Гидроусилитель руля что это – Электрогидравлический усилитель руля Servotronic: устройство и принцип работы

Содержание

Гидроусилитель руля — Википедия. Что такое Гидроусилитель руля

Следящий гидропривод. Сверху показан золотник, переключающий гидравлические потоки в соответствии с положением штока золотника. Снизу силовой гидроцилиндр двойного действия, осуществляющий перемещение конструкции в двух направлениях Насос ГУР (16) с ременным приводом от двигателя и стоящий на нём бачок на грузовике ЗИЛ-131

Гидравлический усилитель руля (ГУР) — автомобильная гидравлическая система, часть рулевого механизма, предназначенная для облегчения управления направлением движения автомобиля при сохранении необходимой «обратной связи» и обеспечении устойчивости и однозначности задаваемой траектории[1].

Гидроусилитель руля устроен так, что при отказе усилителя рулевое управление продолжает работать (хотя руль при этом становится более «тяжёлым»).

В Советском Союзе (СССР) впервые был применён в 1950 г. на карьерном самосвале МАЗ-525. Первый советский легковой автомобиль, оснащенный ГУР — автомобиль высшего класса ЗИЛ-111 (1958 г.).

Назначение и устройство гидроусилителя рулевого управления

Для уменьшения усилия, затрачиваемые при повороте рулевого колеса, смягчения ударов, передающихся на рулевое колесо при наезде управляемых колес на неровности дороги, и повышения безопасности при разрыве шин переднего колеса в конструкцию рулевого управления некоторых автомобилей вводят специальные гидроусилители.

Устройство

Гидроусилитель представляет собой замкнутую гидравлическую систему, состоящую из насоса, регулятора давления, бачка с запасом гидравлической жидкости, управляющего золотника и силового гидроцилиндра.

Насос (с приводом от двигателя автомобиля или электромотора), регулятор давления (обычно в виде перепускного клапана, сливающего избыток расхода насоса мимо золотника) и бачок с запасом гидравлической жидкости предназначены для создания рабочего перепада давлений в гидросистеме усилителя.

Силовой гидроцилиндр двойного действия (то есть умеющий создавать усилие в двух направлениях) в современных легковых автомобилях обычно интегрируется с рулевой рейкой и передает усилие на неё. Золотник устанавливается на рулевой колонке и реагирует на вращательный момент на валу колонки.

Придумано множество способов преобразовать вращательный момент рулевого колеса в работу золотника. Большинство основаны на подвижности отдельного участка вала рулевой колонки. В современных машинах роль подвижного элемента колонки обычно играет торсион — радиально пружинящий участок вала рулевой колонки. Золотник реагирует на угловой сдвиг между концами торсиона при наличии усилия на руле. Существуют конструкции с осевой подвижностью участка вала рулевой колонки: осевое перемещение задается винтовой передачей, преобразующей вращательное усилие руля в поступательное движение штока золотника. В некоторых конструкциях усилие поворота колес регистрируется не на рулевой колонке, а на других узлах передачи усилия от руля к колесу.

Пример гидроусилителя, совмещённого с рулевым механизмом — гидроусилитель, применяемый на автомобилях ЗИЛ-130 и ЗИЛ-131

Принцип работы гидроусилителя руля автомобиля ЗИЛ-130:

При прямолинейном движении автомобиля золотник за счёт пружин удерживается в нейтральном положении, при этом все каналы золотника открыты.

При повороте — при вращении руля винт вращается и вкручивается в шариковую гайку. При этом он смещается вместе с золотником и подшипниками и смещает плунжеры, сжимая пружины. Как только подшипники упрутся в корпус, винт с золотником перестанет смещаться, а смещаться начнёт шариковая гайка с поршнем и рейкой, при этом как бы накручиваясь на винт. При смещении золотника центральный канал от насоса останется связанным с одним из боковых каналов, а другой боковой канал останется связанным с каналом слива. При смещении поршня усилие будет передаваться от рейки сектору, а от него через вал сошке. Так как центральный канал от масляного насоса связан с одним из боковых каналов, то масло пойдёт из него в одну из полостей гидроцилиндра и будет давить на поршень, помогая смещать его и облегчая усилие, прилагаемое на рулевое колесо.

