Как работает фазорегулятор двигателя К4М
Для улучшения наполнения цилиндров топливной смесью на всех режимах двигатели 1,6л оборудованы фазорегулятором распределительного вала впускных клапанов
Смещение момента закрытия впускных клапанов оптимизирует наполнение цилиндров топливной смесью в зависимости от частоты вращения коленчатого вала.
В результате повышается крутящий момент на режиме средних нагрузок и мощность при высокой частоте вращения коленчатого вала.
При высокой частоте вращения коленчатого вала более позднее закрытие впускных клапанов обеспечивает поступление дополнительной порции топливной смеси за счет высокой скорости движения смеси.
Напротив, при невысокой частоте вращения инерция движения смеси невелика.
Поэтому желательно более раннее закрытие выпускных клапанов, чтобы избежать недостаточного наполнения цилиндров и потерю крутящего момента вследствие вытеснения части свежей смеси.
Чем выше частота вращения коленчатого вала, тем позднее должно происходить закрытие впускных клапанов.
Количество масла, подаваемого к фазорегулятору, определяется электромагнитным клапаном, установленным на головке блока цилиндров (см. рис. 2).
На клапан подается электропитание в виде переменного сигнала степени циклического открытия (амплитудой 12 В и частотой 250 Гц,).
Это позволяет подавать масло в механизм фазорегулятора и таким образом изменять угол сдвига фаз.
Фазорегулятор распределительного вала постоянно изменяет фазы газораспределения.
ЭБУ посылает на электромагнитный клапан переменный сигнал степени циклического открытия, величина которого пропорциональна требуемому смещению фаз.
Фазы постоянно изменяются от 0˚ до 43˚ по углу поворота коленчатого вала.
При частоте вращения коленчатого вала в пределах 1500–4300 мин–1 ЭБУ подает напряжение питания на электромагнитный клапан.
При превышении 4300 мин–1 питание электромагнитного клапана прекращается. При этом положение механизма фазорегулятора способствует наполнению цилиндров при высокой частоте вращения коленчатого вала. В этом положении запорный плунжер блокирует механизм.
При частоте вращения до 1500 мин–1 напряжение питания не подается на электромагнитный клапан. Механизм заблокирован плунжером. С момента подачи питания на электромагнитный клапан при частоте вращения коленчатого вала более 1500 мин–1 под действием давления масла запорный плунжер отходит и высвобождает механизм.
Управление электромагнитным клапаном фазорегулятора распределительного вала происходит при соблюдении следующих условий:
— датчик частоты вращения коленчатого вала исправен;
— датчики положения распределительных валов исправны;
— система впрыска исправна;
— после запуска двигателя;
— Двигатель работает не на холостом ходу при нажатой педали акселератора;
— получено пороговое значение профиля впрыска, устанавливаемого с учетом нагрузки и частоты вращения коленчатого вала;
— температура охлаждающей жидкости находится в пределах 10 — 120˚ С;
— повышенная температура масла в двигателе.
Резервные режимы:
— возврат фазорегулятора в исходное положение;
— нулевое смещение фаз.
Примечание. При блокировке электромагнитного клапана в открытом положении двигатель на холостом ходу работает не устойчиво, давление во впускной трубе повышено. При этом отмечается более шумная работа двигателя.
Основные неисправности электромагнитного клапана фазорегулятора:
— разомкнутая цепь;
— замыкание на массу или на +12В;
— смещение или рассогласование запрограммированных значений;
— неправильное определение положения фазорегулятора;
— величина регулирования вне допустимых пределов.
Режимы работы фазорегулятора (двигатель К4М)
Руководства и инструкции » Renault » Renault Megane 2 2003+ » Двигатель » Система впрыска » Фазорегулятор распределительного вала (двигатели F4R, K4M)
- Следующая >
Фазорегулятор распределительного вала (двигатели F4R, K4M) Renault Megane 2
2.
4.4.2 Режимы работы фазорегулятора (двигатель К4М) / Renault Megane 2Рис. 2.229. Электромагнитный клапан фазорегулятора: 1 – клапан |
Масло подается к фазорегулятору посредством электромагнитного клапана, установленного на головке блока цилиндров (рис. 2.229).
На клапан подается электропитание в виде переменного сигнала степени циклического открытия (амплитудой 12 в и частотой 250 Гц), что позволяет подавать масло в механизм, и таким образом, изменять угол сдвига фаз.
ЭБУ питает электромагнитный клапан переменным сигналом степени циклического открытия, величина которого пропорциональна требуемому смещению фаз.
