Электролит из чего состоит: Из чего состоит аккумулятор

Содержание

Виды, Составы и Как приготовить

Без электролитов невозможна работа перезаряжаемых источников электроэнергии. Существует несколько основных типов таких веществ, которые наиболее часто используются в современных устройствах этого типа. О том, какие существуют виды электролитов, а также каким образом  можно приготовить смесь для заливки в аккумуляторную батарею, будет подробно рассказано в этой статье.

Что такое электролит и для чего он нужен

Электролит представляет собой кислотный или щелочной раствор, который принимает участие в химической реакции. Во время зарядки батареи, плотность токопроводящей жидкости повышается, поэтому по этому параметру можно довольно точно судить о степени заряженности аккумулятора.

Важно не только наличие токопроводящей жидкости в батарее, но также и качество смеси. Если приготовление раствора серной кислоты или щёлочи с водой производилось с нарушением технологии, то аккумулятор будет работать нестабильно либо полностью выйдет из строя в течение непродолжительного времени.

Виды электролита

Электролиты бывают двух основных видов:

  • Кислотный.
  • Щелочной.

Кислотные смеси с дистиллированной водой применяются в основном в аккумуляторах, применяемых для запуска двигателя автомобиля. Такие вещества можно приобрести в специализированных магазинах либо приготовить самостоятельно. На заводе такие смеси делают по ГОСТу, в домашних условиях также можно довольно точно соблюсти необходимые пропорции при смешивании кислоты с водой.

Щелочная смесь может быть приготовлена с использованием различных активных веществ, но наиболее часто применяется кальциево-литиевая основа, которая разводится необходимым количеством дистиллированной воды.

Кислотный электролит

Кислотную токопроводящую жидкость можно готовить самому из концентрированной серной кислоты.

Состав. В состав кислотного электролита входят два вещества:

  • Кислота.
  • Дистиллированная вода.

В качестве основного вещества чаще используется серная кислота, которая практически не имеет запаха, не испаряется при комнатной температуре. По электропроводимости и другим важнейшим характеристикам этот элемент также наиболее подходит для заливки в свинцовые аккумуляторные батареи.

Особенности химических свойств. Основной характеристикой кислотного аккумулятора является его плотность. Этот параметр может существенно отличаться в зависимости от степени заряженности батареи, но не должен быть ниже 1,26 и выше 1,30 г/мм3.

Температура замерзания аккумуляторной жидкости напрямую зависит от её плотности, но если этот показатель опустится ниже минус 75 градусов Цельсия, то токопроводящая жидкость даже в полностью заряженном аккумуляторе превратится в лёд.

Серная кислота является едким веществом, поэтому при работе с этим веществом, следует использовать индивидуальные средства защиты. Как минимум, следует применять защитные очки и резиновые перчатки.

Применение. Кислотный электролит применяется, в основном, в свинцовых аккумуляторах. Такие источники тока используются в качестве стартерных батарей в легковом и грузовом транспорте.

Как приготовить. Чтобы приготовить самостоятельно потребуется следующие материалы и инструменты:

  • Устойчивую к воздействую кислоты посуду и лопатку для помешивания раствора.
  • Дистиллированную воду.
  • Аккумуляторную серную кислоту.

Перед выполнением работы следует позаботиться о безопасности. Чтобы защититься от возможного негативного воздействия необходимо подготовить:

  • Защитные очки.
  • Устойчивый к кислоте фартук.
  • Резиновые перчатки.
  • Соду для нейтрализации действия кислоты.

Процесс приготовления осуществляется в такой последовательности:

  • В ёмкость наливают необходимое количество воды.
  • Тонкой струйкой добавляют концентрированную кислоту.
  • Перемешать стеклянной или пластиковой лопаткой получившийся раствор.
  • Дать отстояться смеси в течение 12 часов.

Для приготовления 1 литра смеси необходимой плотности потребуется 0,781 л воды и 0,285 л серной кислоты.

Щелочной электролит

Щелочной электролит имеет свои преимущества и недостатки, но такой состав также широко используется в качестве токопроводящей жидкости в портативных источниках питания.

Состав. В состав аккумуляторного электролита щелочного типа могут использоваться едкий калий или едкий натрий. Для улучшения эксплуатационных характеристик к щелочной основе добавляют также литиевые соединения. Для придания смеси текучести её разбавляют дистиллированной водой.

Особенности химических свойств. Все щелочные аккумуляторные жидкости – это сильные основания, которые активны по отношению к многим металлам и кислотам.

В результате химических реакций с кислотами образуются соль и вода. Растворы щелочей также подвергаются гидролизу. Перечисленные химические свойства позволяют использовать этот тип электропроводящей жидкости для накопления электроэнергии в аккумуляторе.

Применение. Применение щелочных растворов сводится в основном к заправке аккумуляторных батарей. Такие источники электрического тока используются в различных приборах, электропогрузчиках, а также в качестве стартерных батарей для военных машин.

Как приготовить. Чтобы приготовить следует придерживаться определённых правил. Прежде всего, необходима вместительная посуда, изготовленная из устойчивого к щелочи материала. Процесс приготовления следующий:

  • В ёмкость заливается необходимое количество дистиллированной воды.
  • В жидкость аккуратно всыпается сухая щёлочь. Затем смесь помешивают с помощью пластмассовой лопатки.
  • Производится анализ плотности. При необходимости добавить сухую смесь или воду.
  • Отстаивается раствор в течение 3 часов.
  • Переливается электролит в другую ёмкость, стараясь не допустить поднятия осадка со дна ёмкости.

Если вся работа была произведена по инструкции, то можно получить качественный электролит, который заливают затем в аккумуляторы подходящего типа.

Корректирующий электролит

В процессе эксплуатации обслуживаемых аккумуляторов в банки может быть случайно добавлено слишком большое количество дистиллированной воды, что приведёт к падению плотности токопроводящей жидкости ниже допустимого уровня.

Решается эта проблема приготовлением и заливкой корректирующего электролита повышенной плотности.

Состав. Состав корректирующего раствора не отличается от основного электролита. Например, дли свинцово кислотных АКБ необходимо также развести серную кислоту в дистиллированной воде, но пропорции будет немного отличаться (для получения 1 литра электролита необходимо придерживаться соотношения 0,650 л воды и 0,423 кислоты).

Особенности химических свойств. Химические свойства корректирующего электролита практически не отличаются от основной токопроводящей жидкости. Физические параметры могут незначительно отличаться (более низкая температура замерзания).

Применение. Единственное применение корректирующего электролита – это восстановление оптимальной концентрации кислоты или щёлочи внутри банок аккумулятора.

Как приготовить. Для приготовления корректирующего состава необходимо разбавить чистое основное вещество в дистиллированной воде, но добавлять его необходимо немного больше, чем при производстве обычного электролита.

Последовательность операции также не отличается от стандартной схемы работы с едкими веществами для приготовления токопроводящей жидкости для аккумулятора.

Какой электролит в какой аккумулятор заливается

Если залить в аккумулятор неподходящий электролит, то АКБ будет полностью выведена из строя. Тип аккумулятора, как правило, указан на корпусе изделия, поэтому совершенно несложно установить принадлежность источника питания к определённой категории.

Если этикетка отсутствует, то можно взять небольшое количество электролита и с помощью тестов определить его состав. В свинцово-кислотные аккумуляторы заливаются электролиты на основе серной кислоты. Для щелочных источников питания можно использовать растворы KOH и NaOH.

При добавлении электролита в щелочные устройства следует также точно определить химическую формулу применяемого основания. Отличить одну щёлочь от другой можно по цвету пламени. Если добавить в костёр KOH то цвет огня изменится на красно-фиолетовый, NaOH – горит жёлтым свечением.

Остались вопросы или есть что добавить? Тогда напишите нам об этом в комментариях, это позволит сделает материал более полным и точным.

Электролит для аккумуляторов:его назначение и виды

Практически на всем протяжении эксплуатации автомобильной техники, водители сталкиваются с таким понятием как уровень и плотность электролита в аккумуляторе. Обслуживаемые батареи до сих пор в большинстве случаев вытесняют свои аналоги по некоторым техническим параметрам, одним и таких параметров является диапазон рабочих температур.

Электролит для аккумуляторов

Жидкость для аккумуляторов представляет собой особый раствор из активных веществ необходимый для накопления и удержания внутренней энергии источника питания. От состава такого электропроводника зависит нормальная работа батареи, а также срок службы, который измеряется количеством циклов заряд-разряд. Непосредственно в самом растворе для АКБ происходит преобразование химической реакции в электричество в процессе зарядки. Многие современные источники питания работают на жидких электролитах.

Для обеспечения питания автомобильной техники применяются два основных вида электролита:

  • щелочной;
  • кислотный.

Основным минусом таких батарей является необходимость систематического осмотра и добавления дистиллированной воды в банки. Применять следует только качественные материалы иначе источник питания может выйти из строя.

Важно! Использование в аккумуляторе обычной воды приводит к осыпанию пластин и выходу батареи из строя.

Электролит кислотный

Самым распространенным раствором, применяемым в автомобильных источниках, питания является кислотный. Такая специальная жидкость состоит из двух элементов:

  • дистиллированная вода;
  • кислота.

Для кислотных аккумуляторов есть одна особенность, их необходимо постоянно обслуживать, доливать кислоту или воду. Такие меры следует выполнять из-за испарения электролита в режиме эксплуатации, либо заряда.

Интересно знать! Плотность и уровень электролита являются основными показателями, за которыми необходимо постоянно следить.

Аккумуляторная кислота

В качестве кислотной составляющей применяется раствор на основе серы (серная кислота). Такое вещество является очень опасным и может привести к химическим ожогам при попадании на кожные покровы или слизистую.

Серная кислота представляет собой маслянистую жидкость без цвета. Она хорошо растворяется в воде, при этом может выделяться значительное количество тепла. При нормальной температуре и без посторонних примесей имеет плотность 1,830 г/см3. Однако примеси все же могут содержаться в составе раствора, в нем могут находиться мышьяка, марганец, хлор и железо.

Дистиллированная вода

В процессе приготовления электролита необходимо применять очищенную от примесей воду. Категорически запрещается использовать водопроводную и речную,  это приведет к необратимым реакциям в источнике питания. Допускается добавлять в раствор конденсат, образующийся в котельных установках повышенной мощности.

Для промышленного изготовления дистиллированной воды применяют специальные электрические дистилляторы. Установка мощностью 4 кВт имеет производительность до пяти литров в час.

Совет! Перед применением воды после очистки необходимо проверить содержание посторонних примесей в ней.

Основные соотношения составляющих

Для приготовления электролита необходимой концентрации необходимо руководствоваться следующими рекомендациями при подборе пропорций вещества:

Для того, чтобы приготовить жидкость плотностью 1,4 г/см3 необходимо соблюдать пропорции в таблице:

 

Изготовление раствора из кислоты плотностью 1,83 г/см3 рекомендуется по следующим пропорциям:

Существует еще один необходимый параметр, который следует учитывать это уменьшение количества изготовленного раствора кислоты и воды при понижении температуры. Для контроля за этим свойством создана таблица сокращения количества раствора:

Вязкость

В процессе эксплуатации аккумуляторной батареи в каждой банке протекают химические реакции. Скорость взаимодействия напрямую зависит от вязкости электролита. Данный параметр характеризует процессы диффузии при разряде и заряде батареи. При повышении вязкости снижаются скорости реакций в электролите, происходит уменьшение внутренней емкости аккумулятора. Пониженная температура пагубно влияет на показания этого параметра, поэтому при установке источника питания следует учитывать это условие.

Удельное сопротивление

При полезных свойствах проводимости электролит имеет и характеристику сопротивления. Она рассчитывается по формуле:

R= r*S/L,

где r — это внутренне удельное сопротивление источника питания;

S- это поперечное сечение проводника;

L- это длина проводника.