При прекращении вращения руля винт перестаёт вкручиваться в гайку и минимальное движение поршня передаётся на винт и золотник. Золотник возвращается в нейтральное положение. Все каналы открываются, масло от насоса начинает уходить на слив, и усилитель прекращает свою работу. Кроме того, возвращению золотника в нейтральное положение способствуют пружины, давящие на плунжеры и на подшипники.

При увеличении сопротивления повороту начнёт возрастать давление в линии от насоса через золотник в одну из полостей гидроцилиндра. Эта линия связана с полостью между плунжерами, где находятся пружины. Повышенное давление будет давить на плунжеры, а они — на подшипники. Плунжеры будут стараться вернуть золотник в нейтральное положение. Часть масла начнёт уходить на слив, а водитель почувствует дополнительное сопротивление вращению руля — следящее действие за усилием.

При неработающем двигателе насос не накачивает масло и усилитель не работает. Управление автомобилем может осуществляться. При вращении руля поршень смещается и вытесняет масло из одной полости в другую через обратный клапан, и масло не мешает движению поршня.

Пример гидроусилителя, совмещённого с продольной тягой — гидроусилитель, применяемый на автомобилях МАЗ и КрАЗ-255

Принцип работы гидроусилителя руля автомобиля КрАЗ-255:

При прямолинейном движении — золотник находится в нейтральном положении, все каналы открыты и масло от насоса уходит на слив.

При повороте усилие от рулевого колеса передаётся через рулевой механизм на сошку. Сошка тянет шаровый палец, а он смещает стакан и золотник примерно на 1 мм. Как только стакан упрётся в корпус, усилие будет передаваться корпусу, а от него через другой шаровый палец продольной тяге и далее. Так как золотник сместился, канал от насоса остался связанным только с одной полостью цилиндра, а другая полость осталась связана с каналом слива. Масло, поступающее в цилиндр, смещает корпус за счёт давления в ту сторону, в которую его тянет сошка, облегчая водителю поворот руля. Масло, поступающее в цилиндр, давит на корпус за счёт давления, а опорой для него является поршень и шток, соединенные с балкой переднего моста.

При прекращении поворота руля золотник возвращается в исходное положение за счёт остаточного давления масла, которое давит на торец золотника. Торцевая полость золотника связана с основным каналом отверстием в бурте.

При увеличении сопротивления повороту растёт давление в усилителе, которое действует и на торцевую поверхность золотника и старается вернуть его в исходное положение, создавая дополнительное сопротивление на рулевом колесе. Следящее действие осуществляется по принципу остановки вращения руля.

Эксплуатация

Automatic transmission fluid (ATF) Dexron III

Для предотвращения возникновения аварийно-опасных ситуаций, связанных с отказом системы рулевого управления автомобиля, необходимо периодически производить контроль наличия масла в бачке ГУРа. При заметном снижении его уровня, не связанного с температурой, углом поворота колес, наклоном автомобиля и т. п., необходимо проверить герметичность узлов гидравлического контура: шланги, места их вводов и т. д.

Для увеличения срока службы элементов ГУРа и системы в целом, рекомендуется один раз в 1—2 года производить замену рабочей жидкости.

В инструкции по эксплуатации большинства автомобилей подчеркивается, что нельзя удерживать колеса в крайнем положении более 5 сек, так как это может привести к перегреву масла, вплоть до его закипания, и выходу системы из строя.

В качестве рабочей гидравлической жидкости (а также смазочного масла деталей гидроусилителя) применяется:

На советских грузовых автомобилях применяется веретенное (индустриальное) масло.
На современных автомобилях применяется или жидкость для гидроусилителей (Power steering fluid) или жидкость для автоматических трансмиссий (Automatic transmission fluid или ATF или
Dexron III
).