Фазы плавно изменяются от 0 до 43° по углу поворота коленчатого вала.
Управление электромагнитным клапаном фазорегулятора распределительного вала происходит при соблюдении следующих условий:
– отсутствие неисправности датчика частоты вращения коленчатого вала;
– отсутствие неисправностей датчиков положения распределительных валов;
– отсутствие неисправностей в системе впрыска;
– после запуска двигателя;
– при работе двигателя не на холостом ходу при отпущенной педали акселератора;
– получено пороговое значение профиля впрыска, устанавливаемого с учетом нагрузки и частоты вращения коленчатого вала;
– температура охлаждающей жидкости в пределах 10–120 °С;
– повышенная температура масла в двигателе.
Резервные режимы:
– возврат фазорегулятора в исходное положение;
– нулевое смещение фаз.
ВНИМАНИЕ При блокировке электромагнитного клапана в открытом положении двигатель неустойчиво работает на холостом ходу, давление во впускном коллекторе повышено, также отмечается повышенная шумность двигателя. |
Другие материалы раздела
Работа и управление фазорегулятором (двигатель F4R)
Фазорегулятор распределительного вала (двигатели F4R, K4M)
Режимы работы фазорегулятора (двигатель К4М)
Видео к статье
Регулятор напряжения | Три фазы | Кондиционер
Технические характеристики
Размеры | 15, 30, 50, 75 и *100 кВА |
Входное напряжение** | 208 или 480 В переменного тока |
Выходное напряжение** | 208Y/120 или 480Y/277 В переменного тока |
Частота* | 60 Гц. ±5% |
Время отклика | 1 цикл типичный |
Гармонические искажения | Максимум 1% добавляется при переключении ответвлений |
Слышимый шум | Соответствует или превосходит стандарты NEMA |
Общий режим | -120 дБ |
Нормальный режим | -40 дБ/декада |
Перегрузка (пусковой) | 200 % полной нагрузки в течение 10 секунд 1000 % полной нагрузки в течение 1 цикла |
Диапазон регулирования входного напряжения | от +10% до -26% от номинального |
Диапазон регулирования выходного напряжения | ±3% тип. , ±4% |
Эффективность | 96% при полной нагрузке; 98,5% при легкой нагрузке |
Коэффициент мощности нагрузки | 0,3 опережает или отстает от единицы |
Трансформатор | Трехфазный компьютерный класс, двойной экран, медная обмотка, изолирующий трансформатор |
Импеданс трансформатора | от 3 до 5% |
Охлаждение | Конвекция |
* 100 кВА доступно только для входного напряжения 480 В ** Доступны другие напряжения и частоты. Свяжитесь с заводом |
Условия окружающей среды
Рабочая температура | от 32°F (0°C) до 104°F (40°C) |
Температура хранения | от 4°F (-20°C) до 140°F (60°C) |
Рабочая влажность | от 5 до 95 % без конденсации |
Физические размеры
15-50 кВА | 42″ В x 32″ Ш x 22″ Г |
75-100 кВА | 42″ В x 32″ Ш x 27″ Г |
Типы регуляторов напряжения и принцип работы | Артикул
СКАЧАТЬ PDF
Получайте ценные ресурсы прямо на свой почтовый ящик — рассылка раз в месяц
Подписаться
Мы ценим вашу конфиденциальность
Как работает регулятор напряжения?
Регулятор напряжения — это схема, которая создает и поддерживает фиксированное выходное напряжение независимо от изменений входного напряжения или условий нагрузки.
Регуляторы напряжения (VR) поддерживают напряжение от источника питания в диапазоне, совместимом с другими электрическими компонентами. Хотя регуляторы напряжения чаще всего используются для преобразования мощности постоянного тока в постоянный, некоторые из них также могут выполнять преобразование мощности переменного тока в переменный или переменный в постоянный. В этой статье речь пойдет о регуляторах напряжения постоянного/постоянного тока.
Типы регуляторов напряжения: линейные и импульсные
Существует два основных типа регуляторов напряжения: линейные и импульсные. Оба типа регулируют напряжение в системе, но линейные стабилизаторы работают с низким КПД, а импульсные стабилизаторы — с высоким КПД. В высокоэффективных импульсных стабилизаторах большая часть входной мощности передается на выход без рассеяния.
Линейные регуляторы
В линейном регуляторе напряжения используется активное проходное устройство (такое как BJT или MOSFET), которое управляется операционным усилителем с высоким коэффициентом усиления. Чтобы поддерживать постоянное выходное напряжение, линейный регулятор регулирует сопротивление проходного устройства, сравнивая внутреннее опорное напряжение с дискретизированным выходным напряжением, а затем сводя ошибку к нулю.
