимает пакет дисков, жестко соединяя между собой турбинное и насосное колесо. В результате колеса начинают вращаться как одно целое. Режим блокировки включается при движении автомобиля по ровным дорогам  в целях уменьшения расхода топлива, на крутых спусках и т.д.    

Основные неисправности и ремонт гидротрансформатора АКПП

Итак, проблемы гидротрансформатора АКПП могут возникать по разным причинам. Первые признаки неисправности  гидротрансформатора: 

Что касается причин неисправности гидротрансформатора АКПП и способов их решения, в списке основных следует выделить:

  • Износ подшипников (опорных или промежуточных, между турбиной и насосом). При работе трансмиссии автомобиля без нагрузок  слышен небольшой механический шум, который  по мере увеличения скорости  автомобиля пропадает.  Проблему устраняют разборкой, дефектовкой или заменой изношенных подшипников.
  • Потеря свойств трансмиссионного масла, загрязнение масляного фильтра. При движении автомобиля на высоких скоростях появляются вибрации, которые со временем увеличиваются практически во всех режимах движения автомобиля. Неисправность устраняют путем замены масляного фильтра и трансмиссионного масла.

    Износ обгонной муфты. Перестает работать реактор гидротрансформатора, вследствие чего увеличение крутящего момента не происходит и, соответственно, падает динамика набора скорости. Неисправность устраняют заменой обгонной муфты.

  • Обрыв шлицевого соединения турбинного колеса с валом АКПП. Автомобиль прекращает движение, поскольку крутящий момент от ДВС на коробку просто не передается. Проблему решают путем восстановления шлицевого соединения или замены гидротрансформатора.
  • Разрушение лопастей колес или реактора. Во время движения автомобиля характерно появление громкого металлического скрежета и стука. В этом случае проблему решают путем  замены поврежденных составляющих или всего узла в сборе.
  • Перегрев. Эта проблема может возникнуть из-за так называемого «масляного голодания», либо по причине засорения системы охлаждения АКПП. В этом случае требуется очистка радиатора, фильтров. Также необходима полная замена трансмиссионной жидкости.

Что в итоге

С учетом того, что гидротрансформатор технически состоит из целого ряда комплектующих, как и в случае с другими механическими узлами автомобиля с ГДТ также могут возникнуть проблемы.

При этом данный узел связывает ДВС и АКПП, а также передает крутящий момент на коробку. По этой причине неисправности гидротрансформатора напрямую связаны с корректной работой автоматической трансмиссии автомобиля.

Еще важно понимать, что гидротрансформатор является дорогостоящим элементом. Это значит, что появление признаков  поломки гидротрансформатора или сбои в его работе являются поводом для проведения диагностики АКПП. В противном случае игнорирование проблемы может привести как к полному выходу из строя самого гидротрансформатора, так и к повреждениям АКПП. 

Читайте также

Мифы и легенды об АКПП: развенчиваем популярные заблуждения

 На дворе уже 21 век, а старая добрая АКПП все еще окружена мифами. Кроме того, эти мифы плодятся с невероятной скоростью. Наверное, это связано с тем, что автомобили c «автоматом» у нас набирают популярность, и многие водители впервые сталкиваются с этим агрегатом. 

В статье мы будем развенчивать мифы, а если Вам, дорогой читатель, статья понравится, напишем про легенды. Про то, что когда-то было актуальным или актуально до сих пор. Обращаем внимание, что под аббревиатурой «АКПП» мы имеем ввиду автоматическую коробку с гидротрансформатором и планетарными передачами, она же — гидромеханическая, то есть «классическая» АКПП.

Мы, пожалуй, не будем останавливаться подробно на устройстве типичной АКПП, благо совсем недавно писал исчерпывающую статью о гидротрансформаторе и чуть ранее – о проблемах электрики.

Миф 1. Масляное голодание

Почему-то распространено мнение, что масляный насос АКПП приводится в действие от турбины (выхода) гидротрансформатора. На самом деле, привод насоса соединен с корпусом гидространсформатора, то есть, фактически, с маховиком двигателя, поэтому насос будет нагнетать давление в систему сразу после того, как мотор начинает вращаться, и масло будет прокачиваться в системе при любом режиме работы коробки. Поэтому масляного голодания в исправной коробке не бывает ни в каких режимах.

12.jpg

Миф 2. Ужасная N

Наверное, назначение нейтральной передачи АКПП и вред от ее использования — второй по обсуждению вопрос на форумах после прогрева АКПП и использования стояночного тормоза. Мнения разделяются от «Всегда включать нейтраль при остановке» до «Нейтральная передача нужна только для буксировки автомобиля и ее включение приведет к масляному голоданию». К сожалению, миф о вредности госпожи N становится все более популярным. Думаю, ноги его растут из мифа 1. В реальности нейтраль — достаточно полезная штуковина. Неспроста селектор АКПП позволяет переключать режимы D и N без нажатия блокировочной кнопки.

Что происходит, когда выбран режим D и нажата педаль тормоза? АКПП выбирает первую передачу, к колесам прикладывается крутящий момент, но тормоза не дают сдвинуться с места. При этом турбина гидротрансформатора остается неподвижной, а вся энергия двигателя преобразуется в гидротрансформаторе в тепловую. По сути, мотор мешает масло. Но на эту работу требуется затратить энергию, чтобы двигатель поддерживал частоту вращения холостого хода, электронный блок управления увеличивает подачу воздуха и топлива. При включенной нейтральной передаче механическая связь между выходом коробки и турбиной гидротрансформатора разорвана. Частота вращения выхода гидротрансформатора практически равна частоте вращения двигателя. Нагрузка на двигатель минимальна. Для поддержания режима холостого хода требуется меньше топлива. Уменьшается нагрев двигателя и АКПП. Сплошные плюсы в выборе режима N при остановке более чем на 30 секунд, особенно жарким днем в глухой пробке или долгом красном светофоре. Если я еще не убедил «нейтралефобов», приведу еще пару доказательств. Начнем с того, что режим паркинга отличается от нейтрали только тем, что заблокирован выходной вал АКПП. А режим «P» ни у кого не вызывает опасения. В том, что экономия топлива и уменьшение нагрева реальны, можно убедиться на относительно старых машинах с бензиновым двигателем. Если, удерживая педаль тормоза, перевести коробку из D в режим N, то будет заметно, что педаль немножко проваливается. Связано это с тем, что блок управления двигателя уменьшает подачу топлива и воздуха. Разряжение во впускном коллекторе, а, значит, и в вакуумном усилителе возрастает, усилитель сильнее давит на главный тормозной цилиндр, а на педали усилие уменьшается. Тот же эффект иногда бывает при отключении кондиционера. Все по той же причине. Контроллер уменьшает подачу топливно-воздушной смеси.

Если у Вас есть маршрутный компьютер, который определяет мгновенный расход топлива, Вы можете сравнить значения расхода в положениях селектора «P», «N» и «D». Прикинув время простоя, легко посчитать, сколько топлива можно сэкономить, выбрав нейтраль, к тому же современные электронные «мозги» без Вашего ведома могут выбрать нейтральную передачу, а Вы об этом даже не узнаете, поймете только по небольшой задержке начала движения после отпускания педали тормоза. Надеюсь, я развеял страхи перед нейтралью. Последний момент: не стоит ехать накатом без включенной передачи, но не из-за пресловутого масляного голодания – его-то как раз не будет. Просто по соображениям безопасности – не успеете среагировать на внезапно возникшее препятствие. Тут к АКПП и МКПП требования одинаковы.

Миф 3. Прогрев АКПП

Точнее, способ прогрева. Что делать? Поочередно многократно переключать селектор в положения R и D или перебирать все положения? Исходя из сказанного про нейтральную передачу, самый быстрый способ прогреть масло в АКПП — включить режимы D или R и нажать на тормоз, чтобы гидротрансформатор размешал масло побыстрее, то есть вся энергия мотора ушла в тепло. Ни в коем случае не нажимайте одновременно газ и тормоз! Да, коробка и двигатель прогреются моментально, но если передержать, то можно перегреть масло. А если АКПП еще и немолодая и порядком изношенная, то может случиться пробуксовка с последующей гибелью фрикционов.

Так зачем же надо переключать режимы селектора? Все очень просто. Помните, я писал в мифе 2 о том, что чрезмерно «умный» блок управления из благих побуждений может незаметно включить нейтральную передачу, когда у вас включен D и нажат тормоз? Так вот, передергивание режимов заставляет управляющую программу вновь возобновлять механическую связь, нагружать двигатель и гидротрансформатор. Так что миф частично подтвержден для современных коробок. Старушкам с «гидромозгом» такие манипуляции ни к чему. Касательно необходимости самого прогрева — конечно, конструкция АКПП рассчитана на эксплуатацию в горячем состоянии. Но мое мнение, точнее алгоритм, таков: завести двигатель, очистить машину от снега и не спеша начать двигаться. Так прогреется не только силовой агрегат, но и амортизаторы.

Миф 4. Автомобиль с АКПП не тормозит двигателем

Это было очень давно. Тогда гидротрансформатор не имел блокировки. Все современные коробки, даже те, что без электронного управления, имеют режим блокировки гидротрансформатора. В этом режиме ротор и статор «бублика» жестко соединены между собой через фрикционное сцепление, и момент от двигателя передается на планетарную передачу коробки минуя гидравлическую передачу. Это позволяет существенно увеличить КПД трансмиссии. Точно так же при опускании педали газа момент от колес передастся двигателю.

Рекомендуется при длительных спусках переключать АКПП принудительно на более низкие передачи с помощью ограничителя на селекторе (положения 3, 2), как вариант – «спортивного» режима или ручным переключением.

Миф 5. Классические АКПП скоро не будут производиться.

Да, сейчас существует огромное количество решений автоматизировать выбор нужного передаточного числа трансмиссии. Но классическая АКПП, которую еще называют гидротрансформаторной — это золотая середина. Она не уступает в способности передавать огромный крутящий момент механической КПП, так же, как и роботизированная коробка с двумя сцеплениями, выполняет переключения без разрыва потока мощности, но не только между соседними передаточными числами, а позволяет выбрать передачу в произвольном порядке.

14.jpg


Шестидиапазонной АКПП уже никого не удивить, а на автомобили высокого класса во всю устанавливают 7-, 8-, и даже 9-ступенчатые «автоматы». Такие коробки не уступают вариатору в задаче поддержания оптимальных режимов двигателя, и очень надежны. Рано списывать старушку со счетов. За многолетнюю историю устройство АКПП доведено практически до совершенства. Но в ближайшем будущем гидротрансформаторную АКПП ждет серьезное изменение. Она лишится... гидротрансформатора! В многодиапазонных коробках он не нужен. Ведь фрикционы, задающие режим работы планетарных передач — это не что иное, как многодисковое сцепление в масляной ванне. Современные электронные блоки управления с филигранной точностью могут управлять давлением поршня, а, значит, очень плавно переключать передаточные числа без разрыва потока мощности, причем переход может осуществляться на любую передачу с любой. Такого себе не может позволить даже «робот» с двумя сцеплениями. Похудевшая на «бублик», многодиапазонная, с КПД, сравнимым с «механикой», АКПП ближайшего будущего не должна сдать своих позиций.


Данная статья написана в рамках Конкурса авторов — 2015. Лучшие работы читайте здесь.

Организаторы конкурса:

25aa330da4ff1308687eb6f2b54a6364.png e4d08a1507c4210034e60433a2021a1f.png


Читайте также:


Отправить ответ

avatar
  Подписаться  
Уведомление о