Перед заливкой масла в агрегат нужно читать инструкцию по эксплуатации.

Сервомеханизмы

Сервомеханизм является разновидностью гидравлического усилителя рулевого управления. Применяются сервомеханизмы на гусеничной технике для уменьшения усилия, прилагаемого на рычаг управления при повороте.

Устройство сервомеханизма трактора Т-130:

  • Корпус
  • Толкатели
  • Поршни
  • Пружины
  • Рычаги с валиками
  • Плунжер
Принцип работы сервомеханизма трактора Т-130:

При прямолинейном движении — отверстия в поршнях открыты и масло через них уходит от насоса на слив. При повороте — усилие от рычага передаётся толкателю. Толкатель прижимается к поршню, закрывает отверстие в поршне и давит на него. Перед поршнем начинает возрастать давление, за счёт него смещается плунжер и закрывает канал ко второму поршню. Так как масло теперь поступает только к закрытому поршню, давление возрастает настолько, что начинает смещать поршень, от поршня усилие передаётся на рычаг-валик-рычаг-вилка. При отпускании рычага — отверстие в поршне открывается, масло уходит на слив, давление падает, и все детали возвращаются в исходное положение.

См. также

Примечания

Ссылки

Гидроусилитель руля — это… Что такое Гидроусилитель руля?

Nissan Avenir, гидравлический усилитель рулевого управления
1 — бачок гидроусилителя
2 — насос гидроусилителя
3 — рулевая рейка
4 — корпус гидроусилителя
Основная статья — Следящий гидропривод

Гидравлический усилитель руля (ГУР) — автомобильная гидравлическая система, часть рулевого механизма, предназначенная для облегчения управления направлением движения автомобиля при сохранении необходимой «обратной связи» и обеспечении устойчивости и однозначности задаваемой траектории.[1]

Гидроусилитель руля устроен так, что при отказе усилителя рулевое управление продолжает работать (хотя руль при этом становится более «тяжёлым»).

В отечественной автопромышленности впервые был применён на автомобиле ЗИЛ-130.

Назначение и устройство гидроусилителя рулевого управления

Чтобы уменьшить усилия, затрачиваемые при повороте рулевого колеса, смягчения ударов, передающихся на рулевое колесо при наезде управляемых колес на неровности дороги, и повышения безопасности при разрыве шин переднего колеса, в конструкцию рулевого управления некоторых автомобилей вводят специальные гидроусилители.

Устройство

Пример гидроусилителя, совмещённого с рулевым механизмом — гидроусилитель, применяемый на автомобилях ЗИЛ-130 и ЗИЛ-131

Основные части гидроусилителя руля автомобиля ЗИЛ-130:

  • Корпус
  • Корпус золотника
  • Крышки
  • Винт
  • Золотник
  • Упорные шариковые подшипники
  • Плунжеры
  • Пружины плунжеров
  • Регулировочная гайка
  • Шариковая гайка
  • Шарики
  • Поршень с зубчатой рейкой
  • Кольца поршня
  • Зубчатый сектор с валом
  • Регулировочный винт
Принцип работы гидроусилителя руля автомобиля ЗИЛ-130:

При прямолинейном движении — золотник за счёт плунжеров и пружин удерживается в нейтральном положении, при этом все каналы открыты. Масляный насос получает вращение от коленчатого вала через ремённую передачу и накачивает масло в усилитель. Из усилителя масло уходит на слив в бачок гидроусилителя.

При повороте — при вращении руля винт вращается и вкручивается в шариковую гайку. При этом он смещается вместе с золотником и подшипниками и смещает плунжеры, сжимая пружины. Как только подшипники упрутся в корпус, винт с золотником перестанет смещаться, а смещаться начнёт шариковая гайка с поршнем и рейкой, при этом как бы накручиваясь на винт. При смещении золотника центральный канал от насоса останется связанным с одним из боковых каналов, а другой боковой канал останется связанным с каналом слива. При смещении поршня усилие будет передаваться от рейки сектору, а от него через вал сошке. Так как центральный канал от масляного насоса связан с одним из боковых каналов, то масло пойдёт из него в одну из полостей гидроцилиндра и будет давить на поршень, помогая смещать его и облегчая усилие, прилагаемое на рулевое колесо.