Линейные регуляторы представляют собой понижающие преобразователи, поэтому по определению выходное напряжение всегда ниже входного. Однако у этих стабилизаторов есть несколько преимуществ: они, как правило, просты в конструкции, надежны, экономичны, имеют низкий уровень шума и пульсации выходного напряжения.
Для работы линейных регуляторов, таких как MP2018, требуется только входной и выходной конденсаторы (см. рис. 1) . Их простота и надежность делают их интуитивными и простыми устройствами для инженеров, и часто они очень рентабельны.
Рис. 1: Линейный регулятор MP2018
Импульсные регуляторы
Схема импульсного регулятора, как правило, более сложная для проектирования, чем линейный регулятор, и требует выбора номиналов внешних компонентов, настройки контуров управления для обеспечения стабильности и тщательной компоновки схемы.
Импульсные регуляторы могут быть понижающими преобразователями, повышающими преобразователями или их комбинацией, что делает их более универсальными, чем линейные регуляторы.
Преимущества импульсных стабилизаторов заключаются в том, что они очень эффективны, имеют лучшие тепловые характеристики и могут поддерживать более высокие токи и более широкие приложения VIN / VOUT. Они могут достичь более 9Эффективность 5% в зависимости от требований приложения. В отличие от линейных стабилизаторов, для импульсной системы питания могут потребоваться дополнительные внешние компоненты, такие как катушки индуктивности, конденсаторы, полевые транзисторы или резисторы обратной связи. HF920 является примером импульсного стабилизатора, который обеспечивает высокую надежность и эффективное регулирование мощности (см. рис. 2) .
Рис. 2. Импульсный регулятор HF920
Ограничения регуляторов напряжения
Одним из основных недостатков линейных регуляторов является то, что они могут быть неэффективными, поскольку в некоторых случаях рассеивают большое количество энергии. Падение напряжения линейного регулятора сравнимо с падением напряжения на резисторе. Например, при входном напряжении 5 В и выходном напряжении 3 В между клеммами возникает падение на 2 В, а КПД ограничен 3 В/5 В (60%). Это означает, что линейные регуляторы лучше всего подходят для приложений с более низкими дифференциалами VIN/VOUT.
Важно учитывать предполагаемое рассеивание мощности линейного стабилизатора при применении, поскольку использование более высоких входных напряжений приводит к высокому рассеиванию мощности, что может привести к перегреву и повреждению компонентов.
Другим ограничением линейных стабилизаторов напряжения является то, что они способны только к понижающему (понижающему) преобразованию, в отличие от импульсных стабилизаторов, которые также обеспечивают повышающее (повышающее) и понижающе-повышающее преобразование.
Импульсные стабилизаторы очень эффективны, но некоторые недостатки включают то, что они, как правило, менее рентабельны, чем линейные регуляторы, больше по размеру, более сложны и могут создавать больше шума, если их внешние компоненты не выбраны тщательно. Шум может быть очень важен для данного приложения, так как шум может влиять на работу и характеристики схемы, а также на характеристики электромагнитных помех.
Топологии импульсных регуляторов: понижающий, повышающий, линейный, LDO и регулируемый
Существуют различные топологии линейных и импульсных регуляторов. Линейные регуляторы часто полагаются на топологии с малым падением напряжения (LDO). Импульсные стабилизаторы бывают трех распространенных топологий: понижающие преобразователи, повышающие преобразователи и повышающе-понижающие преобразователи. Каждая топология описана ниже:
Регуляторы LDO
Одной из популярных топологий для линейных стабилизаторов является регулятор с малым падением напряжения (LDO). Линейные стабилизаторы обычно требуют, чтобы входное напряжение было как минимум на 2 В выше выходного напряжения. Однако регулятор LDO предназначен для работы с очень небольшой разницей напряжений между входными и выходными клеммами, иногда всего 100 мВ.
Понижающие и повышающие преобразователи
Понижающие преобразователи (также называемые понижающими преобразователями) потребляют более высокое входное напряжение и производят более низкое выходное напряжение. И наоборот, повышающие преобразователи (также называемые повышающими преобразователями) потребляют более низкое входное напряжение и производят более высокое выходное напряжение.
Понижающе-повышающие преобразователи
Понижающе-повышающий преобразователь представляет собой одноступенчатый преобразователь, который сочетает в себе функции понижающего и повышающего преобразователя для регулирования выходного напряжения в широком диапазоне входных напряжений, которые могут быть больше или меньше выходного Напряжение.
Управление регулятором напряжения
Четыре основных компонента линейного регулятора — проходной транзистор, усилитель ошибки, источник опорного напряжения и резисторная цепь обратной связи. Один из входов усилителя ошибки устанавливается двумя резисторами (R1 и R2) для контроля процентного соотношения выходного напряжения. Другой вход представляет собой стабильное опорное напряжение (VREF). Если дискретизированное выходное напряжение изменяется относительно VREF, усилитель ошибки изменяет сопротивление проходного транзистора для поддержания постоянного выходного напряжения (VOUT).
Для работы линейных регуляторов обычно требуется только внешний входной и выходной конденсатор, что упрощает их реализацию.
С другой стороны, импульсный регулятор требует больше компонентов для создания цепи. Силовой каскад переключается между VIN и землей для создания пакетов заряда для доставки на выход. Подобно линейному регулятору, имеется операционный усилитель, который считывает выходное напряжение постоянного тока из сети обратной связи и сравнивает его с внутренним опорным напряжением. Затем сигнал ошибки усиливается, компенсируется и фильтруется. Этот сигнал используется для модуляции рабочего цикла ШИМ, чтобы вернуть выход в режим регулирования. Например, если ток нагрузки быстро увеличивается и вызывает падение выходного напряжения, контур управления увеличивает рабочий цикл ШИМ, чтобы обеспечить больший заряд нагрузки и вернуть шину в режим регулирования.
Применение линейных и импульсных регуляторов
Линейные регуляторы часто используются в приложениях, которые чувствительны к стоимости, шуму, слабому току или ограниченному пространству. Некоторые примеры включают бытовую электронику, такую как наушники, носимые устройства и устройства Интернета вещей (IoT). Например, в таких приложениях, как слуховой аппарат, можно использовать линейный регулятор, поскольку в них нет переключающего элемента, который может создавать нежелательные шумы и мешать работе устройства.
Кроме того, если разработчики в основном заинтересованы в создании недорогого приложения, им не нужно так беспокоиться о рассеиваемой мощности, и они могут положиться на линейный регулятор.
Импульсные регуляторы выгодны для более общих применений и особенно полезны в приложениях, требующих эффективности и производительности, таких как потребительские, промышленные, корпоративные и автомобильные приложения (см. рис. 3) . Например, если приложение требует большого понижающего решения, лучше подойдет импульсный регулятор, поскольку линейный регулятор может создавать рассеивание высокой мощности, что может повредить другие электрические компоненты.
Рисунок 3: Понижающий регулятор MPQ4430-AEC1
Каковы основные параметры микросхемы регулятора напряжения?
Некоторые из основных параметров, которые следует учитывать при использовании регулятора напряжения, — это входное напряжение, выходное напряжение и выходной ток. Эти параметры используются для определения того, какая топология VR совместима с IC пользователя.
Другие параметры, включая ток покоя, частоту переключения, тепловое сопротивление и напряжение обратной связи, могут иметь значение в зависимости от применения.
Ток покоя важен, когда эффективность при малой нагрузке или в режиме ожидания является приоритетом. При рассмотрении частоты коммутации в качестве параметра максимизация частоты коммутации приводит к меньшим системным решениям.
Кроме того, тепловое сопротивление имеет решающее значение для отвода тепла от устройства и рассеивания его по системе. Если в состав контроллера входит внутренний МОП-транзистор, то все потери (кондуктивные и динамические) рассеиваются в корпусе и должны учитываться при расчете максимальной температуры ИС.
Напряжение обратной связи — еще один важный параметр, который необходимо проверить, поскольку он определяет минимальное выходное напряжение, которое может поддерживать регулятор напряжения. Стандартно смотреть на опорные параметры напряжения. Это ограничивает более низкое выходное напряжение, точность которого влияет на точность регулирования выходного напряжения.
Как правильно выбрать регулятор напряжения
Чтобы правильно выбрать регулятор напряжения, разработчик должен сначала понять его ключевые параметры, такие как V IN , V OUT , I OUT , системные приоритеты (например, эффективность, производительность, стоимость) и любые дополнительные ключевые функции, такие как индикация исправности (PG) или включение управления.
После того как разработчик определил эти требования, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее заданным требованиям. Таблица параметрического поиска является ценным инструментом для проектировщиков, поскольку она предлагает различные функции и пакеты, доступные для соответствия требуемым параметрам вашего приложения.