Значение удельного сопротивления обратно пропорционально показаниям температуры окружающей среды.

Для сохранения широкого диапазона рабочих температур повышают плотность электролита. В таблице указана температура замерзания электролита в аккумуляторе:

Внимание! В современные пусковые аккумуляторы заливают проводниковый раствор значением плотности 1,3 г/см3, это позволяет сохранить полезные свойства в суровых условиях эксплуатации, а также продлить срок годности.

Щелочной электролит

Состоит данный электролит из щелочной составляющей и дистиллированной воды. Щелочь представляет собой соединения на основе калия (КОН) или лития.

КОН- твердое вещество белого цвета, полностью растворяется в воде при этом выделяется тепло. Электролит для щелочных аккумуляторов изготавливают трех видов:

  • высший, с содержанием КОН до 96%;
  • категории А до 92%;
  • категория В до 88%.

Внимание! В процессе производства щелочного электролита необходимо соблюдать меры предосторожности, так как едкий калий является опасным веществом.

Рекомендуемая плотность для АКБ указывается в паспорте источника питания при изготовлении. Производители при нормальном режиме работы заливают электролит со значением 1,21 г/см3, в зимний период концентрация щелочи в нем прибавляется до значения 1,27 г/см3.

Плотность щелочного электролита указана в таблице:

Утилизация электролита

При выходе из строя источника питания необходимо заменить его на новый. Тогда возникает вопрос, а куда деть старый. В настоящее время существует большое число пунктов приема и утилизации отработавших аккумуляторов. Специальные станции переработки электролита нейтрализуют вредные вещества в нем, при этом оберегая окружающую среду от опасности загрязнения.

Изготовление электролита самостоятельно это трудоемкий и опасный процесс, поэтому целесообразнее будет приобрести готовый в магазине. Заводская жидкость, приготовленная с соблюдением всех технологий, значительно увеличит срок службы аккумулятора и убережет от опасного осыпания пластин внутри батареи.

Что такое щелочной электролит? Как произвести замену щелочного электролита?

Щелочной электролит – одна из основных составляющих щелочных аккумуляторов. Он имеет массу плюсов перед другими видами токопроводящих веществ.

Что же такое щелочной электролит, какими свойствами он обладает и как с ним работать, придется разобраться.

В первую очередь, это химическое соединение, которое активно участвует в накоплении аккумулятором электроэнергии. Щелочной электролит может многократно участвовать в восстановительно-окислительных реакциях без потери качества, благодаря своим свойствам. 

Щелочной электролит встречается разного состава:

  • Калиево-литиевый
  • Натриевый
  • Никель-кадмиевый
  • Никель-металлогидридный

Натриевые электролиты обладают большим сроком эксплуатации, но обладают значительным минусом – невозможность использования при отрицательной температуре воздуха.

У калиево-литиевых обратная ситуация, они морозостойки, но непригодны для работы в жарких условиях, так как эксплуатационная температура у них ограничена до 35°С.

Никель-кадмиевые аккумуляторы обладают эффектом памяти, что налагает на их использование определенные ограничения.

У никель-металлогидридных аккумуляторов отсутствует эффект памяти, они способны работать как при низких, так и высоких температурах, но обладают высокой стоимостью, что препятствует их широкому распространению как портативного источника энергии.

Каждое из соединений, будь то калий, литий, натрий или едкий калий разбавляется с дистиллированной водой в нужной концентрации, в итоге, получается раствор-электролит для щелочи. По консистенции он жидкий и похож на обычную воду.

Щелочные электролиты считаются наиболее надежными и долговечными составляющими аккумуляторных батарей, но и минус у них есть – отсутствие возможности выдавать стартовый ток. В связи с этим в автомобильных аккумуляторах чаще встречаются именно кислотные электролиты.

Продлеваем срок службы щелочного электролита и аккумулятора!

Стоит помнить про факторы, которые уменьшают срок службы щелочных электролитов:

  • Неполная зарядка аккумулятора
  • Меньшее количество электролита в сепараторе, чем необходимо
  • Долгое использование электролита при высоких температурах
  • Высокие температуры жидкости

Если стараться следить за этими моментами, то можно продлить срок службы аккумуляторной батареи в разы.

Для аккумуляторных батарей есть возможность замены щелочного электролита. Чаще всего необходимость замены возникает если аккумулятор перестает держать зарядку.

Порядок замены щелочного электролита следующий:

  1. Демонтируйте аккумуляторную батарею
  2. Поставьте ее в удобном для работы месть, без доступа для детей, сторонних лиц.
  3. Проводить замену щелочного электролита необходимо в защитной одежде, иметь при себе инструмент, для открытия крышки аккумулятора и щелочной электролит для залива, который можно приготовить и в домашних условиях.
  4. Произвести демонтаж крышки АКБ, залить электролит до необходимого уровня.
  5. Собрать аккумулятор в первоначальный вид, установить в оборудование.
  6. После смены электролита в щелочном аккумуляторе его необходимо зарядить в усиленном режиме.

Для аккумуляторной батареи существуют базовые правила зарядки, на которые всегда стоит ориентироваться, если вы хотите продлить срок его службы.

Щелочная аккумуляторная батарея – не требует слишком частого внимания. Если обеспечить её в полной мере, то можно она будет радовать бесперебойной работой в течении долгих лет и полностью оправдает свою цену.

Компания ООО «Курс» располагает широким ассортиментом щелочных аккумуляторов от таких производителей как «ВАЗ «Импульс» и «Завод автономных источников тока». Наши менеджеры проконсультируют Вас и помогут подобрать необходимые аккумуляторы и аккумуляторные батареи. Связаться с нами можно по бесплатному номеру 8 800 200 60 10.   

Аккумуляторы для ИБП. Классификация


Содержание:

Аккумулятор ИБП — основная часть бесперебойника

Очень важной частью любого источника бесперебойного питания является аккумуляторная батарея. От технических характеристик аккумулятора для ИБП зависят все основные параметры бесперебойника. Именно аккумулятор ИБП определяет в конечном счете и мощность источника и длительность резерва бесперебойника. Вот почему необходимо грамотно подойти к вопросу выбора аккумулятора для источника бесперебойного питания.

Аккумуляторы для бесперебойников. Классификация по конструктивному типу

В наше время в мире выпускаются аккумуляторы различных типов. Вот далеко не полный список: свинцово-кислотные, медно-литиевые, никель-кадмиевые, никель-металлогидридные, железо-никелевые, серно-натриевые, серебряно-цинковые, серебряно-кадмиевые, литий-ионные, литий-полимерные, никель-водородные, марганцево-цинковые. Все типы аккумуляторных батарей имеют различную конструкцию, различные свойства и различные цены.
Рассмотрим основные типы аккумуляторов, применяемых для источников бесперебойного питания.

Свинцово-кислотные аккумуляторы для ИБП

Свинцово-кислотные (с английского Sealed Lead Acid) аккумуляторные батареи получили наибольшее распространение. К положительным свойствам относятся: низкая стоимость, низкий саморазряд, высокая надежность, стабильность напряжения, работа в широком диапазоне температур, длительность циклов работы, возможность совершать до тысячи циклов заряда / разряда. К отрицательным свойствам можно отнести: большой вес и габариты, маленькая удельная ёмкость, теряют работоспособность при глубоких разрядах.

Никелево-кадмиевые аккумуляторы для ИБП

Никелево-кадмиевые (Ni-Cd) аккумуляторные батареи получили большую известность в последние годы благодаря маленькому весу и размерам широко применяются в различных электронных устройствах. К положительным свойствам относятся: высокая энергетическая плотность, возможность осуществления до 1500 перезарядок, низкий саморазряд (менее 20 % в месяц), не дорогая цена, высокая надежность, простота в эксплуатации, хорошая стойкость к перепадам температур. К отрицательным свойствам относятся: наличие «эффекта памяти», постепенное уменьшение ёмкости АКБ, использует высокотоксичное вещество, высокая стоимость переработки и утилизации.

Никелево-металлогидридные аккумуляторы для ИБП

Никелево-металлогидридные (Ni-MH) аккумуляторные батареи известны довольно давно и обладают рядом улучшенных характеристик, но они не получили большого распространения, прежде всего из-за сложностей в эксплуатации. К положительным свойствам относятся: высокая удельная ёмкость, стабильная работа, большая энергетическая плотность, не снижает уровень ёмкости. К отрицательным свойствам относятся: малое число циклов заряда / разряда, высокая цена батареи, более узкий температурный режим работы, малая нагрузочная способность, не переносит глубоких разрядов, высокий уровень саморазряда, сложность процесса зарядки, большие расходы на эксплуатацию.

Литиево-ионные аккумуляторы для ИБП

Литиево-ионные (Li-Ion) аккумуляторные батареи были изобретены ещё в первой половине 20 века, однако их массовое производство началось только в 90-х годах. Сегодня они являются наиболее перспективными для использования в электронных устройствах. Такие батареи имеют большую удельную ёмкость и могут обеспечить мощного потребителя при малом собственном весе и размере. К положительным свойствам относятся: высокая надёжность работы, большая энергетическая плотность (около 100 Вт*ч/кг), очень маленькая скорость саморазряда (около пяти процентов в месяц), АКБ не теряет ёмкости в процессе работы, низкая стоимость обслуживания. К отрицательным свойствам относятся: высокая цена, не достаточно широкий диапазон температур работы, АКБ необходимо хранить в заряженном виде, есть эффект старения, необходимо использовать специальные зарядные устройства.

В настоящее время наибольшее распространение получили обычные свинцово-кислотные аккумуляторы для ИБП. Основные причины — высокая надёжность аккумуляторных батарей, низкая стоимость приобретения, простота в обслуживании, работоспособность в тяжелых климатических условиях, возможность многократных процедур заряда.

Аккумуляторы для бесперебойников. Классификация по типу электролита

По типу используемого электролита все аккумуляторные батареи можно разделить на три основные группы: АКБ с жидким электролитом, АКБ по технологии GEL, АКБ по технологии AGM. Рассмотрим основные характеристики этих типов аккумуляторов.

Аккумуляторы для источника бесперебойного питания с жидким электролитом

Аккумуляторные батареи с жидким электролитом имеют наибольшее распространение. Эта технология включает использование раствора серной кислоты в качестве электролита. К такому типу относятся обычные автомобильные АКБ. Основной их недостаток состоит в том, что они не герметичны. В процессе работы такие батареи выделяют водород и пары серной кислоты, что негативно сказывается на их экологичности. Негерметичные аккумуляторы требуют сложного обслуживания, специального помещения для проведения работ по зарядке и обслуживанию. К положительным свойствам следует отнести низкую стоимость приобретения батареи. Такие аккумуляторы редко используются для источников бесперебойного питания, однако могут быть применены в случае внешнего подключения АКБ и наличия специального не жилого помещения.

Аккумуляторы GEL для источника бесперебойного питания

Аккумуляторы GEL (гелиевые аккумуляторы) производятся по технологии GEL-Electrolite. Для получения нужного желеобразного состояния в состав электролита АКБ добавляют специальный загуститель. Аккумуляторы, созданные по этой технологии, не имеют выделения газов. Поэтому они изготавливаются герметичными. Герметичные аккумуляторы для ИБП безопасны и не требуют специального обслуживания. GEL АКБ имеют высокую надёжность, работоспособны в широком диапазоне температур, имеют высокую ёмкость и длительный срок эксплуатации. Однако их стоимость более высокая, чем у негерметичных АКБ. Также необходимо не допускать глубокого разряда таких батарей.