При прекращении вращения руля — винт перестаёт вкручиваться в гайку и минимальное движение поршня передаётся на винт и золотник. Золотник возвращается в нейтральное положение. Все каналы открываются, масло от насоса начинает уходить на слив, и усилитель прекращает свою работу. Кроме того, возвращению золотника в нейтральное положение способствуют пружины, давящие на плунжеры и на подшипники.

При увеличении сопротивления повороту — начнёт возрастать давление в линии от насоса через золотник в одну из полостей гидроцилиндра. Эта линия связана с полостью между плунжерами, где находятся пружины. Повышенное давление будет давить на плунжеры, а они — на подшипники. Плунжеры будут стараться вернуть золотник в нейтральное положение. Часть масла начнёт уходить на слив, а водитель почуствует дополнительное сопротивление вращению руля — следящее действие за усилием.

При неработающем двигателе — насос не накачивает масло и усилитель не работает. Управление автомобилем может осуществляться. При вращении руля поршень смещается и вытесняет масло из одной полости в другую через обратный клапан, и масло не мешает движению поршня.

Пример гидроусилителя, совмещённого с продольной тягой — гидроусилитель, применяемый на автомобилях МАЗ и КрАЗ-255

Основные части гидроусилителя руля автомобиля КрАЗ-255:

  • Цилиндр с поршнем и штоком
  • Корпус пальцев
  • Корпус золотника
  • Золотник
  • Обратный клапан
  • Стакан с сухарями, пальцем и пружиной
  • Палец продольной тяги с сухарями и пружиной
  • Упоры пальцев
Принцип работы гидроусилителя руля автомобиля КрАЗ-255:

При прямолинейном движении — золотник находится в нейтральном положении, все каналы открыты и масло от насоса уходит на слив.

При повороте — усилие от рулевого колеса передаётся через рулевой механизм на сошку. Сошка тянет шаровый палец, а он смещает стакан и золотник примерно на 1 мм. Как только стакан упрётся в корпус, усилие будет передаваться корпусу, а от него через другой шаровый палец продольной тяге и далее. Так как золотник сместился, канал от насоса остался связанным только с одной полостью цилиндра, а другая полость осталась связана с каналом слива. Масло, поступающее в цилиндр, смещает корпус за счёт давления в ту сторону, в которую его тянет сошка, облегчая водителю поворот руля. Масло, поступающее в цилиндр, давит на корпус за счёт давления, а опорой для него является поршень и шток, соединенные с балкой переднего моста.

При прекращении поворота руля — золотник возвращается в исходное положение за счёт остаточного давления масла, которое давит на торец золотника. Торцевая полость золотника связана с основным каналом отверстием в бурте.

При увеличении сопротивления повороту — растёт давление в усилителе, которое действует и на торцевую поверхность золотника и старается вернуть его в исходное положение, создавая дополнительное сопротивление на рулевом колесе. Следящее действие осуществляется по принципу остановки вращения руля.

Эксплуатация

Automatic transmission fluid (ATF) Dextron III

Для предотвращения возникновения аварийно-опасных ситуаций, связанных с отказом системы рулевого управления автомобиля, необходимо периодически производить контроль наличия масла в бачке ГУРа. При заметном снижении его уровня, не связанного с температурой, углом поворота колес, наклоном автомобиля и т. п., необходимо проверить герметичность узлов гидравлического контура: шланги, места их вводов и т. д.

Для увеличения срока службы элементов ГУРа и системы в целом, рекомендуется один раз в 1—2 года производить замену рабочей жидкости.

В инструкции по эксплуатации большинства автомобилей подчеркивается, что нельзя удерживать колеса в крайнем положении более 5 сек, так как это может привести к перегреву масла, вплоть до его закипания, и выходу системы из строя.

В качестве рабочей гидравлической жидкости (а также смазочного масла деталей гидроусилителя) применяется:

На советских грузовых автомобилях применяется веретенное (индустриальное) масло.
На современных автомобилях применяется или жидкость для гидроусилителей (Power steering fluid) или жидкость для автоматических трансмиссий (Automatic transmission fluid или ATF или Dextron III).

Перед заливкой масла в агрегат нужно читать инструкцию по эксплуатации.

Сервомеханизмы

Сервомеханизм является разновидностью гидравлического усилителя рулевого управления. Применяются сервомеханизмы на гусеничной технике для уменьшения усилия, прилагаемого на рычаг управления при повороте.

Устройство сервомеханизма трактора Т-130:

  • Корпус
  • Толкатели
  • Поршни
  • Пружины
  • Рычаги с валиками
  • Плунжер
Принцип работы сервомеханизма трактора Т-130:

При прямолинейном движении — отверстия в поршнях открыты и масло через них уходит от насоса на слив. При повороте — усилие от рычага передаётся толкателю. Толкатель прижимается к поршню, закрывает отверстие в поршне и давит на него. Перед поршнем начинает возрастать давление, за счёт него смещается плунжер и закрывает канал ко второму поршню. Так как масло теперь поступает только к закрытому поршню, давление возрастает настолько, что начинает смещать поршень, от поршня усилие передаётся на рычаг-валик-рычаг-вилка. При отпускании рычага — отверстие в поршне открывается, масло уходит на слив, давление падает, и все детали возвращаются в исходное положение.

См. также

Примечания

Question book-4.svgВ этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 13 мая 2011.

Электрогидроусилитель руля — Википедия

Elektro-hydraulische Servolenkung.jpg

Системы рулевого управления с электро-гидравлическими усилителями.

Электро-гидравлические системы рулевого управления с усилителем, иногда аббревиатируемые как ЭГУР. Также называются «гибридными» системами. Как и стандартные системы используют вспомогательную гидравлическую технологию, но обеспечивающий рабочее давление гидравлический насос приводится в движение электродвигателем, вместо отбора мощности от основного двигателя транспортного средства.

В 1965 Форд экспериментировал с парком «управление моментального поворота запястьем» оборудованного Mercury Park Lanes, который заменял обычный большой руль двумя 5-дюймовыми (127-миллиметровыми) кольцами, с быстротой передаточного отношения 15:1, и электрический гидравлический насос в случае, если двигатель остановился.[1][2]

В 1990 Тойота представила своё второе поколение MR2 с рулевым управлением с электро-гидравлическим усилителем. Это должно было исключить управление гидравлическими линиями от двигателя (которые были расположены позади водителя в MR2) до центральной стойки.

В 1994 Фольксваген произвел 3-ю марку Гольфа Ecomatic, который использовал электрический насос так, чтобы рулевое управление с усилителем могло работать, в то время как двигатель был выключен компьютером, чтобы сэкономить топливо.[3] Электро-гидравлические системы могут быть найдены в некоторых автомобилях Форд, Фольксваген, Ауди, Пежо, Ситроен, Шкода, Suzuki, Opel, МИНИ-, Тойота, Хонда, и Мазда.

Servotronic обеспечивает точную зависимость рулевого управления с усилителем от скорости, в котором количество подключенных сервомоторов, зависит от скорости движения, и таким образом предоставляет даже больше комфорта водителю. Количество усиления сильнее при низких скоростях, например, при парковке автомобиля. Большая поддержка облегчает маневрирование автомобиля. На более высоких скоростях электронная система датчиков постепенно уменьшает уровень усиления управления. Таким образом, водитель может управлять автомобилем ещё более точно (с рулевым управлением со стандартным усилителем при повышении скорости гидроусилитель полностью отключается). Servotronic используется многими автомобилестроителями, включая Ауди, General Motors, БМВ, Фольксваген, Вольво, Сеат и Порше. Servotronic — торговая марка AM General Corp.[4]