Аккумуляторы AGM для источника бесперебойного питания

Аккумуляторы по технологии AGM (Absorptive Glass Mat) являются самыми современными. По сути они являются модернизацией АКБ типа GEL. В качестве электролита в таких батареях используют жидкий электролит, абсорбированный специальными пористыми волокнами. Такая технология позволяет делать батареи герметичными. При их работе не выделяются вредные пары. В то же время электрическое сопротивление таких АКБ ниже, что существенно улучшает показатели. В производстве источников бесперебойного питания именно аккумуляторы по технологии AGM получили большое распространение. Такие АКБ имеет ряд положительных свойств: высокая надёжность работы, простое обслуживание, большая эпикритическая ёмкость, низкая стоимость приобретения и низкая стоимость обслуживания, большой срок службы.

Купить аккумуляторы для ИБП в Ростове-на-Дону, Москве, Санкт-Петербурге, Новосибирске в магазинах СКАТ

Получить необходимые консультации специалистов, подобрать нужный аккумулятор по размерам и техническим характеристикам помогут специалисты сети магазинов СКАТ. Большой выбор различных моделей аккумуляторов для бесперебойников вы найдете в фирменных салонах в городах: Москва, Ростов-на-Дону, Санкт-Петербург, Новосибирск.

Читайте также:

Что такое электролит для аккумуляторов и как его приготовить?

Электролит – одна из основных составляющих аккумуляторных батарей, которые дают возможность запуска автомобиля. Он бывает нескольких видов, различающихся по своему составу. Своевременный контроль за количеством и качеством электролита в аккумуляторе позволит избежать преждевременный выход аккумулятора из строя и сэкономить на покупке нового устройства.

Содержание статьи

Виды, состав и особенности

На данный момент различают три вида электролитов для аккумуляторов, для щелочных аккумуляторов — щелочной, а для кислотных — кислотный, но так же выделяют и корректирующий электролит, необходимый при обслуживании батарей.

Как определить кислотный аккумулятор или щелочной? Проще всего это сделать по маркировке корпуса и по материалу, из которого он сделан. Корпус кислотных АКБ всегда изготавливается из специального пластика, тогда как щелочные батареи могут быть сделаны из металла. Так же можно определить протестировав каплю электролита из аккумулятора: кислотный электролит вступит в реакцию с содой или мелом.

Кислотный

Представляет собой смесь серной кислоты, составляющей тридцать пять процентов всего состава, и дистиллированной воды, которая занимает оставшиеся шестьдесят пять. Данный состав в аккумуляторе находится в емкости со свинцовыми пластинами, при контакте этих элементов и происходит выработка тока.

Преимущества кислотного электролита:

  • Высокий уровень КПД
  • Слабая потеря заряда при бездействии
  • Выдача высокого стартового тока
  • Невысокая стоимость

Недостатки:

  • Чувствительность к перепадам температур
  • Неэкологичность
  • Необходимость регулярного контроля плотности состава

Следует отметить, что кислотный электролит используется в большинстве моделей аккумуляторных батарей для автомобилей, так как только он способен давать достаточное количество тока для запуска двигателя. При этом аккумуляторы, изготовленные с использованием данного раствора, делятся на две группы:

  • Обслуживаемые
  • Необслуживаемые

Первый вид обеспечивает легкий доступ к содержимому банок. В них можно замерять плотность электролита, при необходимости заливать дистиллированную воду и электролит, просто открутив крышки с банок.

В случае с необслуживаемыми моделями провести подобные действия также возможно, однако для этого нужно самостоятельно вскрыть устройство, провести нужные действия, а затем герметично их закрыть. В подобных случаях могут быть использованы дрель и сварочный аппарат.

Проводить замену электролита в необслуживаемых моделях стоит только в тех случаях, когда их гарантийный срок истек. Часто это производится исключительно для получения опыта проведения подобных операций.

Щелочной

Щелочной электролит состоит из гидроокиси калия, натрия, лития или всех этих составляющих в комплексе, разведенных в воде.

К достоинствам данного вида относятся:

  • Длительный период службы
  • Способность сохранять свойства при значительных перепадах температуры
  • Гораздо меньшее выделение вредных газов в атмосферу
  • Способность выдерживать встряски
  • Неприхотливость в обслуживании

Недостатки:

  • Меньшая величина электродвижущей силы по сравнению с кислотными
  • Отсутствие способности подачи стартового тока для запуска двигателя
  • Более высокая стоимость

Несмотря на долгий срок службы, неприхотливость и другие преимущества применение данного вида электролита в автомобильной промышленности ограничено. Виной тому неспособность выработки достаточного уровня стартового тока, необходимого для запуска двигателя. К минусам также относятся их внушительные габариты.

Однако устройства на щелочном электролите успешно применяются в обеспечении током тяговых и локомотивных составов.

Важно! Перед осуществлением замены следует убедиться, что аккумулятор именно щелочной. В противном случае АКБ можно полностью вывести из строя.

Корректирующий

Данный электролит является специальным составом с высоким содержанием активных веществ, используемый для повышения плотности электролита аккумулятора. Он предназначен для повышения концентрации активных веществ в батарее. 

В продаже можно встретить следующие виды корректирующего электролита:

  • Твердый калиево-литиевый
  • Жидкий калиево-литиевый с различной плотностью
  • Жидкий кислотный

Корректирующий электролит можно изготовить самостоятельно, имея под рукой необходимые для этого составы, однако зачастую его проще купить, так как стоимость его более чем доступна.

Как пользоваться корректирующим электролитом:

  • Удалить из банок немного электролита
  • Долить в них такое же количество корректирующей жидкости
  • Установить АКБ на заряд номинальным током для запуска процесса смешивания полученного состава на полчаса
  • Оставить батарею на остывание на пару часов
  • Произвести замер плотности и при необходимости отрегулировать его снова

При повторной коррекции количество заменяемого электролита следует уменьшить.

Как приготовить самостоятельно

Перед тем, как самостоятельно заменить электролит для аккумулятора, необходимо принять соответствующие меры безопасности и приготовить предметы индивидуальной защиты:

  • Перчатки
  • Фартук
  • Защитные очки
  • Раствор соды на случай попадания средства на кожу или предметы одежды
  • Уксус или лимонную кислоту – для нейтрализации щелочи

Проводить действия следует в хорошо проветриваемом помещении с температурой воздуха не выше +25 C°. Следует заранее знать, какой объем готового электролита потребуется для заполнения батарей. В среднем, в современных АКБ количество раствора составляет от 2,6 до 3,7 литра. Поэтому стоит сразу ориентироваться на максимальное количество. За основу можно взять 4 литра конечного раствора.

Для приготовления электролита необходимо заранее приготовить следующие предметы:

  • Посуду достаточной емкости, изготовленную из материала, устойчивого к воздействию кислоты и щелочи
  • Небольшую палочку для перемешивания электролита
  • Инструменты для проведения замеров плотности, температуры и уровня раствора
  • Для кислотного электролита – серную жидкость, для щелочного – щелочь в твердом или жидком виде, литий или силикагель

Важно! Все используемые материалы должны быть химически нейтральными для исключения возникновения ненужных реакций при их соприкосновении. В качестве емкости вполне подойдут обычные стеклянные банки.

Процесс приготовления щелочного электролита

Ингредиенты для приготовления данного состава могут быть как в жидком виде, так и в твердом. Если с первым все понятно, то перед тем как залить, щелочной электролит из твердого вещества потребуется развести в дистиллированной воде.

Требуемая плотность указывается на сайте производителя аккумулятора, также информацию можно найти в прилагаемой инструкции по эксплуатации. Твердый электролит берется пропорционально нужному количеству окончательного жидкого раствора и составляет:

  • 1/5 – для получения раствора плотностью 1,17-1,19 г/м³
  • 1/3 – для раствора плотностью 1,19-1,21 г/м³
  • 1/2 — для раствора плотностью 1,25-1,27 г/м³

Процесс приготовления состоит из следующих шагов:

  • Налить в посуду дистиллированную воду
  • Добавить нужное количество щелочи
  • Перемешать раствор
  • Плотно закрыть крышкой
  • Настаивать в течение 6 часов

После того, как процесс настаивания будет завершен, необходимо слить светлый раствор. Если часть состава выпадает в осадок, нужно его регулярно перемешивать. При заливке нужно следить, чтобы он остался на дне, не попав в аккумулятор, в противном случае это грозит выходом АКБ из строя.

Приготовление раствора 

для свинцовых аккумуляторов

Перед тем, как разбавить кислотный электролит, необходимо определить нужные пропорции. Они зависят от климатических условий, в которых планируется эксплуатация устройства.

Для получения электролита плотностью 1,28 г/м³, что приемлемо для средних климатических условий, потребуется в один литр дистиллированной воды влить 0,36 л серной кислоты. Для жарких регионов количество серной кислоты уменьшается до 0,33 л на то же количество воды.

Как разводить аккумуляторную кислоту:

  • Налить в подготовленную емкость дистиллированную воду
  • Аккуратно тонкой струйкой влить в нее кислоту
  • Измерить плотность полученного раствора
  • Оставить раствор настаиваться на 12 часов

Важно! Нельзя вливать воду в кислоту! Правильно — вливать кислоту в воду. Не следует торопиться, вливая кислоту, давайте возможность ей постепенно раствориться в воде.

Инструкция по замене

Замена электролита производится в следующих случаях:

  • Электролит в банках изменил цвет, стал мутным. Причиной тому может быть использование не дистиллированной воды для добавки, а обычно. Она может содержать примеси, вступающие в химическую реакцию с электролитом и образовывая твердые соединения, выпадающие в осадок
  • После зарядки аккумулятора невозможно добиться нужной плотности
  • Электролит вытек по неосторожности
  • Новый аккумулятор быстро разряжается. Причиной тому может быть замерзание раствора

Замена электролита, независимо от того, является он щелочным или кислотным, производится в несколько шагов:

  • Демонтаж аккумулятора из транспортного средства
  • Очистка АКБ от загрязнений
  • Выкачивание имеющейся жидкости с помощью груши или шприца
  • Промывка банок дистиллированной водой
  • Заливка электролита с помощью груши или аналогичных приспособлений

Уровень заливки определяется метками внутри банок. Если они отсутствуют, нужно руководствоваться правилом – электролит должен быть на уровне выше пластин на 5-7 миллиметров. При этом от его уровня до крышек банок должно оставаться не менее двух сантиметров.

Очень важно при сливе электролита не наклонять его в сторону и тем более не переворачивать. На дне сосудов могут оказаться твердые частицы, которые застрянут в пластинах, полностью выведя их из строя. Допускается легкое покачивание воды из стороны в сторону при промывании, такие же действия можно производить после заливки электролита в аккумулятор.

После этого АКБ устанавливается на зарядку, после чего следует проверить получившуюся плотность. Замеры должны производиться не арене, чем через пару часов после снятия устройства с зарядки, так как существует риск получить завышенные показания. Если плотность недостаточно высокая или, напротив, имеет излишние значения, ее следует отрегулировать добавлением кислоты, щелочи или дистиллированной воды.

Полезное видео

Видео инструкция о замене электролита

Заключение

Независимо от типа электролита, используемого в эксплуатируемой АКБ, можно самостоятельно произвести его полную замену, проверку плотности и других показателей. Однако стоит помнить о технике безопасности, так как электролит – опасный химический состав, способный значительно повредить кожные покровы и глаза.

 

Электролит или дистиллированная вода для аккумулятора

Как правило, необходимость доливать жидкость в аккумулятор возникает при следующих случаях:

1.      Испарение воды из аккумулятора, и как следствие, снижение уровня электролита вплоть до оголения пластин;

2.      Значительное вытекание электролита по причине плохой спайки крышки к корпусу батареи;

В первом случае — заливается только дистиллированная вода!

Во 2-м и 3-м случае – заливается электролит плотностью 1,26-1,28 г/см3 в соответствующую поврежденную банку АКБ!

В зависимости от повреждения батарею можно отремонтировать. Но, лучше всего это делать в мастерской сервиса.

Оголение пластин аккумулятора ведет к потере емкости автомобильной батареи, короблению свинцовых пластин, т.е. разрушению АКБ и быстрому выходу ее из строя.

Любой обычный кислотно-щелочной аккумулятор залит электролитом.

Электролит состоит из соотношения

—  серной кислоты

—  дистиллированной воды.

Соотношение жидкости составляет примерно 35% кислоты и 65% дистиллированной воды.

Меньшее или большее соотношение не желательно! Большее соотношение кислоты будет увеличивать концентрацию кислоты в аккумуляторе, а значит кислота будет разъедать пакеты свинцовых пластин, что влечет быстрый выход из строя АКБ.

Меньшее соотношение кислоты будет свидетельствовать о разряженности батареи и риск замерзания жидкости в зимнее время.

Плотность электролита – это и есть показатель соотношения концентрации кислоты и воды, который измеряется в граммах на сантиметр кубический.  Плотность можно измерить ареометром.

У полностью заряженной батареи при комнатной температуре плотность электролита составляет 1,27 – 1,28 г/см3.

Жидкость в аккумуляторе должна закрывать верхнюю часть пластин на 1,1-1,5 см.

Для доливки жидкости в обслуживаемый аккумулятор нужно просто выкрутить пробки из заливных отверстий АКБ и залить дистиллированную воду.

После доливки в аккумулятор дистиллированной воды в соответствующую секцию или секции АКБ, батарея заряжается до полной зарядки.

В необслуживаемый АКБ долить дистиллированную воду нельзя.

Стоит помнить, что любое повреждение корпуса является не гарантийным случаем, когда гарантия производителя аннулируется.

Тем не менее, для решения подобных проблем всегда можно обратиться в специализированный сервис для оказания услуг.

Интернет-магазин «Первой аккумуляторной компании»

                                                                                             

Электролит для автомобильных аккумуляторов

Что такое электролит, его функции

Электролит в аккумуляторе автомобиля — это особая жидкость, обеспечивающая необходимое накопление энергии. От состава и качества такого проводника во многом зависит производительность и срок службы баратеи. Этот показатель измеряется циклами зарядка-разрядка и может отличаться для различных типов аккумулятора. Непосредственно в самом электролите происходит сохранение энергии после подзарядки. Большинство современных аккумуляторов работают с использованием электролитных растворов.

Отличия электролитов для разных типов аккумуляторов

Автомобильные аккумуляторные батареи можно классифицировать по типу используемых веществ. В основном они представлены двумя типами АКБ: щелочными и кислотными. Уже по названию становится понятно, что у них совершенно разная среда электролитного раствора. При покупке или замене жидкости необходимо учитывать этот момент, иначе батарея придет в негодность.

Состав электролитных растворов:

  • Для щелочных АКБ используется смесь дистиллированной воды с растворенными в ней солями металлов.
  • Кислотные аккумуляторы в качестве проводника используют раствор серной кислоты. Его плотность должна быть в пределах 1,1-1,3 гр/см³. Для самостоятельного приготовления раствора необходимо смешать кислоту и дистиллированную воду.

Недостатком подобных устройств можно считать необходимость регулярного осмотра и доливки в емкость дистиллированной воды. Батарея может выйти из строя при использовании обычной воды или другой подобной жидкости. Дело в том, что дистиллированная вода очищена от подавляющего большинства минеральных примесей. При использовании обычной жидкости, эти элементы вступают в реакцию с кислотой, что приводит к выпадению осадка и появлению налета на пластинах АКБ. Применение дистиллированной воды хорошего качества позволит избежать таких ситуаций и продлит срок полезной эксплуатации батареи.

Процесс изготовления электролита

Для дозаливки АКБ используется только дистиллированная вода, но этот момент относится к приобретенной батарее с уже набранным электролитным раствором. Если же аккумулятор продавался «сухим», приготовить раствор и осуществить его заливку придется самостоятельно. С этим справится любой человек, главное — соблюдать меры безопасности и пропорции разведения веществ.

Для приготовления такого раствора используется серная кислота именно для АКБ. Она подвергается более высокой степени очистки, а ее плотность обычно составляет 1,84 гр/см³. Применение других типов веществ не может обеспечить необходимую чистоту и концентрацию раствора. Если самостоятельное приготовление вызывает затруднения, можно также использовать готовую купленную жидкость для дозаливки АКБ.

Приготовление электролита с кислой средой:

  1. Емкость для разведения используется исключительно керамическая или из эбонита. Стекло быстро приходит в негодность вследствие агрессивного воздействия кислоты. Объем емкости также имеет значение и должен составлять не менее четырех литров.
  2. Подходящий инструмент для размешивания раствора. Он также должен обладать стойкостью к кислой среде.
  3. Ареометр — специальный прибор, измеряющий плотность жидкости. Для конкретного случая он должен определять плотность раствора кислоты (продается в автомагазинах).
  4. Защитное снаряжение, включающее не только плотную одежду (рабочий фартук), но и перчатки, а также очки для защиты органов зрения.
  5. В первую очередь необходимо промыть все элементы, с которыми будет впоследствии контактировать химикаты, дистиллированной водой. Это позволит избежать попадания в раствор посторонних примесей.
  6. Важный момент: в емкость сначала наливают воду, а уже затем добавляют кислоту. Обратная последовательность вызовет бурную химическую реакцию с сильным повышением температуры. При такой ситуации трудно будет избежать ожогов и порчи окружающей обстановки, поэтому это правило следует запомнить обязательно.
  7. При добавлении кислоты в жидкость, необходимо тщательно медленными движениями перемешать раствор, добиваясь однородного состояния.
  8. Плотность электролитного раствора зависит от марки АКБ, поэтому этот момент обязательно стоит посмотреть в инструкции оборудования.
  9. Для приготовления одного литра раствора следует взять 0,35 л серной кислоты и 0,7 — воды. При смешении, объем жидкости немного уменьшается. Кроме того, следует учитывать и температуру раствора, которая также влияет на его плотность. Желательно проводить замеры несколько раз, а использовать готовый раствор только после того, как окончательно убедитесь в его пригодности.

Заливка раствора в АКБ осуществляется при помощи воронки и все того же инструмента для помешивания. Делать это необходимо очень аккуратно, чтобы не вызвать нежелательных химических реакций в батарее. Остатки раствора не стоит утилизировать. Они пригодятся для дозаправки АКБ, поэтому их переливают в стеклянную емкость, плотно закрывают и обязательно маркируют с указанием даты приготовления. Это необходимо, чтобы исключить риск использования негодного уже раствора, а также не перепутать емкость с другими техническими веществами.

Срок службы электролита

Непосредственно сам раствор может храниться длительный срок без потери основных характеристик. Для того, чтобы предупредить выпадение осадка, следует прятать емкость от прямых солнечных лучей и сильных температурных перепадов. Что касается электролита, уже залитого в батарею, его пригодность определить будет сложней, ведь на это влияют многие факторы.

На срок полезной эксплуатации АКБ влияют следующие факторы:

  • Регулярная зарядка батареи.
  • Поддержание комфортного температурного режима.
  • Осмотр и дозаправка электролитом.
  • Использование исключительно качественных химических веществ для приготовления раствора.

Точный период использования аккумулятора определить достаточно сложно. На это также влияет марка машины, оснащение дополнительными функциями и интенсивность эксплуатации авто. Кроме того, не так уж редко встречается и заводской брак, при котором из строя выходит вроде бы недавно приобретенная батарея. Обычно производители рекомендуют заменять аккумулятор каждые три-пять лет, но в современных реалиях многие автолюбители не расстаются с ним на протяжении пяти-семи лет.

Как контролировать электролит

Электролит для кислотных аккумуляторов, впрочем, как и для его щелочных аналогов, не имеет фактического срока годности. Обычно сухозаряженная батарея заправляется только раз, после чего осуществляется доливка раствора при необходимости до нужного уровня. Полная замена раствора понадобится нечасто, обычно в случае его помутнения вследствие использования обычной или некачественной дистиллированной воды.

Плотность электролита летом и зимой

В зависимости от температурных режимов эксплуатации авто, необходимо контролировать и плотность используемого электролитного раствора. Для этого необходимо уяснить несколько правил, а также внимательно изучить инструкцию по эксплуатации именно вашего типа батареи.

Что важно знать:

  • В северных регионах с суровыми зимами плотность электролита должна быть в пределах 1,27-1,29 гр/см³.
  • Для Средней полосы с умеренным климатом предпочтительная плотность электролита от 1,25-1,27 гр/см³.
  • В южной части страны плотность электролитного раствора варьируется в пределах 1,23-1,25 гр/см³.

Для продолжительной работы аккумулятора рекомендуется снимать устройство при длительном простое (например, на ночь). Считается, что окружающая температура ниже 30 градусов мороза отбирает у батареи более 50% заряда, что негативно влияет на ее дальнейшую эксплуатацию. Также необходимо знать, какой электролит заливать в аккумулятор летом. Он должен иметь меньшую плотность, нежели «зимний» вариант. Это облегчит прохождение и накопление разряда, а также положительно скажется на продолжительности эксплуатации батареи.

Как добиться нужной плотности в аккумуляторе

При самостоятельном изготовлении раствора, необходимо не только знать, из чего состоит электролит. Главное требование — обеспечение нужной плотности жидкости, чтобы заряд хорошо сохранялся в такой среде. Для контроля и проверки этого показателя применяется простой и доступный прибор — ареометр. Он работает по принципу закона Архимеда и показывает плотность жидкости. При недостаточном ее уровне, раствор разбавляется кислотой, а если необходимо понизить плотность — добавляется дистиллированная вода.

Электролитный раствор обеспечивает работу аккумуляторной батареи, а также определяет ее производительность. При правильном подходе, эта жидкость в обязательном порядке периодически тестируется, доливается, либо заменяется полностью. На работу АКБ в большей мере влияет и температура окружающего воздуха, поэтому в особо суровые морозы стоит заносить аккумулятор в тепло. Какой электролит заливать в аккумулятор зимой, а также другие нюансы приготовления и применения этого проводника рассмотрены в нашей информации.

Электролит — Энциклопедия Нового Света

В аппарате (вольтаметре Хоффмана), установленном для электролиза воды, электролит состоит из раствора ионов в воде.

Электролит (или лайт , сокращенно жаргон) — это материал, содержащий свободные ионы, которые могут проводить электрический ток. Большинство электролитов состоят из ионов в растворе, и их называют ионными растворами . Некоторые электролиты состоят из расплавленных солей, другие — твердых тел (протонных проводников), а третьи — газов.

Все высшие формы жизни требуют сложного баланса электролитов внутри и вне их клеточных структур. У человека этот баланс регулируется гормонами, и нарушение этого баланса приводит к проблемам со здоровьем. Кроме того, электролиты полезны во множестве применений, таких как электрические батареи, топливные элементы и процессы гальваники.

Принципы

Электролиты обычно существуют в виде растворов кислот, оснований или солей. Кроме того, некоторые газы могут действовать как электролиты в условиях высокой температуры или низкого давления.Растворы электролитов также могут быть результатом растворения некоторых биологических полимеров (таких как ДНК и полипептиды) и синтетических полимеров (таких как полистиролсульфонат). Их называют полиэлектролитами , которые содержат электрические заряды в нескольких местах каждой молекулы.

Растворы электролитов обычно образуются, когда соль помещается в растворитель, такой как вода, и отдельные компоненты диссоциируют из-за термодинамических взаимодействий между молекулами растворителя и растворенного вещества в процессе, называемом сольватацией.Например, когда поваренная соль NaCl помещается в воду, она распадается на ионы следующим образом:

NaCl (s) → Na + + Cl

Раствор электролита может быть описан как концентрированный , если он имеет высокую концентрацию ионов, или разбавленный , если он имеет низкую концентрацию ионов . Если высокая доля растворенного вещества диссоциирует с образованием свободных ионов, электролит будет сильным ; если большая часть растворенного вещества не диссоциирует, электролит слабый .Свойства электролитов можно использовать с помощью электролиза для извлечения составляющих элементов и соединений, содержащихся в растворе.

Физиологическое значение

В физиологии первичными ионами электролитов являются натрий (Na + ), калий (K + ), кальций (Ca 2+ ), магний (Mg 2+ ), хлорид (Cl ). ), фосфат (PO 4 3-) и гидрокарбонат (HCO 3 ).Символы электрического заряда в виде плюса (+) и минуса (-) указывают на то, что рассматриваемое вещество имеет ионную природу и имеет несбалансированное распределение электронов. Это результат химической диссоциации.

Все высшие формы жизни требуют тонкого и сложного электролитного баланса между внутриклеточной и внеклеточной средами. В частности, важно поддержание точных осмотических градиентов электролитов. Такие градиенты влияют и регулируют гидратацию тела и pH крови, и они имеют решающее значение для функции нервов и мышц.

И мышечная ткань, и нейроны считаются электрическими тканями тела. Мышцы и нейроны активируются за счет активности электролитов между внеклеточной жидкостью или межклеточной жидкостью и внутриклеточной жидкостью. Электролиты могут проникать или покидать клеточную мембрану через специализированные белковые структуры, встроенные в плазматическую мембрану, называемые ионными каналами. Например, сокращение мышц зависит от присутствия кальция (Ca 2+ ), натрия (Na + ) и калия (K + ).Без достаточного уровня этих ключевых электролитов может возникнуть мышечная слабость или сильные мышечные сокращения.

Баланс электролитов поддерживается пероральным или (в экстренных случаях) внутривенным (IV) приемом электролитсодержащих веществ и регулируется гормонами, как правило, с вымыванием излишков почек. У людей электролитный гомеостаз регулируется такими гормонами, как антидиуретический гормон, альдостерон и паратироидный гормон. Серьезные электролитные нарушения, такие как обезвоживание и гипергидратация, могут привести к сердечным и неврологическим осложнениям и, если они не будут быстро решены, вызовут неотложную медицинскую помощь.

Измерение

Измерение электролитов — это обычная диагностическая процедура, выполняемая медицинскими технологами посредством анализа крови с помощью ионоселективных электродов или анализа мочи. Интерпретация этих значений бессмысленна без анализа истории болезни человека и часто невозможна без параллельного измерения функции почек. Наиболее часто измеряемыми электролитами являются натрий и калий. Уровни хлоридов измеряются редко, за исключением интерпретации газов артериальной крови, поскольку они по своей природе связаны с уровнями натрия.Одним из важных тестов, проводимых с мочой, является тест на удельный вес, чтобы определить, есть ли электролитный дисбаланс.

Спортивные напитки

Электролиты обычно содержатся в спортивных напитках. При пероральной регидратационной терапии напитки с электролитами, содержащие соли натрия и калия, восполняют уровень воды и электролитов в организме после обезвоживания, вызванного физическими упражнениями, потоотделением, диареей, рвотой или голоданием. Давать чистую воду человеку в таком состоянии — не лучший способ восстановить уровень жидкости, потому что она разжижает соли внутри клеток тела и мешает их химическим функциям.Это может привести к отравлению водой.

Спортивные напитки, такие как Gatorade, Powerade или Lucozade, представляют собой электролитные напитки с большим количеством добавленных углеводов, таких как глюкоза, для получения энергии. Напитки, обычно продаваемые населению, изотонические (с осмоляльностью, близкой к осмоляльности крови), с гипотоническими (с более низкой осмоляльностью) и гипертоническими (с более высокой осмоляльностью) разновидностями, доступными для спортсменов, в зависимости от их потребностей в питании.

Нет необходимости восполнять потери натрия, калия и других электролитов во время тренировки, потому что маловероятно, что во время обычных тренировок произойдет значительное истощение запасов этих минералов в организме.Однако в условиях экстремальных упражнений продолжительностью более пяти или шести часов (например, Ironman или ультрамарафон) рекомендуется употребление комплексного спортивного напитка с электролитами. Спортсмены, которые не потребляют электролиты в этих условиях, рискуют получить гипергидратацию (или гипонатриемию). [1]

Поскольку спортивные напитки обычно содержат очень много сахара, они не рекомендуются для регулярного употребления детьми. Скорее рекомендуются специально разработанные детские растворы электролитов.Спортивные напитки также не подходят для восполнения потери жидкости во время диареи. Роль спортивных напитков заключается в том, чтобы препятствовать потере электролитов, но их недостаточно для восстановления баланса, как только это происходит. Доступны лечебные саше для регидратации и напитки, чтобы восполнить потерю ключевых ионов электролита. Стоматологи рекомендуют постоянным потребителям спортивных напитков соблюдать меры предосторожности против кариеса.

Электролит и спортивные напитки можно приготовить дома, используя правильные пропорции сахара, соли и воды. [2]

Электрохимия

Когда два электрода помещаются в электролит и подается напряжение, один электрод, называемый катодом , становится отрицательно заряженным; другой, называемый анодом , заряжается положительно. Каждый электрод притягивает ионы противоположного заряда. Положительно заряженные ионы (катионы) движутся к катоду, а отрицательно заряженные ионы (анионы) движутся к аноду. Ионы являются переносчиками электрического тока через электролит.Катод поставляет электроны катионам, а анод забирает электроны у анионов. В результате катионы и анионы нейтрализуются на электродах, образуя элементы или соединения.

В растворе ионов (из соли) в воде молекулы нейтральной воды (H 2 O) захватывают электроны с катода и распадаются на ионы гидроксида (OH ) и газообразный водород (H 2). ). Кроме того, молекулы воды теряют электроны на аноде и распадаются на газообразный кислород (O 2 ) и ионы водорода (H + ).Ионы в электролите движутся, чтобы нейтрализовать эти заряды, чтобы реакции могли продолжаться, а электроны могли продолжать движение.

Например, в разбавленном растворе обычной соли (хлорида натрия, NaCl) в воде катодная реакция

2H 2 O + 2e → 2OH + H 2

и пузырьки газообразного водорода поднимаются вверх. Анодная реакция

2H 2 O → O 2 + 4H + + 4e

и выделяется газообразный кислород.В то же время положительно заряженные ионы натрия (Na + ) движутся к катоду, нейтрализуя там отрицательный заряд OH ; и отрицательно заряженные ионы хлорида (Cl ) движутся к аноду, нейтрализуя там положительный заряд H + . Без ионов из электролита заряды вокруг электрода замедлили бы непрерывный поток электронов; диффузия H + и OH через воду к другому электроду занимает больше времени, чем перемещение гораздо более распространенных солевых ионов.

В других системах в электродных реакциях могут участвовать металлы электродов, а также ионы электролита.

Приложения

Электролитические проводники используются в электронных и других устройствах, где химическая реакция на границе раздела металл / электролит дает полезные эффекты.

  • В электрической батарее в качестве электродов используются два металла с разным сродством к электрону. Электроны текут от одного электрода к другому вне батареи, в то время как внутри батареи цепь замыкается ионами электролита.Здесь электродные реакции медленно расходуют химическую энергию, запасенную в электролите.
  • В некоторых топливных элементах твердый электролит или протонный проводник электрически соединяет пластины, сохраняя при этом водородный и кислородный топливные газы разделенными.
  • В резервуарах для гальваники электролит одновременно наносит металл на покрываемый объект и электрически соединяет этот объект в цепи.
  • В манометрах два тонких столбика ртути разделены небольшим зазором, заполненным электролитом, и по мере прохождения заряда через устройство металл растворяется с одной стороны и отслаивается с другой, в результате чего видимый зазор увеличивается. медленно двигаться вперед.
  • В электролитических конденсаторах химический эффект используется для создания чрезвычайно тонкого «диэлектрического» или изолирующего покрытия, в то время как слой электролита ведет себя как одна пластина конденсатора.
  • В некоторых гигрометрах влажность воздуха определяется путем измерения проводимости почти сухого электролита.
  • Горячее размягченное стекло является проводником электролита, и некоторые производители стекла поддерживают его в расплавленном состоянии, пропуская через него большой электрический ток.

См. Также

Банкноты

Список литературы

  • Чернеки, Синтия К., Дениз Маклин и Кэтлин Мерфи-Энде. 2006. Жидкости и электролиты. Руководство по выживанию медсестер Сондерса. Сент-Луис: Эльзевьер Сондерс. ISBN 978-1416028796
  • Джонсон, Джойс Янг, Эдвард Лайонс и Беннита В. Воганс. 2008. Демистификация жидкостей и электролитов. Нью-Йорк: McGraw-Hill Medical. ISBN 9780071496247
  • Престон, Ричард А. 1997. Кислотная основа, жидкости и электролиты, сделанные до смешного просто. Серия MedMaster. Майами: MedMaster, Inc.ISBN 0940780313.

Внешние ссылки

Все ссылки получены 18 сентября 2017 г.

Кредиты

Энциклопедия Нового Света писателей и редакторов переписали и завершили статью Википедия в соответствии со стандартами New World Encyclopedia . Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников Энциклопедии Нового Света, , так и на самоотверженных добровольцев Фонда Викимедиа.Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в New World Encyclopedia :

Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.

Растворы электролитов и неэлектролитов | Введение в химию

Цель обучения
  • Распознавайте свойства раствора электролита.

Ключевые моменты
    • Электролиты — это соли или молекулы, которые полностью ионизируются в растворе. В результате растворы электролитов легко проводят электричество.
    • В растворе неэлектролиты не диссоциируют на ионы; поэтому растворы неэлектролитов не проводят электричество.

Условия
  • неэлектролит Вещество, не диссоциирующее на ионы в растворе.
  • Раствор
  • : гомогенная смесь, которая может быть жидкостью, газом или твердым телом, образованная растворением одного или нескольких веществ.
  • растворенное вещество: Любое вещество, растворенное в жидком растворителе для создания раствора.
  • электролит: Вещество, которое в растворе распадается на ионы.
  • соль — ионное соединение, состоящее из катионов и анионов, которые удерживаются вместе за счет электростатического притяжения.

Растворы электролитов

Электролит — это любая соль или ионизируемая молекула, которая при растворении в растворе придает этому раствору способность проводить электричество.Это потому, что когда соль растворяется, ее диссоциированные ионы могут свободно перемещаться в растворе, позволяя заряду течь.

Растворы электролитов обычно образуются, когда соль помещается в растворитель, такой как вода. Например, когда поваренная соль NaCl помещается в воду, соль (твердое вещество) растворяется на составляющие ионы в соответствии с реакцией диссоциации:

NaCl ( с ) → Na + ( водн. ) + Cl ( водн. )

Вещества также могут реагировать с водой с образованием ионов в растворе.Например, углекислый газ, CO2, растворяется в воде с образованием раствора, содержащего ионы водорода, карбонат и ионы гидрокарбоната:

2 CO 2 ( г ) + 2 H 2 O ( л ) → 3 H + ( водн. ) + CO 3 2- ( водн. ) + HCO 3 ( водн. )

Полученный раствор будет проводить электричество, потому что он содержит ионы. Однако важно иметь в виду, что CO 2 — это , а не электролит, потому что CO 2 сам по себе не диссоциирует на ионы.Только соединения, которые в растворе диссоциируют на составляющие ионы, считаются электролитами.

Сильный и слабый электролиты

Как упоминалось выше, когда ионизируемое растворенное вещество диссоциирует, полученный раствор может проводить электричество. Следовательно, соединения, которые легко образуют ионы в растворе, известны как сильных электролитов. (По этой причине все сильные кислоты и сильные основания являются сильными электролитами.)

Напротив, если соединение диссоциирует в небольшой степени, раствор будет слабым проводником электричества; соединение, которое только слабо диссоциирует, поэтому известно как слабый электролит.

Сильный электролит полностью распадается на составляющие ионы в растворе; С другой стороны, слабый электролит останется в растворе в основном недиссоциированным. Примером слабого электролита является уксусная кислота, которая также является слабой кислотой.

Gatorade как раствор электролита Спортивный напиток Gatorade рекламирует, что он содержит электролиты, поскольку он содержит ионы натрия, калия, магния и других веществ. Когда люди потеют, мы теряем ионы, необходимые для жизненно важных функций организма; чтобы восполнить их, нам нужно потреблять больше ионов, часто в виде раствора электролита.В организме человека электролиты имеют множество применений, в том числе помогают нейронам проводить электрические импульсы.

Растворы безэлектролитов

Неэлектролиты — это соединения, которые совсем не ионизируются в растворе. В результате растворы, содержащие неэлектролиты, не будут проводить электричество. Обычно неэлектролиты в основном удерживаются вместе ковалентными, а не ионными связями. Типичным примером неэлектролита является глюкоза, или C 6 H 12 O 6 . Глюкоза (сахар) легко растворяется в воде, но, поскольку она не диссоциирует на ионы в растворе, считается неэлектролитом; поэтому растворы, содержащие глюкозу, не проводят электричество.

Показать источники

Boundless проверяет и курирует высококачественный контент с открытой лицензией из Интернета. Этот конкретный ресурс использовал следующие источники:

Раствор электролита — обзор

5.02.5.1 Коэффициенты активности

Водные электролиты и константы равновесия, которые определяют различные реакции в низкотемпературной геохимии, неразрывно связаны с проблемой коэффициентов активности или проблемой неидеальности водных растворов электролитов.Константы термодинамического равновесия, определенные путем экстраполяции на бесконечное разбавление для условий стандартного состояния (не единственного стандартного состояния), требуют использования коэффициентов активности. К сожалению, нет ни простого, ни универсального метода неидеальности, который работал бы для всех электролитов при любых условиях. В этом разделе представлен краткий обзор основного предмета, который все еще находится в стадии исследований и разработок, но для которого доступно несколько удовлетворительных подходов.

Если бы активность растворенного вещества или иона была идеальной, ее можно было бы принять как эквивалентную молярной концентрации, m i , иона или растворенного вещества i .Однако взаимодействия с другими ионами и с водой-растворителем достаточно сильны, чтобы вызвать неидеальное поведение, и характерным свойством, связывающим концентрацию с химическим потенциалом, является коэффициент активности, γ i :

(6) ai = γimi

По мере накопления результатов измерений коэффициента активности и последующего поиска теоретического выражения было обнаружено, что в разбавленных растворах логарифм коэффициента активности является приблизительной функцией квадратного корня из моляльности:

(7) lnγi = −αimi1 / 2

, где α i было просто константой.Бронстед (1922) ввел линейный член в уравнение (7), в котором коэффициент β является «параметром взаимодействия конкретных ионов»

(8) lnγi = −αimi1 / 2 − βmi

Более поздние модификации этого общего подход стал известен как теория взаимодействия специфических ионов (SIT) из-за явной зависимости от рассматриваемого растворенного вещества или ионов.

Важным понятием, которое помогло в развитии теории электролитов, была ионная сила I , введенная Льюисом и Рэндаллом (1921):

(9) I = 12∑mizi2

, где z i — ионный заряд.После этого ионная сила использовалась как параметр в уравнениях коэффициента активности. Дебай и Хюккель (1923) вывели уравнение из электростатической теории, которое в пределе бесконечного разбавления (отсюда и предельный закон Дебая-Хюккеля) принимает вид

(10) logγi = −Azi2I1 / 2

, где A — параметр растворителя Дебая – Хюккеля (зависит от свойств растворителя).

Расширенное уравнение Дебая – Хюккеля:

(11) logγi = Azi2I1 / 21 + BaiI1 / 2

, где B — другой параметр растворителя Дебая – Хюккеля, а a i — размер иона диаметр получен эмпирическим путем, но приблизительно соответствует диаметру гидратированного иона.

Использование расширенного уравнения Дебая – Хюккеля с соответствующими константами равновесия для выражений массового действия для решения сложной задачи химического равновесия известно как метод IA.

Несколько модификаций этих уравнений были опробованы в течение следующих нескольких десятилетий. Вклады Гуггенхайма (1935) и Скэтчарда (1936) и KTH или шведской группы (Grenthe et al. , 1992, 1997) превратились в метод Бронстеда-Гуггенхайма-Скэтчарда или метод SIT:

(12) logγi = Azi2I1 / 21 +1.5I1 / 2 + ∑kɛ (i, k, I) mk

Здесь линейный член является функцией моляльности, суммированной для всех других ионов в растворах, k , и ɛ ( i, k, I ) стремится быть постоянным при более высокой моляльности, но специфичным для растворенного вещества или иона. Последний член в уравнении (12) представляет отклонение экспериментально измеренного коэффициента активности от предсказания уравнения Дебая-Хюккеля. Другие группы, такие как Truesdell and Jones (1974), сохранили зависимость ионной силы во всем уравнении, и коэффициент, b , стал фактором разности, но все еще постоянным для данного растворенного вещества или иона:

(13) logγi = Azi2I1 / 21 + BaiI1 / 2 + biI

Метод IA с использованием уравнения (13) для основных ионов в природной воде хорошо сравнивается с другими более точными методами (см. Ниже) вплоть до ионной силы морской воды (0.7) но ненамного выше.

Следующее лучшее приближение состоит в том, чтобы позволить линейному коэффициенту быть функцией ионной силы (Pitzer and Brewer, 1961), и оно было использовано Helgeson и Kirkham (1974a, b, 1976), Helgeson et al. (1981) и Tanger и Helgeson (1988) при разработке уравнений Хельгесона – Киркхама – Флауэрса (HKF), которые включают рассмотрение функции Борна и гидратации ионов.

Питцер (1973) повторно исследовал статистическую механику водных электролитов в воде и вывел другой, но полуэмпирический метод определения коэффициентов активности, обычно называемый моделью взаимодействия специфических ионов Питцера.Он применил несколько иную функцию для поведения при низких концентрациях и использовал формулировку вириального коэффициента для высоких концентраций. Результаты оказались чрезвычайно полезными для моделирования коэффициентов активности в очень большом диапазоне моляльности. Общее уравнение:

(14) lnγ ± = −A3 | z + z− | f (I) + 2υ + υ − υB (I) m + 2 (υ + υ−) 3 / 2υCm2

где f (I ) = I1 / 21 + 1.2I1 / 2 + 1.67ln (1 + 1.2I1 / 2) и B (I) = 2β∘ + 2β′α2I [1- (1 + αI1 / 2-12α2I) e-αI1 / 2] в котором β ° и β ‘являются параметрами конкретных ионов, α является константой для класса электролитов с одинаковым зарядом, а C — параметрами конкретных ионов, не зависящими от ионной силы.Параметры B и C являются вторым и третьим вириальными коэффициентами. Параметр v = v + + v , представляет собой сумму стехиометрических коэффициентов для катиона, v + , и аниона, v , из растворенное вещество. Параметры Питцера были адаптированы для широкого диапазона растворенных веществ и использовались для смешанных растворов электролитов для моделирования поведения растворимости минералов в рассолах (Harvie and Weare, 1980; Harvie et al., 1980). Grenthe et al. (1997) подробно сравнил метод SIT и метод Питцера и пришел к следующим выводам: (1) более параметризованная модель Питцера позволяет наиболее точно моделировать коэффициенты активности и константы равновесия при условии, что все коэффициенты взаимодействия известны; (2) когда параметры Питцера отсутствуют (недоступны из экспериментальных данных), они должны быть оценены, и точность и точность коэффициентов активности могут быть значительно скомпрометированы; (3) параметры в модели SIT могут быть связаны с параметрами в модели Питцера и обеспечивать другое средство оценки параметров Питцера; (4) модель SIT хорошо согласуется с моделью Питцера для диапазона м = 0.1–4 моль кг −1 ; и (5) модель Питцера является предпочтительным формализмом для растворов или рассолов с высокой ионной силой. Обширное обсуждение развития модели Питцера и нескольких гибридных подходов можно найти у Питцера (1991a) и Миллеро (2001). Похоже, что гибридные подходы являются наиболее перспективными в будущем, поскольку они сочетают в себе обширные данные о константах равновесия с лучшей формулировкой коэффициентов активности.

Разница между расширенным уравнением Дебая – Хюккеля и уравнениями Питцера заключается в том, какая часть неидеальности электростатических взаимодействий включена в выражения массового действия, а какая — в выражение коэффициента активности.Важно помнить, что выражения для коэффициентов активности неумолимо связаны с константами равновесия, и они должны согласовываться друг с другом в химической модели. Взаимодействия ионных пар можно количественно оценить двумя способами: явно с помощью констант стабильности (метод IA) или неявно с помощью эмпирических сопоставлений с параметрами коэффициента активности (метод Питцера). Оба подхода могут быть успешными, если приложить достаточно усилий для достижения согласованности. В настоящее время метод Питцера работает намного лучше для рассолов, а метод IA лучше работает для разбавленных вод из-за большего количества компонентов и видов, по которым существуют основные данные.Когда предпринимаются попытки сравнить оба подхода для одного и того же набора высококачественных данных, они оказываются сопоставимыми (Felmy et al. , 1990). Основной задачей на будущее будет обеспечение согласованности между термодинамическими данными, выражениями неидеальности и массовыми действиями в кодах геохимического моделирования, а также включение микроэлементов и окислительно-восстановительных видов в один и тот же состав.

Электролиты — что это такое? Что произойдет, если у вас мало?

Он проснулся в луже пота, с онемевшими ногами и сокрушительной болью в груди.

Врачи скорой помощи исключили инфаркт и сердечно-сосудистые заболевания. Ему стало лучше, но онемение в ноге осталось. Желая понять, что произошло, он спросил специалистов, что он может сделать, чтобы предотвратить еще один пугающий эпизод. «Выпейте Pedialyte ® , — сказали ему, — и сократите потребление зеленого чая».

Странный совет? Вот объяснение: его электролитов были разбалансированы, поэтому ему нужно было принять их больше (выпив Педиалит, который содержит электролиты) и прекратить вымывать их из своего тела (зеленый чай — мочегонное средство , — вещество. что заставляет вас чаще мочиться).

Жидкости и электролиты необходимы для правильной работы наших клеток, органов и систем организма. Электролиты — это электрически заряженные минералы и соединения, которые помогают вашему телу выполнять большую часть своей работы, например, производить энергию и сокращать мышцы. Натрий, хлорид, калий и кальций — это все типы электролитов. (См. Дополнительные примеры в таблице ниже.) Мы получаем их от того, что мы едим и пьем. Уровни электролитов измеряются в анализах крови, и их уровни должны оставаться в довольно небольшом диапазоне, иначе могут возникнуть серьезные проблемы.

Что делают электролиты?

Электролиты:

  • Регулируйте уровень жидкости в плазме крови и в организме.
  • Поддерживайте pH (кислотный / щелочной) крови в пределах нормы (7,35–7,45, слабощелочной).
  • Включите сокращение мышц, включая сердцебиение.
  • Передает нервные сигналы от сердца, мышц и нервных клеток к другим клеткам.
  • Помогает свертыванию крови.
  • Помогите создать новую ткань.

Что может вызвать дисбаланс электролитов?

Дисбаланс электролита может быть вызван:

  • Потеря жидкости в результате постоянной рвоты или диареи, потоотделения или лихорадки.
  • Недостаточно пить или есть.
  • Хронические респираторные заболевания, например эмфизема.
  • pH крови выше нормы (состояние, называемое метаболическим алкалозом ).
  • Лекарства, такие как стероиды, мочегонные и слабительные средства.

Чтобы обеспечить достаточное количество электролитов, избегайте обезвоживания и ешьте продукты, богатые электролитами, включая шпинат, индейку, картофель, бобы, авокадо, апельсины, соевые бобы (эдамаме), клубнику и бананы.

За исключением натрия * , маловероятно, что вы получите слишком много электролитов из своего рациона. (Риск может быть выше, если ваши почки плохо работают.) Однако добавки могут вызывать проблемы — например, слишком много кальция может увеличить риск образования камней в почках — поэтому всегда консультируйтесь с врачом, прежде чем начинать их принимать.

* Обработанные продукты и блюда в ресторанах могут содержать очень много натрия.

Название
Символ / заряд
Нормальный диапазон * Банкноты
Натрий Na +
Гипонатриемия
Гипонатриемия

135-145

У пожилых людей с хроническими заболеваниями с низким уровнем натрия будет больше симптомов, чем у молодых, здоровых людей с таким же низким уровнем натрия.

Хлорид Cl
Гипохлоремия
Гиперхлоремия

96-106

Симптомы могут отсутствовать, если не происходят серьезные изменения уровня. Поскольку он тесно связан с натрием, у некоторых людей наблюдаются симптомы гипонатриемии (низкий уровень натрия в крови).

Калий K +
Гипокалиемия
Гиперкалиемия

3.5-5,5

Работает с натрием для поддержания водного баланса и кислотно-щелочного баланса. С кальцием регулирует нервную и мышечную деятельность.

Магний Mg +2
Гипомагниемия
Гипермагниемия

1,7–2,2

В основном в костях, около 1% — в внеклеточной жидкости (жидкости организма вне клеток). Важен для ферментативных реакций.

Кальций Ca +2
Гипокальциемия
Гиперкальциемия

8,5-10,2

99% в зубах и костях. Кальций в крови ионизирован (несет электрический заряд) и помогает регулировать функцию клеток, частоту сердечных сокращений и свертываемость крови. Организму необходим витамин D для усвоения кальция. (Диапазон уровня ионизированного кальция составляет 4,7-5,28.)

Фосфат / фосфор PO4
Гипофосфатемия
Гиперфосфатемия

2.5–4,5

В анализах крови измеряется неорганический фосфат. Около 85% находится в костях; большая часть остального находится внутри клеток. Фосфат помогает строить / восстанавливать кости и зубы, накапливает энергию, сокращает мышцы и поддерживает работу нервов. Организму необходим витамин D для усвоения фосфора.

* Диапазоны могут отличаться в зависимости от лаборатории.

Натрий

Низкое содержание натрия, также называемое гипо натриемией, заставляет воду перемещаться в клетки.Высокий уровень натрия, или -гипер--натриемия, заставляет жидкость выходить из клеток. Когда что-либо из этого происходит в клетках мозга, это может вызвать изменения личности, головную боль, спутанность сознания и летаргию. Если падение натрия слишком велико, это может привести к судорогам, коме и смерти. Ключевым симптомом гипернатриемии является жажда.

Хлорид

Низкое содержание хлорида ( гипо, хлоремия) может быть вызвано чрезмерной рвотой, всасыванием содержимого желудка или приемом «петлевых» диуретиков, которые часто используются для лечения задержки жидкости, вызванной проблемами сердца или почек или высоким кровяным давлением.Высокое содержание хлоридов ( гипер- хлоремия) часто является следствием диареи или заболевания почек.

Никогда не пропустите еще один блог Обсуждения рака!

Подпишитесь на нашу ежемесячную электронную рассылку Cancer Talk.

Зарегистрируйтесь!

Калий

Низкий уровень калия ( гипо калемия) может не вызывать симптомов, но он может повлиять на то, как ваше тело накапливает глюкоген (источник энергии ваших мышц), или вызвать нарушение сердечного ритма. Уровень ниже трех может вызвать мышечную слабость, спазмы, судороги, паралич и проблемы с дыханием.Если это продолжится, могут возникнуть проблемы с почками. Высокий уровень калия ( гипер- калемия) может не вызывать никаких симптомов, хотя вы можете испытывать мышечную слабость или нарушение сердечного ритма. Если уровень поднимется очень высоко, сердце может перестать биться.

Кальций

Низкий уровень кальция ( гипо, кальциемия) может не вызывать симптомов, но хронически низкие уровни могут вызывать изменения кожи, ногтей и волос; дрожжевые инфекции; и катаракта. По мере снижения уровня могут развиться мышечная раздражительность и судороги (особенно в ногах и спине).Кальций ниже семи вызывает изменения в ваших рефлексах (гиперрефлексия , ), мышечные спазмы, спазмы гортани (голосовой ящик) и судороги. Высокий уровень кальция ( гипер- кальциемия) может не вызывать симптомов. По мере повышения уровня кальция могут возникнуть запор, потеря аппетита, тошнота, рвота, боль в животе, нервно-мышечные симптомы и непроходимость кишечника ( кишечная непроходимость, ). Выше 12 лет возникают эмоциональные перепады, замешательство, бред и ступор. Выше 18 лет это может привести к шоку, почечной недостаточности и смерти. Стойкая или тяжелая гиперкальциемия может повредить почки и вызвать проблемы с сердцем, включая изменения ритма и сердечный приступ.

Магний

Низкий уровень магния ( гипо, магнезия) может вызывать симптомы, похожие на низкий уровень калия или кальция. Чрезвычайно низкий уровень может быть опасным для жизни. Высокий уровень магния ( гипер магнезия) может вызвать низкое кровяное давление, проблемы с дыханием (медленное, неэффективное дыхание) и проблемы с сердцем (остановка сердца).

Фосфат / фосфор

Низкий уровень фосфатов ( гипо, фосфатемия) может вызвать мышечную слабость, дыхательную недостаточность, сердечную недостаточность, судороги и кому.Это может быть вызвано очень плохим питанием, некоторыми мочегонными препаратами, диабетическим кетоацидозом / DKA , алкоголизмом и тяжелыми ожогами. (ДКА — серьезное осложнение диабета, при котором клетки сжигают жир вместо глюкозы. При этом образуются кетоны, которые попадают в кровь и превращают ее в кислую. Нормальная кровь слегка щелочная.) Высокое содержание фосфатов ( гипер фосфатемия) может не вызывать симптомов. Это может быть связано с синдромом лизиса опухоли , обширной инфекцией, хроническим заболеванием почек, заболеванием паращитовидных желез или ацидозом (pH крови более кислый, чем обычно).

26.3 Электролитный баланс — анатомия и физиология

Тело содержит большое количество ионов или электролитов, которые выполняют множество функций. Некоторые ионы способствуют передаче электрических импульсов по клеточным мембранам нейронов и мышц. Другие ионы помогают стабилизировать белковые структуры ферментов. Третьи способствуют высвобождению гормонов из желез внутренней секреции. Все ионы в плазме способствуют осмотическому балансу, который контролирует движение воды между клетками и окружающей их средой.

Электролиты в живых системах включают натрий, калий, хлорид, бикарбонат, кальций, фосфат, магний, медь, цинк, железо, марганец, молибден, медь и хром. Для функционирования организма наиболее важны шесть электролитов: натрий, калий, хлорид, бикарбонат, кальций и фосфат.

Эти шесть ионов помогают нервной возбудимости, эндокринной секреции, проницаемости мембран, буферизуют жидкости организма и контролируют движение жидкостей между отделами.Эти ионы попадают в организм через пищеварительный тракт. Более 90 процентов кальция и фосфата, попадающего в организм, включаются в кости и зубы, при этом кость служит минеральным резервом для этих ионов. В том случае, если кальций и фосфат необходимы для других функций, костная ткань может быть разрушена, чтобы снабдить кровь и другие ткани этими минералами. Фосфат — нормальный компонент нуклеиновых кислот; следовательно, уровень фосфата в крови будет увеличиваться всякий раз, когда нуклеиновые кислоты расщепляются.

Выведение ионов происходит в основном через почки, меньшее количество выводится с потом и калом. Чрезмерное потоотделение может вызвать значительную потерю, особенно натрия и хлорида. Сильная рвота или диарея вызывают потерю ионов хлорида и бикарбоната. Регулировка дыхательной и почечной функций позволяет организму регулировать уровни этих ионов в ЭКФ.

В таблице 26.1 перечислены контрольные значения для плазмы крови, спинномозговой жидкости (CSF) и мочи для шести ионов, рассматриваемых в этом разделе.В клинических условиях натрий, калий и хлорид обычно анализируются в стандартном образце мочи. Напротив, анализ кальция и фосфата требует сбора мочи за 24-часовой период, потому что выход этих ионов может значительно варьироваться в течение дня. Показатели мочи отражают скорость выведения этих ионов. Бикарбонат — это единственный ион, который обычно не выводится с мочой; вместо этого он сохраняется почками для использования в буферных системах организма.

Эталонные значения электролитов и ионов (Таблица 26.1)
Имя Химический знак Плазма CSF Моча
Натрий Na + 136,00–146,00 (мМ) 138,00–150,00 (мМ) 40,00–220,00 (мМ)
Калий К + 3,50–5,00 (мМ) 0,35–3,5 (мМ) 25,00–125,00 (мМ)
Хлорид Класс 98.00–107,00 (мМ) 118,00–132,00 (мМ) 110,00–250,00 (мМ)
Бикарбонат HCO 3 22.00–29.00 (мМ) —— ——
Кальций Ca ++ 2,15–2,55 (ммоль / день) —— До 7,49 (ммоль / сутки)
Фосфат HPO42 − HPO42− 0,81–1,45 (ммоль / день) —— 12.90–42,00 (ммоль / сутки)

Натрий

Натрий — главный катион внеклеточной жидкости. Он отвечает за половину градиента осмотического давления, который существует между внутренней частью клеток и окружающей их средой. Люди, соблюдающие типичную западную диету с очень высоким содержанием NaCl, обычно потребляют от 130 до 160 ммоль / день натрия, но людям требуется только 1-2 ммоль / день. Этот избыток натрия, по-видимому, является основным фактором гипертонии (высокого кровяного давления) у некоторых людей.Выведение натрия в основном осуществляется почками. Натрий свободно фильтруется через клубочковые капилляры почек, и хотя большая часть отфильтрованного натрия реабсорбируется в проксимальных извитых канальцах, некоторая часть остается в фильтрате и моче и обычно выводится из организма.

Гипонатриемия — это концентрация натрия ниже нормы, обычно связанная с избыточным накоплением воды в организме, которая разжижает натрий. Абсолютная потеря натрия может быть связана с уменьшением поступления иона в сочетании с его постоянным выведением с мочой.Аномальная потеря натрия из организма может быть результатом нескольких состояний, включая чрезмерное потоотделение, рвоту или диарею; употребление мочегонных средств; чрезмерное выделение мочи, которое может возникнуть при сахарном диабете; и ацидоз, метаболический ацидоз или диабетический кетоацидоз.

Относительное снижение натрия в крови может происходить из-за дисбаланса натрия в одном из других жидкостных отделов организма, таких как IF, или из-за разбавления натрия из-за задержки воды, связанной с отеком или застойной сердечной недостаточностью.На клеточном уровне гипонатриемия приводит к увеличению поступления воды в клетки за счет осмоса, поскольку концентрация растворенных веществ в клетке превышает концентрацию растворенных веществ в теперь разбавленном ECF. Избыток воды вызывает набухание клеток; набухание красных кровяных телец, снижающее их способность переносить кислород и делая их потенциально слишком большими для прохождения через капилляры, вместе с набуханием нейронов в головном мозге может привести к повреждению мозга или даже к смерти.

Гипернатриемия — аномальное повышение уровня натрия в крови.Это может быть результатом потери воды из крови, что приводит к гемоконцентрации всех компонентов крови. Это может привести к нервно-мышечной раздражительности, судорогам, вялости ЦНС и коме. Гормональный дисбаланс с участием АДГ и альдостерона также может привести к превышению нормального уровня натрия.

Калий

Калий — главный внутриклеточный катион. Он помогает установить мембранный потенциал покоя в нейронах и мышечных волокнах после деполяризации мембраны и потенциалов действия.В отличие от натрия калий очень мало влияет на осмотическое давление. Низкие уровни калия в крови и спинномозговой жидкости связаны с натриево-калиевыми насосами в клеточных мембранах, которые поддерживают нормальные градиенты концентрации калия между ICF и ECF. Рекомендуемая суточная доза / потребление калия — 4700 мг. Калий выводится как активно, так и пассивно через почечные канальцы, особенно через дистальные извитые канальцы и собирательные каналы. Калий участвует в обмене с натрием в почечных канальцах под влиянием альдостерона, который также зависит от базолатеральных натрий-калиевых насосов.

Гипокалиемия — аномально низкий уровень калия в крови. Подобно ситуации с гипонатриемией, гипокалиемия может возникать либо из-за абсолютного снижения содержания калия в организме, либо из-за относительного снижения содержания калия в крови из-за перераспределения калия. Абсолютная потеря калия может возникнуть из-за снижения потребления, часто связанного с голоданием. Это также может быть вызвано рвотой, диареей или алкалозом. Гипокалиемия может вызвать метаболический ацидоз, спутанность сознания ЦНС и сердечную аритмию.

Некоторые пациенты с инсулинозависимым диабетом испытывают относительное снижение содержания калия в крови в результате перераспределения калия. Когда вводится инсулин и глюкоза поглощается клетками, калий проходит через клеточную мембрану вместе с глюкозой, уменьшая количество калия в крови и IF, что может вызвать гиперполяризацию клеточных мембран нейронов, уменьшая их ответы на стимулы.

Гиперкалиемия , повышенный уровень калия в крови, также может нарушить функцию скелетных мышц, нервной системы и сердца.Гиперкалиемия может быть результатом повышенного потребления калия с пищей. В такой ситуации калий из крови попадает в ЭКФ в аномально высоких концентрациях. Это может привести к частичной деполяризации (возбуждению) плазматической мембраны волокон скелетных мышц, нейронов и сердечных клеток сердца, а также может привести к неспособности клеток реполяризоваться. Для сердца это означает, что оно не расслабляется после сокращения, а эффективно «схватывает» и прекращает перекачивать кровь, что в считанные минуты приводит к летальному исходу.Из-за такого воздействия на нервную систему человек с гиперкалиемией может также проявлять спутанность сознания, онемение и ослабление дыхательных мышц.

Хлорид

Хлорид — преобладающий внеклеточный анион. Хлорид вносит основной вклад в градиент осмотического давления между ICF и ECF и играет важную роль в поддержании надлежащей гидратации. Хлорид балансирует катионы в ECF, поддерживая электрическую нейтральность этой жидкости. Пути секреции и реабсорбции ионов хлора в почечной системе повторяют пути ионов натрия.

Гипохлоремия или более низкий, чем обычно, уровень хлоридов в крови может возникнуть из-за нарушения всасывания почечными канальцами. Рвота, диарея и метаболический ацидоз также могут привести к гипохлоремии. Гиперхлоремия или уровень хлоридов в крови выше нормы, может возникать из-за обезвоживания, чрезмерного потребления пищевой соли (NaCl) или проглатывания морской воды, интоксикации аспирином, застойной сердечной недостаточности и наследственного хронического заболевания легких, кистозного фиброз. У людей с муковисцидозом уровни хлоридов в поте в два-пять раз превышают нормальные уровни, и анализ пота часто используется для диагностики заболевания.

Внешний веб-сайт

Посмотрите это видео, чтобы увидеть объяснение воздействия морской воды на людей. Какое влияние оказывает питьевая морская вода на организм?

Бикарбонат

Бикарбонат — второй по распространенности анион в крови. Его основная функция — поддерживать кислотно-щелочной баланс вашего тела, будучи частью буферных систем. Эта роль будет обсуждаться в другом разделе.

Бикарбонат-ионы возникают в результате химической реакции, которая начинается с двуокиси углерода (CO 2 ) и воды, двух молекул, которые образуются в конце аэробного метаболизма.Лишь небольшое количество CO 2 может растворяться в биологических жидкостях. Таким образом, более 90 процентов CO 2 превращается в ионы бикарбоната, HCO 3 , посредством следующих реакций:

CO 2 + H 2 O H 2 CO 3 ↔ H 2 CO 3 + H +

Двунаправленные стрелки указывают на то, что реакции могут идти в любом направлении, в зависимости от концентраций реагентов и продуктов.Углекислый газ в больших количествах вырабатывается в тканях с высокой скоростью метаболизма. Углекислый газ превращается в бикарбонат в цитоплазме эритроцитов под действием фермента, называемого карбоангидраза. Бикарбонат переносится кровью. Попадая в легкие, реакции меняют направление, и CO 2 регенерируется из бикарбоната и выдыхается как отходы метаболизма.

Кальций

Около двух фунтов кальция в вашем теле связано в кости, которая обеспечивает твердость кости и служит минеральным резервом для кальция и его солей для остальных тканей.В зубах также содержится высокая концентрация кальция. Немногим более половины кальция в крови связывается с белками, остальная часть остается в ионизированной форме. Ионы кальция, Ca 2+ , необходимы для сокращения мышц, активности ферментов и свертывания крови. Кроме того, кальций помогает стабилизировать клеточные мембраны и необходим для высвобождения нейротрансмиттеров из нейронов и гормонов из желез внутренней секреции.

Кальций всасывается через кишечник под действием активированного витамина D.Дефицит витамина D приводит к снижению абсорбированного кальция и, в конечном итоге, к истощению запасов кальция в костной системе, что потенциально может привести к рахиту у детей и остеомаляции у взрослых, способствующей развитию остеопороза.

Гипокальциемия , или аномально низкий уровень кальция в крови, наблюдается при гипопаратиреозе, который может следовать за удалением щитовидной железы, потому что в нее встроены четыре узелка паращитовидной железы. Это может привести к сердечной недостаточности, повышенной нервно-мышечной возбудимости, мышечным судорогам и слабости скелета. Гиперкальциемия , или аномально высокий уровень кальция в крови, наблюдается при первичном гиперпаратиреозе. Это может привести к аритмии и остановке сердца, мышечной слабости, спутанности сознания ЦНС и коме. Некоторые злокачественные новообразования также могут привести к гиперкальциемии.

Фосфат

Фосфат присутствует в организме в трех ионных формах: H 2 PO 4−, HPO42 и PO43−. Наиболее распространенная форма — HPO42 − HPO42−. Кости и зубы связывают 85 процентов фосфатов в организме в составе кальций-фосфатных солей.Фосфат содержится в фосфолипидах, таких как те, которые составляют клеточную мембрану, а также в АТФ, нуклеотидах и буферах.

Гипофосфатемия , или аномально низкий уровень фосфатов в крови, возникает при интенсивном употреблении антацидов, во время отмены алкоголя и во время недоедания. Перед лицом истощения фосфатов почки обычно сохраняют фосфаты, но во время голодания это сохранение сильно нарушается. Гиперфосфатемия , или аномально повышенный уровень фосфатов в крови, возникает при снижении функции почек или в случаях острого лимфолейкоза.Кроме того, поскольку фосфат является основным компонентом ICF, любое значительное разрушение клеток может привести к сбросу фосфата в ECF.

Электролит | Encyclopedia.com

Электролит — это вещество, которое при растворении в воде позволяет току проходить через раствор. Электролиты способствуют протеканию этого тока, потому что при растворении они производят положительные и отрицательные ионы. Ток протекает через раствор в виде положительных ионов (катионов), движущихся к отрицательному электроду, и отрицательных ионов (анионов), движущихся к положительному электроду.

Электролиты можно разделить на сильные электролиты и слабые электролиты. Сильные электролиты — это вещества, которые при растворении полностью распадаются на ионы. Самый известный пример сильного электролита — поваренная соль хлорид натрия. Большинство солей являются сильными электролитами, как и сильные кислоты, такие как соляная кислота, азотная кислота, хлорная кислота и серная кислота. Сильные основания, такие как гидроксид натрия и гидроксид кальция, также являются сильными электролитами. Хотя гидроксид кальция мало растворим, все соединения, которые растворяются, полностью ионизируются.

Слабые электролиты — это вещества, которые лишь частично диссоциируют на ионы при растворении в воде. Слабые кислоты, такие как уксусная кислота, содержащаяся в уксусе, и слабые основания, такие как аммиак, содержащиеся в чистящих средствах, являются примерами слабых электролитов. Очень малорастворимые соли, такие как хлорид ртути, также иногда классифицируются как слабые электролиты. Лиганды и связанные с ними ионы металлов могут быть слабыми электролитами.

Не все вещества, растворяющиеся в воде, являются электролитами.Например, сахар легко растворяется в воде, но остается в воде в виде молекул, а не в виде ионов. Сахар классифицируется как неэлектролит. Сама вода слегка ионизируется и является очень и очень слабым электролитом.

Электролиты иногда связаны со спортивными мероприятиями и физическими упражнениями. Электролитные напитки, содержащие соли натрия и калия, используются для восстановления уровня воды и электролитов в организме во время или после выполнения напряженных упражнений. Спортивные напитки, такие как Gatorade ® , представляют собой напитки с электролитом, которые также содержат большое количество углеводов, таких как глюкоза, для обеспечения дополнительной энергии.Как правило, нет необходимости использовать напитки с электролитом при выполнении легких или умеренных упражнений, только во время напряженных и / или длительных физических нагрузок, которые длятся более пяти часов.

Что такое электролиты? — Scientific American

Nutrition Diva: быстрые и грязные советы, как правильно питаться и чувствовать себя великолепно

Реклама

Scientific American представляет Nutrition Diva от Quick & Dirty Tips. Scientific American и Quick & Dirty Tips являются компаниями Macmillan.

В наши дни мы часто используем термин «электролит», и большинство из нас имеет смутное представление о том, что он означает. Но что вы действительно знаете об электролитах? В последнее время я получил несколько вопросов по этой теме, поэтому сегодняшнее шоу — это ускоренный курс по электролитам: что именно они представляют, что они делают для вас, сколько вам нужно и где их взять.

Что такое электролиты?
Если вы попросите профессора химии дать определение «электролиту», он может сказать, что электролит — это соединение, которое производит ионы при растворении в таком растворе, как вода.Эти ионы имеют положительный или отрицательный электрический заряд, поэтому мы называем эти соединения электролитами. Если вам все это кажется греческим, то у моего коллеги Ли Фалина, ведущего подкаста Everyday Einstein, есть пара замечательных эпизодов, которые объясняют больше об ионах в терминах, понятных каждому!

В мире питания мы используем слово «электролит» для обозначения минералов, растворенных в жидкостях организма и образующих электрически заряженные ионы.Наиболее важными в питании электролитами являются натрий, калий, кальций, магний и фосфат.

> Продолжить чтение на QuickAndDirtyTips.com

ОБ АВТОРЕ (-И)

Моника Рейнагель, MS, LD / N, CNS, является сертифицированным специалистом по питанию, лицензированным диетологом и профессионально обученным шеф-поваром, автором книги Nutrition Diva’s Secrets for a Healthy Diet и ведущей конференции Nutrition Подкаст Diva на Quick and Dirty Tips.

Добавить комментарий

Ваш адрес email не будет опубликован.