Система позволяет инженерам адаптировать рулевой механизм к переменным скоростям и амортизации системы подвески, для достижения идеального сочетания сглаживания езды, и управления для каждого транспортного средства.[5] На автомобилях группы Фиат величина усиления может регулироваться, нажатием кнопки с надписью «ГОРОД», который переключается между двумя отличающимися траекториями поворота, в то время как у большинства других систем EPS есть переменная усиления, которая учитывает больше помощи при уменьшении скорости транспортного средства и меньше помощи со стороны системы во время быстрой езды. В случае отказа данного компонента, механические соединения, такие как стойка и зубчатый валик служит резервными, подобно гидравлической системе. Электрический усилитель руля не стоит путать с сервоприводом или проводными рулевыми системами, которые используют электродвигатели для того, чтобы управлять колёсами, но без какого либо механического соединения с рулем.

У электрических систем есть небольшое преимущество в топливной экономичности, потому что нет никакого гидравлического насоса с ременным приводом, постоянно работающего вне зависимости от того, требуется ли помощь или нет, и это — главная причина их внедрения. Другое главное преимущество — устранение машинного компонента с ременным приводом, и несколькими гидравлическими шлангами высокого давления между гидравлическим насосом, установленным на двигателе, и механизмом управления, установленным на шасси. Это значительно упрощает производство и обслуживание. Включив электронный контроль устойчивости, электрические системы усилителя руля можно мгновенно изменить уровень поддержки, изменяя вращающий момент, чтобы помочь водителю при корректирующих маневрах.

Максимальная полезная мощность электрической системы транспортного средства ограничивает пределы возможностей электрической системы оказания помощи. 12-вольтная электрическая система, например, ограничивается 80-ю амперами тока, что в свою очередь ограничивает размер двигателя до пределов менее 1 кВт. Это количество энергии больше подходит для транспортных средств небольшого размера. Но скорее всего, не хватило бы для больших машин, таких как грузовики и внедорожники.существуют и другие типы электросистем, такие как 24-х вольтная и др. разновидности, используемые в гибридных авто и электромобилях. Они имеют большую выходную производительность, которая позволяет использовать двигатели большей мощности необходимых для больших и среднеразмерных транспортных средств.

Первые электрические системы управления появились на Honda NSX в 1990, FIAT Punto Mk2 в 1999, Honda S2000 в 1999, Toyota Prius в 2000[6] и на BMW Z4[7] в 2002. Сегодня многие изготовители используют электронное управление.

Обзоры в автомобильной прессе часто комментируют, что определенные системы управления с электрическим усилителем не дают достаточного «чувства дороги». Чувство дороги подразумевает под собой отношение между силой, необходимой для управления транспортным средством и усилием, которую водитель прилагает к рулю. Чувство дороги дает водителю субъективное восприятие, которое он использует при управлении транспортным средством. Величиной чувства дороги (информативности руля) управляет компьютерный модуль, который управляет руководящей системой электроэнергии. В теории программное обеспечение должно быть в состоянии приспособить количество дорожного чувства, чтобы удовлетворить водителей. На практике, трудно учесть различные ограничения конструкции, производя более яркую информативность руля. Тот же самый аргумент также был применен к рулевому управлению с гидравлическим усилителем.

  1. ↑ Will a twist of your wrist steer your next car? (англ.) // Popular Science : magazine. — Bonnier Corporation (англ.)русск., 1984. — February (vol. 186, no. 4). — P. 83.
  2. Markovich, Alex. Look, Ma-No Wheels (англ.) // Popular Mechanics : magazine. — 1965. — April (vol. 123, no. 4). — P. 91—93.
  3. ↑ The Golf Ecomatic Page (неопр.) (недоступная ссылка). Deylan.co.uk. Дата обращения 14 декабря 2010. Архивировано 10 августа 2011 года.
  4. ↑ Audi of America Usage Agreement Архивная копия от 24 августа 2007 на Wayback Machine
  5. Keebler, Jack. So long, hydraulics — the electronic revolution in power steering (англ.) // Popular Science : magazine. — Bonnier Corporation (англ.)русск., 1986. — May (vol. 228, no. 5). — P. 50—56.
  6. ↑ 2001 Toyota Prius Repair Manual, Volume 2, Pub. No. RM778U2

Электроусилитель руля — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 марта 2016; проверки требуют 9 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 марта 2016; проверки требуют 9 правок. ЭУР легкового автомобиля

Электрический усилитель руля (ЭУР) — электромеханическая система автомобиля, предназначенная для снижения управляющего усилия, прикладываемого к рулевому колесу. Другие названия Электромеханический усилитель руля (ЭМУР), Электрический усилитель рулевого управления (ЭУРУ)

ЭУР состоит из следующих основных элементов:

  • Рулевой вал с торсионным валом
  • Электродвигатель
  • Электронный блок управления (ЭБУ)
  • Датчик крутящего момента (бесконтактный)
  • Датчик положения ротора

Принцип действия электроусилителя руля:

Электроусилитель устанавливается на рулевой вал автомобиля, части которого соединены между собой торсионным валом, с установленным датчиком величины крутящего момента. При вращении руля происходит скручивание торсионного вала, регистрируемое датчиком момента.

На основании полученных с датчика момента данных, а также данных с датчиков скорости и оборотов коленвала, электронный блок управления вычисляет необходимое компенсационное усилие и подает команду на электродвигатель усилителя.

1-й вариант:
Электродвигатель и редуктор расположены на рулевой колонке, полный момент выходит уже с вала рулевого колеса.

2-й вариант:
Редуктор установлен на самой рейке, что позволяет не перегружать рулевой вал и его сочленения.

Достоинствами ЭУР в сравнении с гидравлическим усилителем руля (ГУР) являются:

  • Простота конструкции и обслуживания. ГУР в отличие от ЭУР требует постоянного контроля уровня жидкости, обслуживания насоса.
  • Компактность механизма. ЭУР устанавливается на рулевой вал и не требует дополнительного места под капотом автомобиля.
  • Экономичность. Электродвигатель ЭУР включается только при вращении руля, в то время как насос ГУР работает постоянно, создавая дополнительную нагрузку на двигатель тем самым увеличивая расход топлива.
  • Простота настройки. Только изменяя программу ЭБУ возможно добиться различных режимов работы при различных обстоятельствах, как например, уменьшение компенсационного усилия при увеличении скорости автомобиля. В случае ГУР для этого потребуются дополнительные активные элементы в конструкции.

Недостатки ЭУР в сравнении с ГУР:

  • Малая (меньшая) мощность, обусловленная мощностью электрогенератора. ЭУР устанавливается только на лёгкие автомобили, недостаточная мощность не позволит использовать его на тяжелых внедорожниках или грузовиках, не опасаясь за нагрузку на бортовую сеть автомобиля и электродвигатель усилителя. В то же время, ЭУР потребляет сравнительно высокий ток от бортовой сети, создавая значительную нагрузку: так, например, ЭУР показанного выше Suzuki Wagon R может потреблять до 30 Ампер от бортовой сети, что составляет 40% мощности генератора (указанный ток — максимальный, на стоящей неподвижно машине, при езде меньше, а после 60 км/час ЭУР отключается вовсе, во избежание чрезмерной управляемости).
  • При тяжёлом режиме работы, например, при длительном движении по раскисшей грунтовой дороге электродвигатель ЭУР перегревается. Для предовращения его отказа блок управления начинает ограничивать максимальный ток, соответственно руль «затяжеляется», и в конечном итоге отключается совсем. Для восстановления нормальной работы необходимо остановить автомобиль на некоторое время, с целью охлаждения обмоток электродвигателя, после чего работоспособность восстановится.

Недостатки, свойственные как ЭУР, так и ГУР, в сравнении с рулевым управлением без усилителя:

  • Возникновение опасности при движении в случае отказа обоих типов усиления руля (реакция водителя может быть недостаточной для своевременного обнаружения отказа системы усиления руля, если это произойдёт в момент поворота транспортного средства).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *