Инжектор механический: Изучаем механический инжектор

Содержание

Изучаем механический инжектор

На вопрос о том, как каждый водитель выбирает автомобиль для себя, ответить очень трудно. У каждого свои критерии оценки: кто-то ориентируется на свой достаток, кто-то отдает предпочтение конкретной марке автомобилей, а кто-то намертво привязан к определенным системам функционирования машины.

Так, многие, даже покупая подержанный автомобиль, все равно стремятся выбирать те модели, на которых установлен механический инжектор. Об этой системе можно отзываться по разному. Для кого-то она самая простая, а для кого-то самая проблемная. Но чтобы делать такие оценки, необходимо очень детально ознакомиться с этим устройством, что мы и собираемся сделать в сегодняшней статье.

1. Виды механических инжекторов, которые еще встречаются на старых моделях автомобилей.

Наиболее известным автомобилем, на котором раньше устанавливался механический инжектор, сегодня является «Ауди 100». Как и любая топливная система, это устройство предназначено для обеспечения бесперебойной подачи топливно-воздушной смеси в камеру сгорания двигателя. Как принудительный впрыск топлива в цилиндры, так и отслеживание параметров горючей смеси и образование этой смеси в устройстве отслеживается исключительно благодаря механическим устройствам. Только лишь на некоторых моделях авто механический инжектор совмещается с электрическими сигналами, но зачастую он лишен всякой электроники.

Ели говорить кратко, то механический инжектор – это устройство топливной системы автомобиля, которое несет ответственность за подачу топлива в цилиндры мотора. Чтобы мотор работал правильно, топливо, а вернее, топливно-воздушная смесь должна постоянно сгорать. Для этого нужно соблюдать правильные пропорции соотношения бензина и воздуха. Именно это и обеспечивает механический инжектор: благодаря безостановочному распылению топлива оно может смешиваться с воздухом в оптимальных соотношениях. Осуществляется процесс распыления в такой системе благодаря форсункам.

Однако, механические инжекторы уже давно ушли с конвейера, и на смену им пришли электронные устройства. Чем же они отличаются друг от друга? Главное отличие – сила, которая заставляет форсунки открываться и распрыскивать топливо.

В механическом варианте это происходит благодаря давлению, которое специально создается в системе, а в электронном форсунки открываются благодаря электронному импульсу. Здесь и раскрывается минус механических устройств: обороты двигателя в таких автомобилях напрямую зависят от того, какое давление удерживается в топливной системе. По сути, за управление механическими форсунками отвечает дозатор механического инжектора.

Электронный инжектор – более умное устройство, потому что открыванием и закрыванием форсунок здесь «ведает» электронный блок управления автомобиля. Но все же, со временем оснащать электроникой начали и механические инжекторы. В частности, могут устанавливаться специальные датчики для контроля и корректировки подачи топлива на форсунки, ориентируясь уже не на давление в топливной системе, а на показания датчиков температуры и выхлопных газов.

Также, сам состав горючей смеси может корректироваться на основании положения педали акселератора. Но в любом случае, именно давление является основным фактором, который обеспечивает работоспособность механического инжектора. Этот показатель может находиться в пределах 4-6,5 атмосфер.

Механические инжекторы могут быть представлены в разных вариантах. Как и любое другое устройство, его неоднократно совершенствовали и меняли конструкцию. Естественно, что все изменения были направлены только на то, чтобы сделать устройство как можно лучше и практичнее. Но виды механических инжекторов не так разнообразны, и их можно назвать только три:

• K-Jetronic.

• KE-Jetronic.

• KE3-Jetronic.

Первый указанный в списке и является первым полноценным механическим инжектором, который начали активно применять в конструировании автомобилей. Именно на примере K-Jetronic мы немного ниже и расскажем об устройстве механического инжектора, поскольку все остальные виды так или иначе создавались на его основе и мало чем отличаются.

2. Принцип работы механического инжектора автомобиля.

Прежде чем посвящать вас в основные тонкости функционирования механического инжектора, стоит обратить ваше внимание на еще одно название этого устройства – моновпрыск. Только моновпрыск пришел первым на смену карбюраторным двигателям, а уже позднее, когда его начали модифицировать и совершенствовать, это устройство начали называть механическим инжектором. Но ближе к делу.

Используются механические инжекторы только на тех двигателях, которые работают на бензине. Основу такой системы составляет форсунка, которая открывается под давлением в топливной системе. Но не менее важным элементом этого устройства является и дроссельная заслонка. Именно благодаря ей дозируется подача воздуха в камеру сгорания, что позволяет создавать оптимальную топливно-воздушную смесь и обеспечить стабильную работу двигателя.

Вообще, принцип работы механического инжектора очень сильно критикуется. Основная причина, по которой он был снят с производства, заключается в том, что автомобили с таким устройством слишком сильно загрязняют окружающую среду. Поскольку нормы выхлопных газов за рубежом очень строго контролируются, то моновпрыск по сути стал запрещенным. Однако, при правильной настройке всех элементов, и такой инжектор может работать в соответствии со всеми экологическими нормами. В частности, очень важно, чтобы угол открытия дроссельной заслонки правильно соотносился с частотой вращения коленчатого вала.

Основными факторами, от которых зависит функционирования механического инжектора, являются таковые:

- частота вращения коленчатого вала;

- соотношение между объемом потока воздуха и его массой;

- угол открытия дроссельной заслонки;

- показатель давления в топливной системе автомобиля.

3. Устройство механического инжектора автомобиля: основные составляющие элементы и их характеристики.

Как уже говорилось выше, рассказать об устройстве механического инжектора мы хотим на примере K-Jetronic. Познакомиться лично с ней вы можете на автомобилях «Ауди 100». Чтобы у вас сложилось полноценное представление и о работе, и об устройстве механического инжектора, мы подробно расскажем о каждом его элементе.

Распределитель

Данный элемент механического инжектора представляет собой совокупность камер и плунжера. Именно благодаря им и осуществляется регуляция количества бензина, который подается в цилиндры двигателя. Непосредственная регулировка осуществляется благодаря степени открытия клапанов каждой камеры.

Также, от каждой камеры к форсункам инжектора отходят специальные трубки. Когда увеличивается угол открытия дроссельной заслонки, параллельно повышается и разрежение, которое поднимает напорный диск. Поскольку он связан с плунжером при помощи рычага, плунжер также поднимается. Все это и приводит к тому, что клапан каждой камеры открывается и осуществляется подача бензина.

Несложно сделать вывод, что количество сгораемого бензина в такой системе напрямую зависит от того, сколько воздуха расходуется для создания воздушно-топливной смеси. А изменяется расход воздуха благодаря повороту дроссельной заслонки, управление которой осуществляется через педаль акселератора.

Реле температуры

Данный элемент представлен в виде биметаллической пластины. Под воздействием температуры, то есть в результате нагрева, она имеет возможность деформироваться. Когда запускается холодный двигатель, контакт реле находится в замкнутом положении. Благодаря этому сквозь него может проходить ток, который в свою очередь воздействует на клапан форсунки и дополнительно обогащает воздушно-топливную смесь. Однако под влиянием тока нагревается реле температуры, что в итоге приводит к размыканию контакта реле и отключению форсунки.

Винт качества

Чтобы двигатель автомобиля работал правильно и бесперебойно, соотношение бензина и воздуха в горючей смеси должно соответствовать строгим нормам. Вот именно эту норму и регулирует такой элемент как винт качества. Если он работает неправильно, то расход топлива может вырасти в разы. Данный винт находится в постоянном вращении, благодаря чему возможно изменение высоты подъема плунжера, а также проходного сечения клапанов всех камер распределения механического инжектора. Расположен данный винт между штоком плунжера и рычагом расходомера.

Винт количества (регулировочный винт)

Когда двигатель работает на холостом ходу, водитель не нажимает на педаль газа, что держит дроссельную заслонку в закрытом состоянии. Из всего этого следует, что в камеру сгорания двигателя не поступает воздух через привычный канал, а значит, нужен дополнительный. Роль такового и выполняет канал холостого хода, который создается благодаря регулировочному винту. Кроме того, при помощи винта количества можно менять холостые ходы двигателя автомобиля с механическим инжектором. Однако без особой надобности баловаться этим винтом не рекомендуется.

Форсунки

По сути, это главный элемент любой инжекторной системы. Количество форсунок строго соответствует количеству цилиндров двигателя, поскольку на каждый цилиндр приходится по одной форсунке. Они устанавливаются на цилиндры таким образом, чтобы не допускать образования пробок и одновременно с этим обеспечивать теплоизоляцию.

Если говорить об автомобиле «Ауди 100», то форсунка на его двигателе выполнена в виде механического клапана. Принцип его действия достаточно простой: чтобы попасть в цилиндр, бензину приходится преодолевать усилие пружины, которая прижимает клапан-форсунку.

Усилие пружины подбирается специально, чтобы форсунка открывалась только тогда, когда уровень давления достигает 3,5 Атмосфер.

При этом впрыск топлива осуществляется периодически. Как это возможно? Просто в верхних камерах распределителя постоянно образуются кратковременные снижения давления, что и вызывает перерывы в работе форсунок. Если система исправна, то каждая форсунка срабатывает при одинаковом уровне давления.

Регулятор противодавления

Работа этого устройства базируется на том, чтобы понижать противодавление, которое возникает в распределителе. Благодаря этому открываются клапаны из камер, и поступает больше горючего. Важно отметить, что камеры распределителя разделены при помощи мембраны и классифицируются как верхние и нижние. В нижних камерах давление создается при помощи насоса, который совместно с пружиной закрывает клапаны. Если же давление упадет, то и мембрана упадет вниз, что приведет к открытию клапанов.

Элементы, которые поддерживают давление в топливной системе автомобиля

Таковыми являются устройства, которые, по сути, не совсем и относятся к конструкции самого механического инжектора. Это аккумулятор и регулятор давления в топливной системе, клапаны форсунок и бензонасос. Первый из них поддерживает величину давления на необходимом уровне после того как был остановлен горячий двигатель. Длится это в течение непродолжительного периода времени и нужно для того, чтобы не допускать образования пробок.

Что касается бензонасоса, то он самостоятельно регулирует давление при помощи двух клапанов: предохранительного и пропускного. Открытие пропускного клапана провоцируется достижением рабочей величины давления, а пропускной открывается только тогда, когда давление становится очень большим. Клапаны форсунок способны удерживать давление только в том случае, если оно ниже 3,5 Атмосфер.

Пусковая форсунка

Чтобы произошел запуск холодного двигателя с механическим инжектором, на Ауди 100 подача дополнительной порции бензина осуществляется при помощи электромагнитной пусковой форсунки. Ее включение осуществляется при замкнутых контактах реле температуры. Отключается она тогда, когда реле нагревается, и размыкаются его контакты. Также реле температуры может включать дополнительный клапан противодавления.

Установлена пусковая форсунка непосредственно перед дроссельной заслонкой и основными элементами инжектора. При нормальном функционировании двигателя она находится в закрытом состоянии, что возможно благодаря наличию пружины. Вот и все устройство механического инжектора. В целом оно совсем не сложное, однако, без электрического питания функционирование системы не является идеальным.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Ремонт механического инжектора

Прежде чем браться за ремонт инжектора, давайте разберемся, что такое механический инжектор?

Механический инжектор это элемент топливной системы, который отвечает за подачу топлива в цилиндры двигателя.

Для нормальной работы двигателя необходимо поддерживать процесс сгорания горючей смеси. Горючая смесь это смесь воздуха и топлива в определенной пропорции. Для быстрого и качественного образования горючей смеси топливо должно распыляться. Для распыления топлива в инжекторных системах применяются форсунки.

Чем отличается механический инжектор от электронного инжектора?

Электронный инжектор подает электронный импульс за счет которого форсунки открывают подачу топлива, а форсунки механического инжектора открываются за счет давления создаваемого в системе. То есть открытие форсунок (обороты двигателя) напрямую зависит от давления в топливной системе. Именно дозатор механического инжектора отвечает за управление механическими форсунками. А в электронном инжекторе управлением открытия-закрытия форсунок занимается блок управления. Механический инжектор это прерогатива прошлого, но есть более современные механические инжекторы, которые выпускались в конце 90х. В этих автомобилях уже присутствует электроника, которая корректирует подачу топлива на форсунки в зависимости от показаний датчиков температуры и выхлопных газов. Горючая смесь в механическом инжекторе может корректироваться в зависимости от положения педали газа. Давление в системе механического инжектора может находиться в пределах от 4 до 6,5 атмосфер.

Как проверить давление в механическом инжекторе?

  1. Максимальное давление бензонасоса (должно быть в 2 раза больше рабочего давления);
  2. Системное давление – это рабочее давление, на которое рассчитывался механический регулятор топливного давления;
  3. Остаточное давление, которое равно половине рабочего давления.

Регулировка и ремонт механического инжектора достаточно сложный процесс. Если вы захотите отремонтировать механический инжектор в Харькове, то практически во всех СТО вас будут отправлять подальше. Есть только 2 места на весь город, где можно сделать механический инжектор. Один из них, и самый лучший находится в районе государственного цирка (гаражи).

Мастера не берутся за это дело не потому, что это неблагодарный труд, а потому, что ремонт механического инжектора очень своеобразное дело. Те мастера, которые не захотят копошиться. будут газовать до такой степени, чтоб аж в ушах заложило, в надежде на то, что таким образом механический инжектор хоть немного прочистится, но все это не даст нужного результата. Тут нужны специальные инструменты, оборудование и опытный специалист по ремонту механического инжектора.

Что тут говорить, если на всю Москву есть пару человек, которые возьмутся за эту работу: чистку, регулировку и ремонт механического инжектора.

Если вы попадете к неопытному специалисту, который поверхностно знает устройство механического инжектора систем KE-Jetronic , KE-Motronic, KE3-Jetronic, K-Jetronic, сразу же бегите от туда, пока он вам ничего не испортил. Может возникнуть такая ситуация, что вам будет предложено заменить детали механического инжектора, которые входят в эту систему (бензонасос, лямбда зонд, форсунки), а результата не будет. Такой подход очень крепко может ударить вам по карману. Особенно, если в конце вам скажут - надо менять сам механический инжектор, он свое отслужил.

Неисправности механического инжектора систем KE-Jetronic , KE-Motronic, KE3-Jetronic (КЕ-Джетроник, КЕ-Мотроник, КЕ3-Джетроник).

Основная причина выхода из строя механического инжектора – использование не качественного бензина. Я бы посоветовал заправляться 92 бензином, так как 95 это тот же 92, только с не нужными нам присадками.

  1. Неисправность бензонасоса;
  2. Выход из строя форсунок;
  3. Засорение фильтров и фильтрующих элементов;

Диагностика механического инжектора, как и его ремонт достаточно затруднительная и дорогая процедура. Поэтому, если вы стали владельцем такого автомобиля, лучше своевременно обслуживайте механический инжектор, а именно: своевременная замена фильтров, промывка форсунок.

Часто встречаются следующие неисправности механических инжекторных систем:

  1. Износ потенциометра расходомера воздуха;
  2. Износпотенциометра напорного диска.

Автомобили с механическим инжектором - AUDI и VW с двигателями маркировки (AAR, NG, NF, 3A, AAD, ACE, 9A).

Как определить неисправность потенциометра механической инжекторной системы:

  1. Неравномерная работа двигателя на холостом ходу;
  2. Ухудшается динамичность;
  3. Прогазовки на холостых оборотах (АКПП);

Ауди (Audi) 80,100; Мерседес (Mercedes Benz); Фольксваген (VW)

Ремонт механического инжектора, диагностика, настройка и регулировка механического инжектора на Ауди (80 и 100), Мерседес и Фольксваген

Ремонт механического инжектора в городе Туле производится всего в нескольких специализированных автосервисах, так как разборка, сборка и очистка механических инжекторов автомобилей Ауди (Audi) 80, 100; Мерседес (Mercedes) и Фольксваген (VW) - очень сложная и кропотливая работа. Устройство механического инжектора достаточно сложное, поэтому для ремонта, настройки и регулировки требуется квалифицированный персонал, который хорошо разбирается в механических системах впрыска топлива.

Механический инжектор представляет собой механизм для подачи топлива в двигатель. Для более быстрого образования топливной смеси (топлива и воздуха), необходимой для процесса горения, происходящего в двигателе, нужно распыление топлива. Для этого применяются форсунки, которые в электронном инжекторе работают за счет электронного импульса, а в механическом инжекторе за счет давления, в этом и есть отличие механических инжекторов.

Для определения неисправности используется компьютерная диагностика инжектора, а также методики и приборы испытанные временем и опытом. Для ремонта, прочистки, настройки и регулировки применяется специализированное оборудование, которое имеет высокопроизводительные характеристики.

Основные причины, приводящие к поломке механические инжекторы, это:

  • Химический состав топлива, который может изменяться в зависимости от разных заправок, что ведет к засорению системы и топливного фильтра. Решением проблемы является настройка системы под топливо, промывка топливной системы и замена топливного фильтра через 10-20 тыс. км.
  • Выход из строя форсунок и бензонасоса из-за выработки или использования некачественного топлива. Для профилактики и продления работоспособности данных механизмов, рекомендуется постоянное техническое обслуживание, постоянная замена топливного фильтра и промывка инжектора.
  • Также большой проблемой является износ потенциометра расходомера воздуха или потенциометра напорного диска. Вследствие износа графитовых дорожек датчик утрачивает заводскую характеристику, из-за чего возникают неполадки при холостом ходе, и ухудшается динамика. Для того чтобы избежать данной поломки, необходимо вовремя проходить техническое обслуживание и следить за топливной системой.

Автосервис «Golden Engine» предлагает квалифицированный ремонт механических инжекторов автомобилей Ауди (Audi) 80, 100; Мерседес (Mercedes) и Фольксваген (VW) или замену инжектора на карбюратор «Солекс». Также возможна переделка и замена механического инжектора на электронный, что в ряде случаев является наилучшим решением.
Наша компания имеет большой опыт в данной области. Не обращайтесь в неспециализированные мастерские в избежание полной поломки системы впрыска.

Подробную информацию о стоимости ремонта, а также цены на дополнительные услуги, время и сроки выполняемых работ можно узнать по телефону +7 (910) 940-31-23 или +7 (4872) 71-81-31 или по почте [email protected] Для посещения нашего техцентра, смотри схему проезда.

Свяжитесь с нами Оставить заявку

Принцип работы инжектора. Механический инжектор принцип работы

страница 7/7
Дата 29.01.2018
Размер 106.98 Kb.
Название файла Система питания двигателя автомобиля.docx
Тип Лабораторная работа

            7

Система питания инжекторного двигателя

Так в наше время в автомобилях получила распространение модель инжекторных (впрысковых) двигателей, поэтому нам также необходимо рассмотреть систему питания инжекторного двигателя. Отличительной особенностью инжекторных двигателей стало отсутствие карбюратора, который заменен новыми, современными элементами системы питания двигателя. Преимущество ее еще в том, что водитель, надавливая педаль газа, регулирует только поток воздуха, поступающий в цилиндры, а состав и качество образующейся рабочей смеси контролирует встроенный в систему бортовой компьютер.

Сам принцип работы бортового компьютера системы питания инжекторного двигателя представлен ниже.

Здесь изменен сам процесс получения топливно-воздушной смеси. Так, топливный насос вместо механического – стал электрическим и размещен непосредственно в топливном баке автомобиля. Кроме того, он подает топливо в систему сразу под высоким давлением. Топливо поступает в топливную рампу, в которой расположены форсунки. Через них бензин впрыскивается непосредственно в определенный цилиндр в заданное время, где смешивается уже с воздухом. Какое количество топлива нужно подать в конкретный цилиндр и в нужное время — определяет этот самый бортовой компьютер. На это влияет объем поступившего воздуха, температура его и двигателя, скорость вращения коленвала и т.д. Считывая все эти показатели, программа в компьютере вычисляет интервал времени, при котором срабатывает клапан на каждой форсунке, открывающий доступ бензина под давлением в цилиндры двигателя. Так осуществляется автоматически контроль подачи топлива в системе питания инжекторного двигателя. Если ДВС получил название «сердца» автомобиля, то здесь мы столкнулись с его «мозгом».

Плюсы подобных систем очевидны: экономия расхода, снижение токсичности, увеличение срока эксплуатации двигателя и более рациональное его использование в процессе работы. Но есть и минус – это усложнение конструкции самой системы питания инжекторного двигателя за счет увеличения электронных устройств, которые бывают очень «капризны» при перепадах температур, увеличенной влажности и значительных колебаниях при длительной езде по неровной местности (бездорожью). Однако конструкторы и здесь нашли способы минимизировать риск возникновения неисправностей в таких ситуациях.

Устройство системы питания инжекторного двигателя представлено ниже.

Здесь видны синие стрелки, показывающие направление вывода отработавших газов. Таким образом, от устройства системы питания инжекторного двигателя мы дошли до системы выпуска отработавших газов. Что она из себя представляет? Возвращаемся опять к цилиндру двигателя. После совершения рабочего хода поршня наступает такт выпуска при движении поршня от НМТ к ВМТ. При этом открывается выпускной клапан, и газы выводятся из цилиндра. Весь этот процесс сопровождается громким шумом, а сами газы — высокой скоростью вывода, температурой и токсичностью. Для комплексного решения всех этих проблем в автомобиле и предусмотрена система выпуска отработавших газов. Газы из цилиндра через выпускной коллектор попадают в нейтрализатор, выполняющий роль фильтра, а затем в глушитель. В глушителе имеется несколько последовательно соединенных камер с отверстиями. Вся конструкция эта выглядит как змеевик. Поток газов, проходя через камеры, постоянно меняя направление, глушится, то есть уменьшается шум и их температура. После чего через выхлопную трубу автомобиля они выводятся в атмосферу.

В качестве завершения знакомства с системой питания инжекторного двигателя и выпуска отработавших газов стоит упомянуть о таком нюансе. Мы выяснили, что при отсутствии подачи воздуха или топлива двигатель автомобиля не заведется или заглохнет при прерывании подачи одного из компонентов. Но, если перекрыть выпуск отработавших газов – результат будет тот же. Двигатель заглохнет, так как не будет создаваться разряжение воздуха в цилиндре. А значит ни новый поток воздуха, ни топливо поступать в него не будут. Это нашло свое применение в промышленных силовых установках на производстве, когда требуется аварийно остановить работу ДВС. Перекрытие выхлопной трубы надежно это гарантирует. Федерального государственного бюджетного образовательногоОктановым числомТопливный бакВоздушный фильтрРабота системы питания двигателяРабочие режимы системы питания двигателяПоделитесь с Вашими друзьями:

            7

Непосредственный впрыск

Инжекторные автомобили с такими системами можно считать наиболее экологичными. Основная цель внедрения этого способа впрыска заключается в улучшении качества смеси горючего и незначительном увеличении КПД двигателя транспортного средства. Основные достоинства такого решения заключаются в следующем:

Закройте топливный клапан до инжектора. Откройте контрольный клапан топлива, чтобы получить показания. 5. Убедитесь, что клапан управления топливом к манометру закрыт, чтобы не повредить манометр в случае резкого избыточного давления. Установите наиболее подходящую напорную трубу для испытания форсунок. С небольшой силой приступить к работе с рычагом ручного насоса.

Используя плоскую отвертку и ключ. следуя приведенным выше шагам. давление открытия откалибровано. 6. Извлеките инжектор из трубы высокого давления и из испытательной камеры. Понял это. ручной насос работает до тех пор, пока инжектор не достигнет давления открытия. Как только инжектор удаляется, испытания проводятся с другими форсунками. Тогда. мы проверяем это давление, когда мы работаем с ручным насосом, а манометр показывает примерно давление открытия 350 бар. до 380 бар. Затем его накачивают в несколько раз выше давления открытия, чтобы проверить, оптимально ли качество спрея. до давления 350 бар.

  • тщательное распыление эмульсии;
  • образование высококачественной смеси;
  • эффективное использование эмульсии на различных этапах работы ДВС.

Исходя из этих преимуществ, можно говорить о том, что такие системы экономят топливо. Особенно это заметно при спокойной езде в городских условиях. Если сравнивать два автомобиля с одинаковым объемом двигателя, но разными системами впрыска, например, непосредственный и многоточечный, то заметно лучшие динамические характеристики будут у непосредственной системы. Отработанные газы менее токсичны, а взятая литровая мощность будет несколько выше за счет охлаждения воздуха и того, что давление в топливной системе несколько увеличено.

Но стоит обратить внимание на чувствительность непосредственных систем впрыска к качеству горючего. Если брать во внимание стандарты России и Украины, то содержание серы должно быть не выше 500 мг на 1 литр горючего

В это же время европейские стандарты подразумевают содержание этого элемента 150, 50 и даже 10 мг на литр бензина или дизеля.

Если вкратце рассматривать данную систему, то она выглядит следующим образом: форсунки располагаются в Исходя из этого, впрыск осуществляется непосредственно в цилиндры. Стоит заметить, что данная инжекторная система подходит для многих бензиновых двигателей. Как было отмечено выше, используется высокое давление в топливной системе, под которым подается эмульсия непосредственно в камеру сгорания, минуя впускной коллектор.

Выбор оптимальной системы подачи топлива

Размышляя какая разница между инжектором и карбюратором, многие автомобилисты приходят к выводу что электронная система гораздо надёжнее. Однако переоборудование любого автомобиля экономически невыгодно и приведёт только к излишним затратам. Решение о выборе более экономичной системы актуально при покупке машины. Разобраться чем отличаются инжектор и карбюратор довольно просто, и такие знания обязательно пригодятся.

Карбюратор уже отслужил свой срок на рынке современных автомобилей. Несмотря на его преимущества, применение инжектора наиболее эффективно и отвечает всем экологическим требованиям. Карбюраторные двигатели используются в основном на старых машинах, но такая технология отлично себя зарекомендовала и не нуждается в доработке. Применение инжектора имеет немалые преимущества и эта система установлена без возможности выбора в любой новой машине.

Система впрыска топлива езда на обедненной смеси

Немного выше мы с вами рассмотрели непосредственный впрыск, который впервые был использован на автомобилях марки «Митсубиси», которая имела аббревиатуру GDI. Давайте вкратце рассмотрим один из основных режимов – работу на обедненной смеси. Суть ее заключается в том, что транспортное средство в этом случае работает при небольших нагрузках и умеренных скоростях до 120 километров в час. Впрыск топлива осуществляется факелом в заключительном этапе сжатия. Отражаясь от поршня, горючее смешивается с воздухом и попадает в зону свечки зажигания. Получается так, что в камере смесь значительно обедняется, тем не менее ее заряд в районе свечи зажигания можно считать оптимальным. Этого хватает для его воспламенения, после этого загорается и остальная эмульсия. По сути, такая система впрыска топлива обеспечивает нормальную работу ДВС даже при соотношении воздух/топливо – 40:1.

Это весьма эффективный подход, позволяющий значительно экономить горючее

Но стоит обратить внимание, что остро встал вопрос нейтрализации отработанных газов. Дело в том, что катализатор неэффективен, так как образуется оксид азота

В этом случае используется рециркуляция отработанных газов. Специальная система ERG позволяет разбавить эмульсию отработанными газами. Это несколько снижает температуру горения и нейтрализует образование оксидов. Тем не менее такой подход не позволят увеличивать нагрузку на двигатель. Для частичного разрешения проблемы используется накопительный катализатор. Последний крайне чувствителен к горючему с высоким содержанием серы. По этой причине требуется периодическая проверка топливной системы.

Однородное смесеобразование и 2-стадийный режим

Мощностной режим (однородное смесеобразование) – идеальное решение для агрессивной езды в городских условиях, обгонов, а также движения по скоростным трассам и шоссе. В этом случае используется конический факел, он менее экономичный по сравнению с предыдущим вариантом. Впрыск осуществляется на такте впуска, а образованная эмульсия обычно имеет соотношение 14,7:1, то есть близкое к стехиометрическому. По сути, данная система автоматической подачи топлива точно такая же, как и распределительная.

Двухстадийный режим подразумевает впрыск топлива на такте сжатия, а также пуска. Основная задача – резкое повышение двигателя. Ярким примером эффективной работы такой системы является движение на малых оборотах и резкое нажатие на акселератор. В таком случае вероятность детонации значительно возрастает. По этой простой причине вместо одного этапа впрыск проходит в два.

На первом этапе впрыскивается небольшое количество горючего на такте впуска. Это позволяет несколько понизить температуру воздуха в цилиндре. Можно говорить о том, что в цилиндре будет находиться сверхбедная смесь в соотношении 60:1, следовательно, детонация невозможна как таковая. На заключительном этапе такта сжатия осуществляется впрыск струи горючего, которая доводит эмульсию до богатой в соотношении примерно 12:1. Сегодня можно говорить о том, что такая топливная система двигателя введена только для транспортных средств европейского рынка. Обусловлено это тем, что Японии не присущи большие скорости, следовательно, нет высоких нагрузок на двигатель. В Европе же большое количество скоростных шоссе и автобанов, поэтому водители привыкли ездить быстро, а это большая нагрузка на ДВС.

Устройство карбюратора

Карбюратор – представляет собой простейший вид устройства для подачи и распыления бензина. Процесс смешивания топлива с воздухом выполняется механически, а регулировка подачи смеси требует тщательной настройки. Карбюраторная система благодаря использованию простых механизмов легка в обслуживании. Опытный автомобилист может выполнить подобный ремонт самостоятельно, что даёт определённые преимущества в эксплуатации. Для таких операций нетрудно приобрести ремкомплект, а все работы проводятся штатным инструментом, имеющимся в машине.

Находится карбюратор на впускном коллекторе, а его конструкция состоит из поплавковой и смесительной камер. Для подачи топлива служит трубка распылителя, соединяющая камеры между собой. В поплавковую камеру с помощью бензонасоса подаётся топливо, а стабильную подачу бензина обеспечивает игольчатый фильтр и поплавок. Смесительная камера называется ещё воздушной и состоит из диффузора, распылителя и дроссельной заслонки. При движении поршней создаётся разрежение, обеспечивающее всасывание атмосферного воздуха и бензина. Такое смешение и обеспечивает стабильную работу двигателя.

Особенности топливного оборудования

Автомобиль всегда являлся объектом внимания защитников экологии. Отработанные газы выпускаются непосредственно в атмосферу, что чревато ее загрязнением. Диагностика топливной системы показала, что количество выбросов при неверном смесеобразовании увеличивается в разы. По этой простой причине было принято решение устанавливать каталитический нейтрализатор. Однако это устройство показывало хорошие результаты только при качественной эмульсии, а в случае каких-либо отклонений его эффективность значительно падала. Было принято решение заменить карбюратор на более точную систему впрыска, которой являлся инжектор. Первые варианты включали в себя большое количество механических составляющих и, согласно исследованиям, такая система становилась все хуже по мере эксплуатации ТС. Это было вполне закономерно, так как важные узлы и рабочие органы загрязнялись и выходили из строя.

Программист, подающий электромагнитный клапан инжектора с мощностью, активирует распылитель. После отсоединения блока питания впрыск завершен. Доза впрыскиваемого топлива пропорциональна до активации электромагнитного клапана; тем не менее, он не зависит от частоты вращения двигателя или инъекционного насоса.

Схема работы инжектора

Это влияет на снижение расхода топлива, обеспечивает более тихую работу двигателя и более низкое содержание опасных веществ в выхлопных газах. Их основным преимуществом является короткое время переключения, прибл. 0, 1 мс. Это ок. в десять раз быстрее, чем с соленоидными форсунками. В результате, начало инъекции может быть свободно скорректировано, а также объем дозы топлива, и может выполняться многофазная инъекция. Инерция соленоидных инжекторов позволила сделать одну начальную инъекцию, чтобы отключить шум горения.

Для того чтобы система впрыска смогла сама себя корректировать, был создан электронный блок управления (ЭБУ). Наряду с вмонтированным лямба-зондом, который расположен перед каталитическим нейтрализатором, это давало хорошие показатели. Можно с уверенностью говорить о том, что цены на топливо сегодня довольно высокие, а инжектор хорош как раз тем, что позволяет экономить бензин или дизель. Помимо этого есть следующие плюсы:

Группа пьезоэлектрических элементов используется в качестве элемента, управляющего работой инжектора. Благодаря такой быстрой активации интервалы между инъекциями могут быть сокращены, что облегчает оптимизацию работы двигателя. Количество топлива, включая небольшую дозу первоначальной инъекции, измеряется очень точно, что отражается на снижении расхода топлива. Прежде чем бензин может гореть в поршневом двигателе, его необходимо испарить и смешать с кислородом в нужных количествах. Этот процесс осуществляется либо карбюратором, либо системой впрыска высокого давления.

  1. Увеличение эксплуатационных характеристик мотора. В частности увеличенная мощность на 5-10%.
  2. Улучшение динамических показателей транспортного средства. Инжектор более чувствителен к изменению нагрузок и сам корректирует состав эмульсии.
  3. Оптимальная топливно-воздушная смесь уменьшает количество и токсичность отработанных газов.
  4. Инжекторная система легко запускается независимо от погодных условий, что является существенным достоинством перед карбюраторными двигателями.

его достоинства, виды, конструктивные особенности

Сейчас практически на любом бензиновом моторе легкового автомобиля, используется инжекторная система питания, которая пришла на смену карбюратору. Инжектор благодаря ряду рабочих характеристик превосходит карбюраторную систему, поэтому он является более востребованным.

Немного истории

Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.

Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.

Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.

Что такое инжектор и чем он хорош

Инжектор дословно переводится как «впрыскивание», поэтому второе название его – система впрыска с помощью специальной форсунки. Если в карбюраторе топливо подмешивалось к воздуху за счет разрежения, создаваемого в цилиндрах мотора, то в инжекторном моторе бензин подается принудительно. Это самое кардинальное различие между карбюратором и инжектором.

Достоинствами инжекторного двигателя, относительно карбюраторных, такие:

  1. Экономичность расхода;
  2. Лучший выход мощности;
  3. Меньшее количество вредных веществ в выхлопных газах;
  4. Легкость пуска мотора при любых условиях.

И достигнуть этого всего удалось благодаря тому, что бензин подается порционно, в соответствии с режимом работы мотора. Из-за такой особенности в цилиндры мотора поступает топливовоздушная смесь в оптимальных пропорциях. В результате, практически на всех режимах работы силовой установки в цилиндрах происходит максимально возможное сгорание топлива с меньшим содержанием вредных веществ и повышенным выходом мощности.

Видео: Принцип работы системы питания инжекторного двигателя

Виды инжекторов

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.
  1. Центральная

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

2. Распределенная

Распределенный впрыск топлива

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа  инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

3. Непосредственная

Система непосредственного впрыска топлива

Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.

Конструкция и принцип работы инжектора

Поскольку система распределенного впрыска – самая распространенная, то на именно на ее примере рассмотрим конструкцию и принцип работы инжектора.

Условно эту систему можно разделить на две части – механическую и электронную. Первую дополнительно можно назвать исполнительной, поскольку благодаря ей обеспечивается подача компонентов топливовоздушной смеси в цилиндры. Электронная же часть обеспечивает контроль и управление системой.

Механическая составляющая инжектора

Система питания автомобилей ВАЗ 2108, 2109, 21099

К механической части инжектора относится:

  • топливный бак;
  • электрический бензонасос;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Видео: Инжектор

Принцип работы инжектора

Что касается назначения каждого из них, то все просто. Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей.  Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. При достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.

Устройство электромагнитной форсунки

Современная форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Электронная составляющая

Основным элементом электронной части инжекторной системы подачи топлива является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  1. Лямбда-зонд . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
  2. Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
  3. Датчик положения дроссельной заслонки (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
  4. Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
  5. Датчик положения коленчатого вала (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
  6. Датчик детонации. Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
  7. Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
  8. Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока;

Теперь коротко от том, как все работает. Элекробензонасос заполняет всю систему топливом. Контролер получает показания от все датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

Что касается подачи топлива, то на основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Устройство автомобиля: инжектор

Споры о преимуществах инжекторного двигателя над карбюраторным, давно не актуальны – инжекторные системы воцарились на рынке, а новый автомобиль с карбюратором теперь попросту не найти. И все же не лишним будет разобраться, что же такое «инжектор», и чем обеспечено его тотальное господство на рынке легкового автотранспорта?

История инжектора

Впервые о замене карбюратора принципиально новой системой задумались ещё в самом начале 20-го века авиационные инженеры. Перепробовав все известные типы карбюраторов, они уже к сороковым годам прошлого века пришли с готовой к серийному производству системой инжектора, под давлением подающей топливо в камеру сгорания независимо от гравитации (что важно для самолётов) и точно в требуемом количестве (что позволяет получать меньший расход топлива, большую мощность и снижение уровня вибраций).

К концу второй мировой войны инжекторный двигатель с механическим впрыском можно было встретить на истребителях и бомбардировщиках Германии, Японии, Великобритании, СССР и США.

Кстати, тогда же появилась и столь знакомая многим современным автолюбителям процедура, как промывка инжектора - легендарный японский истребитель А6М «Зеро» требовал чистки форсунок после каждого вылета.

Затем автопроизводители оценили возможности применения впрыска для увеличения мощности двигателя при сохранении его экономичности: в 1940 году итальянцы из Alfa Romeo на своём купе 6C тестируют экспериментальную систему электронного впрыска, а Mercedes-Benz в 1954 году запускает в серию своё легендарное купе 300SL «Крыло Чайки», где была установлена механическая система прямого впрыска топлива.

Впрочем, никто из них не был пионером в создании «инжектора» – те или иные технические решения, примененные в этих автомобилях, отрабатывались на множестве экспериментальных конструкций, начиная с французских двигателей Леона Левассера с механическим впрыском образца 1902 года.

В России же системами инжекторного впрыска на автомобильной технике занимались и в Центральном научно-исследовательском автомобильном и автомоторном институте «НАМИ» и на Горьковском автомобильном заводе. Впрочем, некоторое отставание в области электронных компонентов не позволило удачно развернуть производство электронных систем впрыска в шестидесятых годах. Механический же впрыск в СССР, к сожалению, массово не вышел за рамки авиационных и дизельных двигателей.

Схема работы инжектора

Схема инжектора и закономерности его работы, пожалуй, даже проще для понимания, чем принципы работы карбюратора. Если карбюратор – это изящное техническое воплощение целого ряда физических законов в металле, то даже самая современная система инжектора таит в себе всего-лишь насос, подающий топливо сначала в находящуюся под небольшим давлением систему топливных каналов (топливную рампу), а потом (через электрический клапан) в сопло форсунки. Сопло, в свою очередь, распыляет топливо, которое смешивается с воздухом внутри впускного коллектора и через впускной клапан попадает в цилиндр уже в виде топливо-воздушной смеси. Собственно, терминами «инжектор» и «форсунка» сейчас чаще всего обозначают устройство, совмещающее в одном корпусе сопло-распылитель и электрический клапан.

Для понимания принципов работы инжекторного двигателя можно представить себе обычный цикл работы цилиндра четырёхтактного двигателя. При установке на нём карбюратора можно вполне налить топлива в сам карбюратор и отключить его от топливной системы вовсе – двигатель сможет завестись сам, так как топливно-воздушная смесь формируется в карбюраторе под действием втягивающего потока воздуха, который «засасывает» с собой смесь, и она уже готовой попадает во впускной коллектор. Не нужно ни давления, ни особого управления – схема проста и характеризуется тем, что топливная смесь формируется ещё до попадания к впуску в цилиндр.

В схеме с применением инжекторных форсунок смесь «готовится» непосредственно во впускном коллекторе (а в случае прямого впрыска – вообще в самой камере сгорания). В точно заданный системой управления момент открывается электроклапан, разделяющий топливную систему и впускной коллектор. Под давлением, созданным бензонасосом, инжектор распыляет топливную смесь в количестве, строго необходимом для поддержания близкого к стехиометрическому (читай-оптимальному) составу смеси. При этом воздух в коллектор на большей части нетурбированных автомобилей попадает под воздействием разряжения, созданного цилиндром – что позволяет, зная текущую его температуру, точно понимать, сколько топлива можно сжечь, имея данный объем воздуха.

Минус схемы инжектора в том, что смесь получается не настолько гомогенной (однородной и хорошо перемешанной), как на дорогих спортивных карбюраторах, а система управления форсунками требует точной настройки для оптимальной синхронизации работы топливных форсунок, впускных клапанов и цилиндров. Но плюсов системы всё же оказывается больше:

  • растёт экономичность и одновременно мощность за счёт точной дозировки топлива в зависимости от текущей потребности и ситуации.
  • равномернее распределяется топливо и между цилиндрами (мы не берем сейчас многокарбюраторные системы и ранние инжекторы с одной форсункой на несколько цилиндров),
  • автоматизируются процессы настройки двигателя в зависимости от условий эксплуатации,
  • понижается уровень вредных выбросов в атмосферу,
  • расширяются возможности для тюнинга двигателя
  • облегчается диагностика двигателя (с учетом использования электронных технических средств)
  • сборка и настройка инжекторных двигателей в производстве обходится дешевле, чем сборка и настройка карбюраторных систем

С точки зрения водителя, автомобиль с инжекторной системой впрыска, как правило, быстрее реагирует на изменение положения педали газа, легче заводится в условиях, отличных от идеальных, потребляет меньше топлива и обладает более высокой мощностью по сравнению с аналогичным двигателем с карбюраторной системой питания.

Кстати, возможность выбирать – карбюратор или инжектор, когда-то была: на раннем этапе развития систем впрыска применялся в основном центральный (моно, одноточечный, Single-Point injection, SPi) впрыск, форсунка легко ставилась на место карбюратора как опция и работала одновременно на все цилиндры двигателя. Система была проста, надёжна и предполагала расположение форсунки вне зоны высоких температур.

При такой схеме не требовалось сложной электроники или механики для синхронизации работы форсунок на нескольких цилиндрах, но за это приходилось платить отсутствием той универсальности, которую дают более современные системы с распределенным, или многоточечным (Multi-Point Injection, MPi), впрыском.

В итоге именно распределенный впрыск получил наибольшее распространение и сейчас эволюционировал во множество подвидов, как то непосредственный впрыск в камеру сгорания (Direct Fuel injection, DFI) и несколько подвидов обычного распределенного впрыска в зависимости от времени открытия форсунок:

  • при параллельном, или одновременном, впрыске (SMPI) все форсунки в двигателе срабатывают одновременно и независимо от тактов цилиндров, дважды за цикл впрыскивая топливо во впуск соответствующего цилиндра. При данном способе впрыска, часто встречавшемся на автомобилях 90-х годов, форсунки нужны в основном для более точной – по сравнению с центральным впрыском - дозировки топлива. Тем не менее, время между впрыском и попаданием топлива в цилиндр для разных цилиндров оказывается разным (пусть мы и говорим о миллисекундах), что сказывается на неравномерности смеси от цилиндра к цилиндру.
  • при попарно-параллельном – форсунки делятся на группы, срабатывающие в разное время. Таким образом, точка срабатывания форсунки приближается к оптимальному времени впрыска топлива для подготовки смеси – что позволяет сократить разницу в качестве смеси в цилиндрах. За цикл работы двигателя топливо впрыскивается дважды, как и при одновременном впрыске – более того, на время пуска двигатель с попарно-параллельной схемой впрыска переходит в режим одновременного впрыска.
  • при фазированном впрыске или (CIFI) – каждая форсунка управляется независимо от остальных и открывается точно перед тактом впуска. Именно эта система в данный момент является наиболее распространенной, так как позволяет обеспечить точное управление каждой форсункой и использовать оптимальное для каждого цилиндра время впрыска.

Отдельно следует отметить, что система инжекторного впрыска сама по себе универсальна и используется не только для бензиновых автомобилей. Механический впрыск на дизельных двигателях появился едва ли не раньше, чем на бензиновых – с двадцатых годов двадцатого века и поныне только на модельных дизелях и некоторых тракторных моторах используется схема, отличная от инжекторного впрыска.

Например, для дизельных силовых агрегатов крайне распространена прогрессивная система прямого впрыска Common Rail (она же известна как TDI, VCDi, CDI, TCDi, i-DTEC, CRDi – в зависимости от производителя), фактически превращающая топливную рампу в замкнутый аккумулятор для хранения топлива под более высоким, по сравнению с другими системами впрыска, давлением. В результате форсунки подают топливо с ещё большим давлением, что положительно сказывается, в частности, на расходе топлива. Но между прочим, впервые эта «современная» система была применена на британских двигателях для подводных лодок Vickers в 1916 году и в дальнейшем развивалась в основном по пути повышения давления в топливном аккумуляторе.

Система управления инжектора

Системы, координирующие действия каждой отдельной форсунки- инжектора двигателя, бывают как механическими, так и электронными. Собственно, первые массовые системы впрыска на легковых автомобилях появились в пятидесятых годах двадцатого века и довольно долгое время были исключительно механическими (как, например, целое семейство систем Bosch D-Jetronic).

Но по-настоящему эпоха инжекторного впрыска началась только с распространением микроконтроллеров - стоимость их разработки, производства и настройки гораздо ниже в сравнении с аналогичными процессами для механических систем с теми же функциональными возможностями.

Сегодня система управления инжекторным двигателем далеко ушла от алгоритмов работы первых механических систем. Соблазн относительно недорого использовать возможность оперативного изменения дозировки и времени подачи топлива на каждый отдельный инжектор двигателя (форсунку – ведь именно так переводится слово «инжектор») сделал своё – микроконтроллер сейчас собирает данные со множества дополнительных датчиков (от температурных и ДМРВ(Датчик Массового Расхода Воздуха) до датчиков включения кондиционера и отслеживания неровностей дороги). В зависимости от результата анализа этих данных контроллер выдаёт указания целому ряду устройств помимо, собственно, связки «бензонасос-инжектор» - системе зажигания, регулятору холостого хода, системе охлаждения и тому же кондиционеру.

Промывка инжектора

Есть целый ряд проблем, характерных именно для инжекторных двигателей. Это могут быть проблемы, общие для всех типов двигателей, а могут появляться и проблемы с электронными датчиками, вышедшими из строя по разным причинам.
Но главная проблема даже самого надежного инжекторного двигателя в России - сбои из-за засорения системы топливоподачи.

Троение, не связанное с состоянием свечей зажигания, катушек и высоковольтных проводов, трудности запуска зимой, заметное ухудшение приемистости двигателя, разница в нагаре на свечах зажигания из разных цилиндров, повышенный расход топлива и неполное сгорание смеси – всё это действительно может указывать в том числе и на закоксовывание форсунок.

Большая часть операций с системой впрыска инжекторного двигателя, с точки зрения многих официальных производителей, сводится к замене неразборных форсунок новыми, но существуют и методики чистки, охотно предлагаемые различными автосервисами.

Их условно можно разделить на два типа – промывку инжектора и ультразвуковую чистку форсунок. И та, и другая операция выполняется как со снятием топливных форсунок, так и прямо на двигателе.

У каждого способа свои нюансы, но следует помнить, что при промывке форсунок жидкостью без снятия их с двигателя после завершения процедуры рекомендуется заменить свечи и масло (и соответствующий фильтр) в двигателе, предварительно промыв его - что делает операцию весьма накладной. Кроме того, следует учитывать, что ввиду наличия в форсунках сеточки-уловителя, промывка некоторых форсунок может быть возможна только в направлении, обратном обычному распылению.

При снятии форсунок с двигателя замене подлежат уплотнительные резиновые прокладки этих форсунок. При этом для самой чистки потребуется специальный промывочный стенд либо самодельные приспособления, которые заставят форсунку открыть клапан для промывки.

В любом случае есть серьёзный риск повреждения двигателя в результате неверных действий. А в случае обслуживания дизельных двигателей следует учитывать еще и возможность наличия в системе серьёзного остаточного давления.

И все же нельзя сказать, что диагностика и обслуживание инжекторного двигателя существенно сложнее диагностики и обслуживания карбюраторного.

Конечно, для обслуживания карбюраторного двигателя не нужен сканер ошибок или бортовой компьютер. В нем не присутствует того количества датчиков и подсистем, которое мы встречаем в системе управления инжекторным двигателем.

С другой стороны – при наличии нужного оборудования компьютер инжекторного двигателя тут же объясняет, где искать неисправность – и для этого не надо вызывать опытного специалиста-диагноста, а достаточно подключить бортовой компьютер или OBD-сканер.

На ряд же неисправностей, не улавливаемых сканером, существует управа в виде внимательного отношения к собственному авто – изменение поведения автомобиля на дороге, смена звучания двигателя, сбои в работе отдельных систем или внезапно проснувшийся аппетит – всё это указывает на возникшие проблемы и необходимость диагностики. А еще, самый страшный враг «инжектора» - некачественное топливо. Так что внимательно стоит отнестись и к выбору заправочной станции.

Автор
Дмитрий Лонь, корреспондент MotorPage.ru
Издание
MotorPage.Ru

Плавают обороты механический инжектор ауди 80


Устранено [Плавают обороты на ХХ!] — Audi 80, 2.0 л., 1990 года на DRIVE2

Плавают обороты на холостом ходу.
На холодную глохнет, даёшь газу прогреваешь немного, ровно держит пока не прогреется до 90 градусов, дальше начинается… Скачет от 1100-1200 до 600-800 и назад, бывает так и скачет, а бывает амплитуда увеличивается… Но когда я отсоединил датчик (в итоге пришли к выводу что это кислородный датчик) обороты на ХХ держатся ровно, но на 1600 об вместо 600-800… что может быть? Попробую померить датчик, почистить клеммы, и перезагрузить блок управления, я так понял он находится в бардачке. Поправьте если не прав. Кто то может с этим сталкивался?

Вот этот датчик с колхозными клеммами

более обширный вид, качество убогое, фоткал ночью

отсоединил этот разъем и обороты выровнялись, но стали завышенными.

Проблема решена
Заменил воздушный фильтр, столько были и всякого Г я не ожидал увидеть, думал меньше будет) Началось с того что я разобрал черепаху, протёр всё что мог, т.к. везде была не только грязь, ещё и песок, сеточку на черепахе тоже протёр, кое как достал воздушный фильтр из короба, короб тоже вынул, т.к. крепления были отломаны, думаю наварить немного придётся ушко под болт с гайкой, достал воздушку и ужаснулся, всё протёр в коробе, поставил назад протянул всё что можно) Почистил клеммы на датчике включения вентилятора и дтож, заизолировал, подсадил на место) Завёл с подгазовкой, так отказалась и всё заработало ровно на 1000 прогрев, 800 рабочие) может поплавать немного не больше 50 оборотов и то редко, при 100 градусах отказался включаться вентилятор, померил движок, сопротивление обмоток есть — живой, разъем напряжение выдаёт, вообщем какой то "умник" перепутал полярность видимо, после переподключения, всё заработало)) надо будет стартовую инициализацию провести, завтра с утра посмотрю как на холодную пустится, думаю проблема ещё в сеточке на бензонасосе, с подгазовкой пускается и устанавливаются обороты, но сначала начинает глохнуть, может быть забита как раз она, бензонасос недавно ставил бывший владелец, работает хорошо. Хорошо, мне оставил бывший владелец все фильтра новые в багажнике)))

Вынул салонный фильтр, как так можно его довести было…

Подскажите кто знает, где находится блок управления KE-Motronic, хочу отключить и сбросить, что бы стартовую инициализацию провести.
P.S. Открыл бардачок кроме печки ничего не нашёл, слышал что где то там устанавливается

www.drive2.ru

Плавают обороты на Audi 80 B3. Как избавился от проблемы — Audi 80, 1.6 л., 1991 года на DRIVE2

Всем привет.
С приходом холодов пришла проблема в виде плаванья оборотов на тахометре, машинка начала поддергивать при низких оборотах, а в сирую погоду (туман, дождь) стала не предсказуема, то все норм, то поддергивает.
Обороты на холостых просто не держала, приходилось до полного прогрева постоянно подсос держать.
Просмотрел много записей о этом, причин то 100+ )
Но все же смотрите вначале всю систему зажигания (кстати у меня бензин 1.6)
1) Свечи
2) Высоковольтные провода (могут уже быть или пробиты или же на какая фишка плохо сидит)
3) Трамблер (именно контакты, могут быть обуглены, чистим). Если у вас часто появляется нагар, проверьте на сколько у Вас стерся уголек на крышке трамблера, увеличивается зазор — следовательно больше нагара.
4) Катушку еще можно глянуть, но на глаз не получится. Только с помощью тестера измеряя сопротивление на витках обмотки (есть таблица значений, в каких пределах должны быть)
5 Коммутатор (плохой контакт, или вообще вышел из строя). Но такое встречал редко.

Полный размер

Старый трамблер, с проблемой

У меня же крышка трамблера и была причиной, вверху стерся почты весь уголек, контакты черные все следовательно. Придумывать и чистить нет смысла, так как крышка и стоит не так дорого, я выбрал не Китай (у меня кстати и стояла гордость Поднебесной), за 120 грн. ( было уже 31 декабря обед, большинство уже закрытые выбор не большой был)

Полный размер

Марка нового трамблера

И еще прикупил новые BB провода силиконовые 240 грн (уже что б наверняка)
В итоге, работа машины стабилизировалась, для старта даже в мороз не нужно весь подсос доставать, только чучуть и то далее убираю, 900-1000 оборотов на прогреве холодная держит без дерганья, просто чудо невзойшло)

Полный размер

Провода

Полный размер

характеристики

И кстати, если дерганье машины — проверьте топливный фильтр для начала, если уже не помогло, тогда и смотреть может где подсасывает воздух или систему подачи топлива (топливный насос)
У меня проблема решилась заменой фильтра топливного, который менялся за Царя Гороха )…Ну это так, к слову.
Всем спасибо, и удачи!

www.drive2.ru

Audi 80 › Бортжурнал › Ауди 80 не заводится, нет холостых оборотов, плавают обороты

Всем привет.В один прекрасный день перестала заводится, вернее зародилась если плеснуть бензина во впуск.Начал искать причину и это заняло две недели.На что только не грешил, заменил лямбду, не помогло, начал смотреть пусковую форсунку оказалась забита сетка внутри ее, сделал, не помогло, заменил датчик температуры не помогло, подсосы все устранил не помогло, заменил регулятор давления, не помогло, датчик холостого тоже не помогло, свечи, провода, трамблер не помогло и вот когда денег уже не осталось заглянул в пнд и вот оно, я просто был в шоке, каким то образом подвижные контакты бы смешены, а я был уверен что туда никто никогда не совался, по итогу один контакт был как грабли для уборки листвы плюс еще и погнут, денег не осталось поэтому как смог все подровнял, поставил, теперь заводится когда педаль в пол и плавно отпускаю, обороты держит, но 1600, короче жду за и буду покупать все необходимое

Полный размер

Лопата внизу

Полный размер

Лопата вверху

Вот такая куйня была

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

www.drive2.ru

Audi 80 2.0 Е ABK › Бортжурнал › Обороты холостого хода стали плавать и прыгать с 850 до 1500.

Расскажу вам ситуацию в кратции…

Началось все ровно год назад. Была проблема, обороты прыгали, провалы в скорости, холостые всего завышенные 1100+, если завести то может и заглохнуть сразу.(Вот ссылка на видео, как было vk.com/video213219664_169727718 ) Стал спрашивать у всех, что может быть?как решить проблему? Кроме как отправить меня на СТО не кто ни чего умнее не придумал. Стал лазить по форумам и вчитываться… вот, что я там вычитал.
Обороты могут прыгать из-за:
1)датчик ДТОЖ ( синий на мозги)
2)и второй датчик ДТОЖ серый трех контактный ( он ТОЛЬКО на стрелку на приборке).
3) дырка в патрубках
4) РХХ
5)лямбда зонд
6)датчик положения дроссельной заслонки(ДПДЗ) (тот что под дроссельной заслонкой)
7) датчик массы воздуха ( тот что над воздушным фильтром)
8)Свечи, высоковольтные провода, крышку трамблера, бегунок.
Решил начать с дешевого, заменил 1 и 2 датчик, и 8 разницы было ноль. Решил проверить 3 вариант, разобрал все, прочистил, просмотрел, дыр не было обнаружено(кстати зато после прочистки старого РХХ и патрубков, перестала глохнуть, но все остальное осталось). Тогда решил 6 и 7 проверить, потому что, все вокруг твердили, что дело в них. Разобрал что один, что другой датчик, и мультиметром проверял сопротивление( к сожалению не помню ссылку, на нормы сопротивлений в разных положениях). Датчики оказались дееспособными…хотя этот метод мне казался не весьма надежным. Далее был выбор 4 и 5… ну как лямбда может влиять на обороты?, думал я. И поехал за город на разборку, где мне предложили около 12 разных РХХ от всех видов ауди)) я переставил их всех) Разницы было 0! Хотя даже работник разборки, ыл уверен, что дело в РХХ! Он сделал вывод, что все его РХХ не рабочий)))

Пока искал лямбду(bosch 0 258 003 957), наступил кризис… до кризиса лямбда не оригинал у Северного рынка стоила 2000-2500…после кризиса, я нашел магазинчик за 1500. Странно? Жизнь короче не предсказуемая. Поменял лямбду и вуаля! Обороты 850! и стрелка, как вкопанная! Надеюсь кому то это поможет. (Вот обороты после замены Л.З. vk.com/video?section=sear…=video213219664_171034754)

Кстати Сайт который поможет найти дешевые З.Ч. www.zzap.ru

Кстати делал компютерную диагностику с помощью провода, заказывал на ali express за 250 руб вроде, Он показал лямбду и все датчики, что я трогал ранее.

Цена вопроса: 1 500 ₽ Пробег: 254 000 км

www.drive2.ru

Как я победил механический инжектор. — Audi Coupe, 2.0 л., 1991 года на DRIVE2

В этой записи фото нет и тем кто не любит читать ОСТОРОЖНО, МНОГО БУКВ. Тема пойдет о том, как я победил механический инжектор. Вообщем в самом начале автомобиль ехал хорошо (как мне казалось), но чем дальше тем меня все больше накаляли плавающие обороты на холостом ходу и то что при заводе приходилось нажимать кнопку принудительного пуска 5-ой пусковой форсунки. Ну вот появились свободные деньги и я решил сделать плавающие обороты, для этого был выбран диагност который находился за 120 км. от моего города, а именно в Рославле. Все диагносты в Смоленске уже к этому времени успели осмотреть мою машину, кто-то разводил руками, а некоторые даже рекомендовали заменить инжектор на карбюратор. Ну вот созвонился с диагностом и поехал в Рославль, по дороге думал что приеду в сервис полный оборудования, но не тут-то было приехал в частный дом, где даже гаража нет а диагностику делают прямо на участке, а из оборудования вольтметр и много всяких ключей доработанных под откручивание труднодоступных гаек. Диагност молодой парнишка и я уж было подумал что тоже скажет, что все сложно и проще поставить карб, но нет, он мне сразу заявил, что после его настройки я машину не узнаю. Так вот приехал я к нему в 10 утра, а уехал в 18 вечера, за все это время он проверил все датчики и приговорил менять форсунки, лямда-зонд и искать новую воздушную гофру. И что особенно удивило, денег не взял, а сказал езжай делай и обратно. На следующий день уже пришли форсунки и лямда (благо у самого магазин запчастей) выкинул катализатор, вместо него поставил пламягаситель с новой лямдой, гофру для AAD под свой кузов не нашел. На следующий день приехал к диагносту, опять в 10 утра, вообщем ковырял машину до 20 часов вечера, поменял форсунки, прокладку под впускной коллектор, настраивал все, но что-то особого эффекта небыло, я даже уже задумываться начал о карбюраторе.Кое как настроил и отправил меня клеить гофру стекольным клеем. Бабок опять не взял. Приехал домой ночью, начал клеить гофру, чтобы к утру высохла, с утра все ставлю на место и еду на работу, но по дороге машина глохнет на перекрестке наглухо. Покупаю в магазине фалу (с собой не вожу ни фалу ни ключи, считаю плохой приметой, иномарка как никак епта) и пока ждал кореша который потащит звоню диагносту, он мне объясняет где сто покрутить и говорит гони ко мне. Приехал кореш, а я машину завел, сказал все за мной и рванул в Рославль за 120 км. пока машина вновь не озябла. Приехал к диагносту, он и говорит оставляй машину на пару дней, типа у тебя тяжелый случай, ну ладно, только сделай. Где два дня там и три, без колес плохо, даже уже и на карбюратор бы согласился, звонил по 3 раза на день, диагност попросил прислать другой трамблер, потом не выдержал такого напора и говорит приезжай забирай сделал, но не все. Вообщем обороты плавают в диапазоне +-30 об. и когда машину на найтралке пускаешь, бывает выставит холостой то 790, то 830, то 930, но обороты держит в принципе четко. Вот и получилось что диагност проеб**ся 5 дней с машиной, поставил другую дросельную заслонку и говорит типо не до конца доделано и в чем еще дело не знаю, поезди посмотри. Денег что удивило взял 2 тысячи, но машину я действительно не узнал, ехать стало намного лучше, заводится без кнопок разных. Начал тестировать, проездил я нормально неделю, потом чувствую машина стала затухать, уже не такая резвая, а еще через пару дней появился провал после 3 тыс. оборотов, а еще через день ездить стало нереально, газ в пол а машина глохнет. Еду опять к диагносту, дорога была длинная, глох много раз, вспомнил и создателей марки Ауди и диагноста много раз вспомнил, всем здоровья и хорошего стула пожелал. Приехал диагност завел, машина тупит, сразу заглушил и выкрутил болт с сеточкой который на пауке стоит, а он забит весь коричневой херней какой-то, почистил болт и говорит поехали. Вот тут я машину опять не узнал. Диагност говорит меняй топливный фильтр и все будет нормально, взял еще 1тыс. руб, я его поблагодарил, на самом деле очень шарящий диагност. Пока доехал 120 км. до дома сеточка опять забилась. На следующий день на улице -17, а я на улице фильтр меняю, стоял у меня фильтр TSN, самый хреновый. МОРАЛЬ- Ставьте себе нормальные фильтра. После того как поставил новый топливный и обороты стала стабильно 900 держать и едет машина отлично.

www.drive2.ru

Плавают обороты на двигателе — Audi 80, 1.8 л., 1991 года на DRIVE2

Сначала кратенькая предыстория к проблеме.
Пока машину держал в гараже и проводил замену запчастей, наткнулся на то что педаль газа болтается. Решил это дело исправить. На самом карбюраторе есть фиксатор который держит оплетку троса (или как она там называется), вытащил его чуток подальше. Вроде поднатянулся трос и педаль перестала болтаться.
Пока занимался этим делом, обратил внимание что концевик на регуляторе ХХ утоплен как-то далековато. Почитав на драйве про настройку РХХ, решил и туда свои руки запустить… Смотрю там болт есть какой-то, да еще и был забит эпоксидкой. Подумал что это кто-то до меня тут «колхозил», ну и сковырнул все это. =(((
Это я уже потом допер, что это и есть «священный» регулировочный болт, который не стоило трогать!
При первом запуске обороты держались под 2000-2200 и не падали. Я опять выкручивать, смотрю обороты падать стали, значит на верном пути. Потом они уже опустились до 900 и ниже… Че за фигня такая? Не порядок. Заглушил двигатель, скинул «массу», подождал немного. Чтобы скинулись настройки. Подключаю всё обратно, вроде нормально стало. Примерно 950. Хотя немного плавает в районе +\- 50 об\мин. Все, настроил. Выкатываю машину из гаража, пока туда сюда, слышу что что-то не то с ее работой на ХХ, обороты завышены!
Решил немного прокатиться, в надежде что поможет… Проехал примерно км 10, положительного результата ноль. Держит примерно 1100 и хоть ты тресни! Решил пока ничего не трогать и поехал домой, все таки ночь уже, да и на работу рано с утра.
Сегодня с утра завожу ее, завелась, НО… обороты примерно 800 и пытаются еще ниже упасть… я жду что будет дальше. Поколбасило ее немного, но не заглохла. Подождал немного, прогрел. Газу ей даю, реакция нормальная, как только убираю ногу с педали, опять обороты 800. Доехал до работы, обороты, смотрю уже 950!

Итак, вопросы вот в чем:
— Как настроить карбюратор (вернуть заводскую настройку, или хотя бы приблизиться к ней)? (особенно, с регулировкой болтом)
— В чем может быть причина небольшого «плавания» оборотов? (Я так полагаю система где-то подсасывает воздух.)
— И еще, сегодня заметил, когда нажимаю на педаль тормоза, обороты немного падают. Это тоже является показателем негерметичности вакуумной системы? Если да, то как найти это злощастное место и как вообще лечить эту проблему?

Выручайте товарищи автолюбители! Очень нужна ваша помощь!

Пробег: 230 187 км

www.drive2.ru

В защиту механического впрыска. — Audi 80, 1.8 л., 1987 года на DRIVE2

Суть — заводится, работает 3-5 секунд и глохнет.
Отгадка в предпоследнем абзаце.
Утро 7 марта, за окном, и к сожалению в машине -15 по Цельсию. В хорошем предвкушении завтрашнего отдыха сажусь в водительское кресло и поворачиваю ключ зажигания. Пару оборотов и мотор чихнув останавливается. Бывает… Снова завожу и мотор бодро прыгнув до прогревочных 1500 об/мин проработав секунд 5 снова останавливается. Хм. И снова повторяется то же самое. Попробовал не трогать педаль, держать обороты в зоне 2-3 тыс. Все приводило к остановке двигателя через 3-5 секунд. Без детонации, без провалов. Вечером тоже.
Наутро восьмого полез к насосу (больная для меня тема). Все ок!- и «гудит» и давит (нет манометра, но прыскает очень здорово). Дальше предохранители (вытащил все), подергал за датчики (здесь кончается возможности моей диагностики) – все сидят в клеммах. Попутно подлез к тарелке – двигается без усилий, заменил воздушный фильтр. ГРМ (проверял все, что мог) на месте, цел и натянут.
Всё! Звонок механику. Говорит: «Вези коммутатор, датчик Холла и катушку зажигания». Ну ок, вполне похоже на электрику. Механик пролазив полдня, изрек: – «XYZ KE-Jetronik! Туда не полезу! Давай ищи впускной и карбюратор от 9-ки за пол дня поставлю и забываем про проблему!».
Тут же встретился и другой бывший владелец мех. впрыска: «ты лучше не от 9-ки, а от 8 карбюратор бери… и про тросик не забудь». Скажу, что такие напутствия не ободряли. А сохранить SD очень хотелось.
Забыл!, в тепле он ее таки завел! Чихала, троила, коптила… Приехав к уже подостывшему телу, пробудить его уже не смогли: заводится, 3 секунды работает, глохнет.
Осложнялось все тем, что в нашем городке это практически единственное СТО (в другом знакомому на КИА вместо замены масла двигателя устроили замену масла в АКПП), а до цивилизации 138 километров.
Найдя у соседа таксиста-камикадзе, взявшегося отбуксировать меня в г. Семипалатинск. Договорились на 6.30 утра, пока трасса чистая.
Выйдя утром, я понял, что немного погорячился, и что без света ехать будет проблематично. Приехал таксист, спрашивает в чем дело. Отвечаю. «Ооо! Мех.впрыск!, смотри – лучше ставь карбюратор от 5-ки…». ААА! Да еще не нашли причину, а вы уже отпеваете инжектор!
Дорога: Минус 18, а я с открытыми окнами. Свежо…Когда 2 часа свежо то уже очень холодно.
Доставил машину на СТО (с толкача не завелась) в г. Семипалатинск. Через 2 дня звонок, мол нормально, забирай. В чем проблема была?, говорят в электрике, сгорел предохранитель (? ни я, ни механик не заметили этого). Ну ладно, потом лично спрошу.
Забирал машину в воскресение, завелся со второго раза, но потом было все отлично.
Вечером при резких ускорениях начались пропуски в зажигании, неустойчивая работа двигателя и обороты ХХ плавающие в районе 1200-1600. Винт регулировки ХХ находился в крайнем положении (!) и смысла от него не было.
С утра автомобиль даже не чихнул. Снова на тросе к мастерам.
Снова выбило предохранитель № 28.

нижний ряд, справа. №28

Заменили, завели. Обороты плавают около 1200, но не глохнет.
Приходит электрик, подсовываем тестер (на «–» и предохранитель), видим, что есть «коротыш». Через пару минут осмотра на заведенном двигателе механик видит в глубине подкапотного пространства «искру». Источник – кабель к лямбда-зонду, перетершийся о вал привода. Замер, подтверждает устранение исправности.
Пробная поездка «дарит» новыми проблемами – высокими оборотами ХХ – от 1200 до 2800 об/мин! Вердикт – регулятор ХХ под замену. В следующей поездке все нормально – родная 1000.
Сначала полез искать регулятор – на разборках нет, а если бывает, то продается вместе с черепахой. В магазинах трехконтактного китайца не бывает. «Оригинал» от 40 -270 тыс. тг (8-60 тыс. руб). Случайно нашел корейскую реплику от KIA/Hyindai за 22 доллара, м.б. кому пригодится.
www.ebay.com/itm/17256364…geName=STRK%3AMEBIDX%3AIT

www.drive2.ru

Скачут обороты — Audi 80, 2.0 л., 1989 года на DRIVE2

Всем привет хочу рассказать про свою проблему про холостые обороты я борюсь с ними уже кучу времени.
В общем машина ауди 80 б3 89 года 2.0 механический инжектор

Такой мотор, фото из интернета взято


Говорю всё с самого начала когда я покупал машину я вообще не знал что такое бочка на моновпрыске (ибо некогда не взял=) ) когда продавец завёл машину она поработала и потом начали падать обороты машина затроила чуть ли не глохла я спросил у него в чём проблема он говорит что бенз почти кончился в ней и сейчас она работает на полу бензе полу на порах поэтому ее так колбасит. Хорошо я съездил за бензом заправил в нее и она заработала ровненько всё норм держит там свои 1000 оборотов (хотя 900 надо, но да ладно) когда я домой приехал на ней поставил, на следующее утро она опять себя неважно чувствовала на холодную завелась но хх не держала приходилось газ постоянно держать. Тут я сразу просёк что что то не так начал читать форумы в интернете сначала нашёл что нужно устранить все подсосы воздуха окей к тому моменту я уже знал что на бочках слабое место черепаха которая идёт от воздухана в ресивер ок, да в ней были трещинки снял залил всё герметиком потом на герметик салофановый пакет поверх еще герметика потом подождал чтоб просохла затем изолентой тряпочной и сверху потом черной изолентой обычной и так если издали смотреть вообще не увидишь что ремонтировалась так тут убрал подсос нашёл еще один на вентиляции картерных газов шланг просто оторван ок прикрутил и так визуально посмотрел протянул всё, подсос воздуха исключен, потом самое интересное это заколхоженный регулятор холостого хода вещь дорогая и она тоже с сюрпризами в него вообще закрутили саморез да да САМОРЕЗ черный

Вот сюда закручен саморез

чтобы заслонка не открывалась (и по сей день он там стоит) и дело в том что я выкрутил этот саморез так чтобы он не мешал заслонке ходить но в тоже время закрывал дырку в которой он был вкручен чтобы подсоса воздуха не было.
Завожу после этого машину заводиться просто с пол оборота, и торахтит 900 оборотов и резко очень резко на 1000 и снова очень резко на 900 и так она молотит что холодная что горячая обороты при таком раскладе прыгают в пределах 100 она еде всё работает но прыгают но когда этот САМОРЕЗ обратно закручиваешь то обороты всё меньше и меньше перестают прыгать и в итоге вообще держит ровно 950 — 1000 но только на горячую, а на холодную приходиться опять газ дерзать ладно окей поменял регулятор хх результата никакого на машине опять скачут от 900 -1000 причём так же. Ладно начну я проверять все датчики завел свою крошку) и начинаю вытыкать всякие разные датчики связанные с моно впрыском нашёл датчик потенциометр положения заслонки проверил так, отключил датчик машина как работала так и работает ничего не изменилось
а со всеми другими машина реагировала на них а на потенциометр нет разобрал посмотрел графит с платы стёрся ок взял другой датчик поставил ноль результата а это бабки причем космические, но заметил одну вещь что когда потенциометр отключен машина лучше заводиться на холодную и вообще с мороз -30 с пол оборота и держит примерно 870 оборотов и по мере прогревания они падают и машина глохнет но потом заводишь держись не много газ на 900 оборотов буквально минуты 2 отпускаешь и машина сбрасывает обороты на 300 и потом по мере прогревания доводит из до 950 и всё дальше норм.

Что делать?! сейчас я езжу так потенциометр отключен регулятор холостого хода старый с саморезом настроенным чтобы не прыгали обороты. Говорю что зажигание выставлено нормально машина очень бодро едет аж в седуху впечатывает нормально мотор 2.0л 113л.с подсосов нет что можете посоветовать, а вспомнил также менял датчик на подогрев инжектора пусковую форсунку(стало немного лучше но не совсем).

www.drive2.ru

Страсти по механическому инжектору — Audi 80, 2.0 л., 1988 года на DRIVE2

Ох уж этот механический инжектор, при одном упоминании о нем специалисты автосервисов разворачивают Вас на 180 градусов не желая даже смотреть под капот, хотя некоторые самонадеянные "слесари" лезут и пытаются лечить ваш автомобиль. Но после такого ремонта вам приходится увозить машину из сервиса на эвакуаторе(Как говорится: "спасибо этому дому, пойдем к другому").

МОЖНО СДЕЛАТЬ ВЫВОД:
1. Мастеров, которые достаточно хорошо знают эту систему можно пересчитать по пальцам.
2. Не отдавайте машину слесарю в квалификации которого вы не уверены, тем более если он предлагает разобрать дозатор топлива(так называемый "краб").

Разобрать дозатор сможет каждый школьник, а вот правильно собрать, и тем более настроить смогут единицы…
Часто встречающийся случай "попадоса" это когда мастер начинает менять за ваш счет все что можно поменять, результат такого ремонта — у вас на машине стоят новые форсунки, лямбда-зонд, бензонасос, в кармане пусто, а мотор как не работал, так и не работает. Как только пошла замена узлов по методу научного тыка, забирайте машину пока вас не разорили.

Я сам столкнулся с проблемой работы механического инжектора, когда купил машину старый хозяин сказал: "не парься ездий, я сам 3 года езжу и внимания не обращаю". У меня сильно плавали обороты(900-1500), плохо заводилась на холодную, особенно с утра, не было холостого хода. Обьездил все сервисы своего города, один сервис взялся за ремонт, причем мастер мне сказал что он единственный кто может мне помочь, но не тут то было, мне нахимичили так, что машина перестала тянуть, вобщем все стало намного хуже, в сервисе я ругался, кричал мне все же вернули мои деньги которые я отдал за настройку, но исправить все обратно так и не смогли(( Поездив еще месяц и перерыв весь интернет, я наткнулся на сервис в Московской области, ну как сервис гараж, в котором ребята делали системы KE-Jetronic, KE-Motronic и KE3-Jetronic. Вобщем созвонились, договорились, и я к ним приехал, они долго ругались, плевались и материли предыдущих "слесарей" но за 1,5 часа мне все сделали. Предварительный осмотр, промывка форсунок, настройка механического инжектора встала мне в 8000р. Думаю это не большие деньги, т.к. мне предлагали ставить "Январь", весь впрыск от пятнашки, цена сразу оттолкнула 30000р, да и колхозить совсем как то не хотелось))
Причем в процессе осмотра выяснилось что с впрыском у меня все в порядке, все как новенькое, хотя все мне твердили надо менять, надо выкидывать просто ппц. Теперь ни одному из сервисов я не доверяю всегда присутствую в процессе ремонта ну а если что-то несложное то делаю сам.

www.drive2.ru

Что нужно знать о механическом впрыске топлива

Механический впрыск топлива (MFI) был разработан на заре автомобильных гонок и используется до сих пор. MFI имеет долгую историю с множеством различных форматов гонок: дрэг-рейсинг, кольцевые гонки, гонки на лодках и соревнования на максимальную скорость, подобные тем, что проводились на Bonneville Speed ​​Week. Фактически, пионер MFI Стюарт Хилборн из Hilborn Fuel Injection стал первым водителем, который когда-либо превысил отметку 150 миль в час на El Mirage Dry Lake в апреле 1948 года, используя самодельный механический топливный инжектор с постоянным расходом.

Простая регулировка холостого хода на гоночной крышке с механическим впрыском топлива Enderle.

Механический впрыск топлива хорошо подходит для двигателей без наддува или двигателей с принудительным впрыском и работает с большинством видов топлива - газом, смесями этанола, метанолом и даже смесями нитро. Установки могут варьироваться от простых систем с одним соплом стоимостью несколько сотен долларов до систем стоимостью в десятки тысяч долларов.

Как это работает?

После заливки системы топливо подается непосредственно в двигатель для быстрого запуска.Настроить его просто: нужно сделать всего одну или две регулировки в байпасном контуре для настройки хорошо развитой системы, при этом соотношение воздух-топливо является мощным параметром для точной настройки. Наконец, он прост в настройке - не что иное, как управляемый водителем воздушный клапан для дросселирования с простой гидравлической системой для подачи топлива.

Гоночный механический впрыск топлива на возмутительном, ностальгическом гоночном седане Ford с наддувом

Механический впрыск топлива работает с простым воздушным клапаном с дроссельной заслонкой и топливным насосом, обычно работающим на половинной скорости двигателя.После откачки топлива из вентилируемого топливного бака топливо подается через ствольный клапан, который регулирует количество топлива с помощью положения воздушного клапана. Топливо проходит через клапан ствола, а затем по топливопроводам прямо во впускную систему, питающую каждый цилиндр. Для настройки простые изменения впрыска контролируют количество топлива, поступающего в каждый цилиндр. На безнаддувных двигателях правильно настроенная механическая система впрыска топлива обеспечивает мгновенный отклик дроссельной заслонки, что делает систему идеальной для использования в гонках.

Воздух контролируется с помощью бабочек в крышке или коллекторе для впрыска топлива. Обычно от дроссельной заслонки, управляемой водителем, подключается механический трос с тягой, и бабочки регулируются с помощью упора дроссельной заслонки на холостом ходу. Механическая связь соединяет бабочки с клапаном ствола. Когда бабочки открываются, обеспечивая двигатель большим количеством воздуха, клапан ствола открывается, обеспечивая двигатель большим количеством топлива.

Эта базовая система показана на следующем рисунке.

Простая система впрыска топлива начинается с этих основных компонентов.Добавлены дополнительные компоненты для управления воздухом и дроссельной заслонкой для модуляции мощности. Дополнительные форсунки добавляются для подачи топлива в каждый цилиндр многоцилиндрового двигателя с любым количеством цилиндров, независимо от того, является ли это двухтактным, четырехтактным или роторным двигателем.

Для сравнения, электронный впрыск топлива (EFI) работает с аналогичным воздушным клапаном, хотя он может управляться дроссельной заслонкой или управляться электрически. Электрический топливный насос подает топливо при постоянном давлении топлива.Электронное управление регулирует рабочий цикл электронного впрыска топлива в зависимости от положения дроссельной заслонки и других факторов. Хотя EFI имеет гораздо больше управляемых функций, в то же время стоимость и понимание технологии настройки намного выше.

Использование различных видов топлива

Системы

MFI со спиртом или нитро-топливом в сочетании с принудительной индукцией могут обеспечивать чрезвычайно высокие уровни мощности. Винтовые двигатели PSI объемом 500 кубических дюймов V8, работающие на метаноле, сообщают об уровне мощности более 4000 лошадиных сил, а метанол имеет другие преимущества.

«По нашему опыту, характеристики алкоголя меняются примерно вдвое меньше, чем бензина, при типичных изменениях условий воздуха», - говорит Майк Чиландо, владелец Alkydigger.

Дон Джексон из компании Don Jackson Engineering, бывший главный специалист по дрэг-рейсингу, главный специалист по топливной бригаде, производитель двигателей и нынешний гонщик из Бонневилля, сообщает о мощности, превышающей 10 000 лошадиных сил, от нитрометановых двигателей с наддувом и MFI. Эти уровни мощности были измерены специальным бортовым динамометром Дона, установленным на машинах NHRA Конни Калитты.

Хотя метанол и нитрометан являются обычными видами топлива, другие виды топлива, такие как этанол или гоночный газ, также могут использоваться для механического впрыска топлива.

Иллюстрация механического впрыска топлива расширена за счет добавления цепи управления холостым ходом, клапана цилиндра и нескольких форсунок, питающих узел шляпки дроссельной заслонки. Они используются для регулирования подачи воздуха в двигатель, что является обычным явлением в гонках по всему миру.

Компоненты системы механического впрыска топлива

Впрыск топлива с постоянным потоком управляется двигателем по воздуху с помощью одного или нескольких из следующих параметров:

  • Воздухозаборник
  • Ram трубы, часто настраиваемой длины и настроенного объема
  • Пленум
  • Коллектор поршневой
  • Корпус дроссельной заслонки или шляпа, чтобы дросселировать воздух.

Подача топлива в двигатель я прокрутил следующим образом:

  • Топливный бак для хранения топлива
  • Вентиляционное отверстие топливного бака позволяет воздуху попадать в топливный бак
  • Шланги или трубки для подачи топлива от одного компонента к другому
  • Механический топливный насос, рассчитанный на тип топлива, уровень мощности и диапазон оборотов двигателя
  • Шланги форсунок, распределительный блок и линии форсунок для питания форсунок
  • Форсунки для впрыска топлива в воздушный поток, идущий в двигатель.

Элементы топливной системы

Понимая базовую компоновку топливной системы, дополнительные компоненты делают механическую систему впрыска топлива полезной.

  • Клапан ствола или дозирующий клапан контролирует соответствующее количество топлива для запуска, частичного открытия дроссельной заслонки, движения и остановки. Клапан ствола также используется для дросселирования топлива при частично дроссельной заслонке. Большинство ствольных клапанов имеют очень простой золотник или дозирующий цилиндр внутри клапана для управления потоком топлива.Связь добавлена ​​для управления золотником клапана ствола или дозирующим устройством от воздушного клапана. Это соединение между золотником и воздушным клапаном обычно включает регулируемую стяжную муфту.
  • Для управления пуском и холостым ходом в системе обычно предусмотрен контур холостого хода. В автомобилях Sprint он используется в качестве вторичного байпаса при повышенном давлении для увеличения выброса топлива в качестве ускорительного насоса вне поворотов.

Клапан ствола на этом двигателе с продувкой на спиртовой основе показан с дополнительными путями подачи топлива для различных функций настройки дрэг-рейсинга: запуск, сгорание, включение, запуск и высыхание на высокой скорости.

В этой системе объем холостого воздуха устанавливается с помощью дроссельной заслонки. Давление пружины в регулирующем клапане холостого хода устанавливает объем топлива, как показано.

В некоторых установках используются два набора насадок. Один набор предназначен для корпуса дроссельной заслонки или крышки (если таковая имеется), а другой набор - для портов коллектора. Второй набор предназначен для управления распределением топлива от цилиндра к цилиндру. Все форсунки двигателя составляют жиклер топливной системы. Любые байпасные форсунки (включая главный байпас, высокоскоростной байпас, устройство защиты насоса или другие) отводят излишки топлива от этих форсунок двигателя для поддержания надлежащего соотношения воздух-топливо.

Большинство систем впрыска топлива имеют главный байпасный контур. В целях настройки это контур возврата топлива, обычно с ограничителем жиклера. В этих установках топливный насос увеличенного размера подает больше топлива, чем требуется двигателю. Дополнительное топливо возвращается в систему подачи топлива через этот главный байпасный контур. Жиклер ограничивает поток и контролирует количество топлива, подаваемого в двигатель. Изменение размера главного байпасного жиклера - это один из способов настройки механического впрыска топлива, поскольку больший жиклер наклоняет двигатель, а меньший жиклер обогащает двигатель.Поддержание соотношения воздух / топливо за счет изменения главного байпаса - простой метод, при котором остальные форсунки двигателя остаются нетронутыми.

Для повышения уровня регулировки соотношения воздух / топливо при более высоких оборотах двигателя добавленный высокоскоростной перепускной жиклер обеспечивает больший контроль.

Простой высокоскоростной байпасный контур, используемый для корректировки кривой подачи топлива при механическом впрыске топлива.

Другие компоненты, которые являются общими для установки с механическим впрыском топлива, включают:

  • Клапан отсечки топлива
  • Фильтр топливный линейный
  • Манометры или преобразователи для регистрации данных
  • Воздушный фильтр на некоторых установках, например, на тех, которые используются в гонках по бездорожью или на уличных транспортных средствах.

Если вы хотите узнать больше о настройке вашей системы, ознакомьтесь с нашей предыдущей статьей о влиянии погоды на механический впрыск топлива.

Дополнительные форсунки

После того, как базовая настройка установлена, можно добавить дополнительные форсунки для дальнейшего повышения производительности вашего двигателя. В некоторых установках MFI добавляются капельницы холостого хода для лучшего контроля количества топлива на холостом ходу, подаваемого в каждый цилиндр. Это особенно характерно для гонщиков с наклоненными двигателями, таких как драгстеры и забавные автомобили с двигателями, часто наклоненными вниз.Некоторые лодочные двигатели наклонены вниз или вверх, чтобы совместиться с гребными винтами, которым нужны дополнительные форсунки в портах для управления распределением топлива.

Дополнительные форсунки могут быть добавлены для большего количества топлива в верхнем конце для эффекта набегающего воздуха. Например, в гонках Top Fuel обычно используется несколько дополнительных комплектов форсунок в установке. Типичная установка будет включать:

  • Шляпная насадка - один комплект
  • Смазочные материалы нагнетателя - частичный набор, обычно в задней части нагнетателя
  • Форсунка коллектора - два комплекта
  • Сопло порта головки цилиндров - два комплекта

Перепускные форсунки MFI регулируют подачу топливной смеси в двигатель.Эти форсунки отводят определенное количество топлива от двигателя и обратно в топливный бак, что полезно для управления общим потоком топлива в двигатель. Кроме того, при достижении двигателем определенной частоты вращения включаются высокоскоростные байпасные форсунки. Это уменьшает подачу топлива в двигатель на более высоких уровнях оборотов двигателя, когда объемный КПД может упасть, уменьшая потребность в воздухе на один оборот.

Нитродрагстерский двигатель Nostalgia показан с распределительными блоками и линиями головного и левого сопла.Поршневые форсунки часто устанавливаются на тарелку давления (латунная тарелка внизу справа на центральной фотографии), которая удерживает их закрытыми до тех пор, пока частота вращения двигателя не возрастет. Это обеспечивает более высокое давление топлива при низких оборотах двигателя для хорошей реакции.

Хотя большинство гонщиков используют метод проб и ошибок для настройки впрыска своей топливной системы, числовое управление настройкой может обеспечить согласованность и максимальную мощность. Поиск и поддержание оптимального соотношения воздух / топливо для вашей установки - это самый простой способ определить значения перепускания в байпасе для оптимальной настройки.

Внешние вспомогательные системы

Понимание впрыска топлива будет неполным без понимания того, как другие части установки работают с впрыском топлива.

Сильным преимуществом MFI является его адаптируемость к различным конфигурациям цилиндров. Для большинства конфигураций, таких как рядные, V-образные, оппозитные или роторные двигатели, механический впрыск топлива можно легко адаптировать к различным положениям цилиндров. Следует учитывать низкую стоимость производства и простоту последующего обслуживания.

Механический впрыск топлива со штабелями на тяговом двигателе V8. Открытые расширяющиеся воздухозаборники сглаживают всасываемый воздушный поток для большей мощности.

Размер топливного насоса важен. В обычных установках используется топливный насос, который на 25-50 процентов больше, чем требуется двигателю. Настройка проста, контролируя количество избыточного топлива, перепускаемого обратно в подачу топлива. Кроме того, топливный насос должен иметь соответствующую линию подачи, чтобы избежать кавитации на входе.

Некоторые гоночные классы, такие как дрэг-рейсинг Nostalgia Top Fuel, ограничивают размер топливного насоса.Чтобы соответствовать требованиям класса, гонщики используют топливные насосы увеличенного размера с ограничениями по впуску. Это дает дополнительное топливо для большей мощности при более низких оборотах двигателя и открывает новую эру тюнинговых уловок. Например, в соревнованиях по дрэг-рейсингу Nostalgia A-Fuel правила класса в США указывают топливный насос со скоростью примерно 12 галлонов в минуту. Последний трюк - использовать топливный насос большего размера, который будет пропускать примерно 15 галлонов в минуту без какого-либо ограничителя. Впускной ограничитель ограничивает производительность топливного насоса до значения 12 галлонов в минуту. Поскольку этот рейтинг сделан при определенном давлении топлива и скорости топливного насоса, значение 12 галлонов в минуту поддерживается при более низких скоростях насоса.Для нитрогонок это обеспечивает дополнительную мощность на низких оборотах двигателя за счет всего кислорода в нитротопливной смеси.

При выборе трубопровода, по которому топливо проходит между топливным насосом и двигателем, избегайте угловых фитингов или других крутых поворотов. Они вызывают проблемы с потоком, что, в свою очередь, снижает стабильность и мощность, когда двигатель находится под нагрузкой. Вместо этого следует использовать концы шлангов с трубчатыми изгибами, чтобы избежать проблем с потоком.

Самый быстрый в мире дверной молоток с наддувом - Кэмп и Джон Стэнли «Папина Кэдди» - оснащен механической системой впрыска топлива от Rage Fuel Systems.

Заключение

Механический впрыск топлива легко конфигурируется от небольших настроек до очень больших выходных мощностей. Небольшие 4-цилиндровые двигатели мощностью 100 лошадиных сил легко использовать в гонках на сверхмалых автомобилях. На другом конце спектра MFI является одним из основных компонентов огромных двигателей мощностью более 10 000 лошадиных сил в приложениях NHRA Top Fuel и Funny Car.

Гонщики с небольшим знанием MFI регулярно превышают расширенные целевые показатели. Механический впрыск топлива - это недорогая и мощная топливная система, которая выигрывает!

Тестер и набор для очистки механической топливной форсунки (MFI) Bosch | Комплекты MercedesSource, продукт

Подробнее о продукте

Обязательно посмотрите Обучающее видео: Техническое обслуживание и ремонт тестера форсунок

Мы рекомендуем вам посмотреть видео Кента на YouTube, чтобы получить представление об этом тестере и воочию убедиться, как он работает.

Тестирование топливных форсунок 280SL: http://youtu.be/nmkiBz65Wjs

Тестирование топливных форсунок 300SEL 6.3: http://youtu.be/za-5sW2QOIo

Успешная очистка топливной форсунки: http://youtu.be/Fb3fHKiVF4o

В комплект входят:

  • Настольный манометр с манометром 600 фунтов на квадратный дюйм
  • Специальный жесткий топливопровод для крепления к топливной форсунке MFI (механический впрыск топлива)
  • Изготовленный на заказ топливный бак и баллон для улавливания дыма с всасывающим фильтром
  • Распылительный диффузор форсунки, входящий в емкость с резервуаром
  • 2 болта для крепления тестера
  • 3 пары нитриловых перчаток
  • 2 малярный фильтр для фильтрации топлива
  • Инструменты для чистки наконечников (не показаны)
  • Прозрачный пластиковый виниловый шланг длиной от 9 до 10 футов для очистки (не 12 футов, как упоминалось в некоторых видео)
  • Видеоинструкции, включающие настройку и работу (сначала посмотрите это видео)
  • Видеоинструкции, включающие очистку и тестирование

Инструкции по снятию топливных форсунок с двигателя в комплект не входят.Это очень простая работа.

ПОЖАЛУЙСТА, ОБРАТИТЕ ВНИМАНИЕ : Этот тестер также будет работать со старыми Porsche и другими европейскими автомобилями, которые использовали механическую систему впрыска топлива Bosch с 1960-х годов. Этот комплект будет работать с топливными форсунками от 6.3 V8, но НЕ БУДЕТ РАБОТАТЬ с двигателями 3.5 и 4.5 V8 (те, которые используют электронные топливные форсунки).

Механические форсунки, форсунки HEUI и Common-Rail - базовое обучение

Вы когда-нибудь задумывались, какие форсунки в вашем грузовике, как они выглядят и даже как работают? За время развития систем впрыска дизельного топлива этот компонент превратился из чрезвычайно простого в очень сложный и продвинутый.Причина? Производители двигателей всегда стремятся использовать новейшие и лучшие из доступных инжекторных технологий. Ниже мы проиллюстрировали каждый тип форсунок, с которыми вы столкнетесь в области дизельных пикапов, от механических, которые можно найти в вашем 12-клапанном Cummins, до современных пьезоэлектронных блоков в вашей тихой общей топливной магистрали.

Механические форсунки
Найдено на: от ’82 до ’98 GM 6.5L IDI, ’83 до ’94 Navistar 6.9 л и 7,3 л IDI, от '89 до '98 Cummins 5,9 л, 12 клапанов, от '98 ½ до '02 Cummins 5,9 л, 24 клапана

12-клапанный Cummins
Самый простой инжектор в дизельном двигателе - это полностью механический блок. При очень небольшом количестве движущихся частей это все, что вы увидите внутри блока Bosch с 12-клапанным двигателем Cummins. Абсолютно свободный от какого-либо компьютера, говорящего ему, что делать, этот инжектор срабатывает (выскакивает) в соответствии с давлением, подаваемым от впрыскивающего насоса. Когда давление внутри корпуса становится достаточно высоким, обратный клапан поднимается со своего седла, позволяя топливу распыляться через сопло, из наконечника и в цилиндр (или в форкамеру на дизельных двигателях GM и Navistar IDI, перечисленных выше ).Оставшееся топливо возвращается через корпус форсунки обратно в топливный насос.

Фото 2/7 | 12-клапанный топливный инжектор Cummins

24-клапанный Cummins
Подобный 12-клапанному форсунке Cummins - это блок от '98 ½ до '02, используемый в 24-клапанной мельнице. В самом инжекторе нет ничего сложного, и, кроме ступенчатого держателя сопла, он почти идентичен 12-клапанному инжектору. Электронная часть топливной системы от '98 ½ до '02 находится в топливном насосе VP44, который, в отличие от более раннего P7100, может изменять синхронизацию и подачу топлива в соответствии с ЭБУ.Несмотря на примитивную конструкцию, механические форсунки выигрывают от простоты управления (например, однократного впрыска), большей доступности и большей надежности, чем новые форсунки с общей топливной магистралью, с их механическими внутренними устройствами, которые, как известно, служат не менее 200 000 миль.

Фото 3/7 | 24 клапана топливной форсунки Cummins

Форсунки HEUI
Найдено на: ’94 ½ до ’03, рабочий ход 7,3 л, ’03 - ’07 Рабочий ход 6,0 л

7.3L Power Stroke
Насосные форсунки с гидравлическим приводом и электронным управлением (HEUI) дебютировали в разработанной Caterpillar системе впрыска HEUI, установленной на 7,3-литровых двигателях V-8 с силовым ходом Navistar. В системе используется картерное масло под высоким давлением (вместо дизельного топлива) для воспламенения топливной стороны форсунок. Как только масло покидает масляный насос высокого давления, оно попадает к форсункам по масляным направляющим в каждой головке блока цилиндров. Оттуда масло под давлением до 3000 фунтов на квадратный дюйм за 7.3Ls и 3600 фунтов на квадратный дюйм в двигателях 6.0L разрешается входить в инжектор через тарельчатый клапан (называемый золотниковым клапаном в случае 6.0L), когда на соленоид инжектора поступает команда открыть его через компьютерный модуль.

Фото 4/7 | 7 3л Топливная форсунка с силовым ходом

6.0L Power Stroke
В цепной реакции событий, масло под давлением затем толкает поршень усилителя, который толкает поршень на топливной стороне вниз, тем самым заставляя иглу форсунки подниматься со своего седла, распыляя топливо в цилиндр.Подача топлива проходит через впускное отверстие в нижней половине (топливная сторона) форсунки благодаря механическому подъемному насосу в долине ('94 ½ до '97 7,3 л) или электронному блоку, установленному вдоль перил рамы ('99 до '03 7.3L и с '03 по '07 6.0L). Давление подачи топлива выше, чем в двигателях с обычными системами впрыска, и составляет от 45 до 65 фунтов на квадратный дюйм.

Фото 5/7 | 6 0 л Топливная форсунка с рабочим ходом

Форсунки Common-Rail
Найдено на: ’01 до текущего 6.6L Duramax, с '03 по '07, 5,9 л Cummins, '07 ½ до нынешних 6,7 л Cummins, '08 до '10, рабочий ход 6,4 л, '11 до нынешних 6,7 л с рабочим ходом

LB7 Duramax
Система впрыска Common Rail была представлена ​​в 1997 году, но GM первой из «большой тройки» применила ее на одном из своих двигателей для '01 LB7 Duramax. В 2003 году этому примеру последовали 5,9-литровые модели Cummins, и даже новый 3,0-литровый двигатель VM Motori V-6 в Ram 1500 и Grand Cherokee 2014 года использовал их. Инжектор Common Rail, оборудованный электромагнитным клапаном (активируемый компьютером двигателя), регулирует количество и синхронизацию топлива, а не впрыскивающий насос, и при необходимости он забирает накопленное топливо из магистрали (-ей).Множественные точные впрыски позволяют этому типу форсунок превосходить своих механических предшественников с точки зрения шума, когда предварительные впрыски предшествуют основному событию, чтобы уменьшить грохот дизеля. Для снижения выбросов используются давления впрыска от 26 000 до 30 000 фунтов на квадратный дюйм и события после впрыска для более чистого горения. Их недостатки включают дополнительную сложность, стоимость и более жесткие допуски, что делает их очень нетерпимыми к загрязненному топливу.
Фото 6/7 | Топливная форсунка Lb7 Duramax

6.4L Power Stroke
В 2007 году Ford представил свой 6,4-литровый двигатель Power Stroke '08 с пьезоэлектрическими форсунками Common Rail, который в настоящее время является наиболее совершенным форсунком, который вы найдете. Сверхбыстрые события впрыска стали возможны благодаря использованию пьезоэлектричества, в котором кристаллы и электричество используются в качестве исполнительного механизма для открытия и закрытия инжектора. В случае 6.4L за цикл сгорания происходит пять событий впрыска (два пилотных, одно основное и два дополнительных). Двигатели, оснащенные пьезо-форсунками, вероятно, являются самыми тихими дизелями, которые вы слышите.Кроме того, инжектор этого стиля способен развивать мега-мощность при дополнительной настройке. Пьезо-форсунки также используются в двигателях Ford Power Stroke 6,7 л и GM ’11 для представления LML Duramax и будут использоваться в 5,0-литровом двигателе V-8 Nissan Titan от Cummins.

Фото 7/7 | 6 4l Топливная форсунка с силовым ходом

Дизельные форсунки: Техническое обслуживание механических форсунок

В течение более чем пятидесяти лет большинство, если не все двигатели, приводящие в действие сельскохозяйственное оборудование, были с воспламенением от сжатия (CI) или более известные как дизельные.

По сравнению с бензиновым двигателем (с искровым зажиганием, SI) дизель более надежен, имеет более длительный срок службы, требует меньшего обслуживания и более экономичен в эксплуатации при заданной удельной мощности.

Многие фермеры и другие не осознают причину преимущества в расходе топлива. Это связано с повышенным тепловым КПД, присущим более высокой степени сжатия конструкции, и тем, что топливо предлагает больше британских тепловых единиц (энергии) на галлон, чем бензин.

Промышленность заявляет, что галлон бензина без этанола содержит около 117 000 БТЕ, в то время как такое же количество дизельного топлива № 2 содержит от 132 000 до 152 000 БТЕ, в зависимости от плотности смеси.Как и в случае с бензином, все дизельное топливо не имеет одинаковой плотности, и это связано с процессом очистки, который использовался вместе с источником сырой нефти.

Правительство США устанавливает минимальное энергосодержание, определяемое удельным весом топлива. Пока это выполняется, это жизнеспособный потребительский продукт. Кроме того, вот почему с двигателями SI и CI расход топлива для одних и тех же погодных условий и условий нагрузки может и часто меняется от бака к баку, если используются разные виды топлива.

Несмотря на то, что дизель заработал репутацию способного выполнять большую часть работы с минимальным вниманием, его необходимо понимать и обслуживать, чтобы обеспечить эффективную работу и долгий срок службы. Его требования отличаются от двигателя SI.

Если бы вы поговорили с любым производителем дизельной электростанции, он бы сказал вам, что большая часть стоимости двигателя приходится на топливную систему. На дизельном топливе с механическим впрыском он состоит из ТНВД и форсунок.

Эти компоненты являются сердцем дизельного двигателя и не только критичны для его работы, но и чрезвычайно дороги в замене в случае отказа.Они также могут снижать производительность двигателя, расход топлива и долговечность, если они не работают должным образом.

Знакомство с форсунками

Форсунки на дизельном двигателе отвечают за подачу жидкого топлива и его распыление (разрушение на мелкие частицы), чтобы оно могло гореть. Им необходимо подавать необходимое количество топлива в каждый цилиндр в соответствии с нагрузкой и требуемой мощностью.

Они выполняют эту работу бесчисленное количество раз. В течение срока службы двигателя циклы впрыска могут исчисляться миллиардами, а возможно, и триллионами.Кроме того, форсунки подвергаются крайне неблагоприятным условиям окружающей среды - больше, чем любая другая часть двигателя.

Форсунки подвергаются воздействию пиков температуры более 2550 F градусов снаружи, в то время как внутреннее давление может превышать 30 000 фунтов на квадратный дюйм. Хотя почти каждый производитель рекомендует обслуживать форсунки для обеспечения надлежащего распыления, фермеры часто пренебрегают этими процедурами и обращаются к ним только при наличии проблемы.

Профилактическое обслуживание должно быть частью плана каждого владельца дизельного двигателя, если требуется долгий срок службы и безотказная работа.

При обсуждении дизельных двигателей многие ссылаются на часть, которая подает топливо в цилиндр, как на инжектор. Для дизельного эксперта инжектор - это узел держателя форсунки, но со временем он использовался для описания самого форсунки.

Это усложняется из-за различных конструкций топливных систем, используемых в дизельных двигателях. В настоящее время существуют механические насос-форсунки (MUI), электронные насос-форсунки (EUI) и гидравлические насос-форсунки (HEUI), которые стали популярными в легких моделях с двигателем Ford Power Stroke.

Распространенная жалоба, которая требует снятия форсунок, - это синий / черный дым на холостом ходу, отсутствие под нагрузкой, плохое качество холостого хода, снижение мощности и увеличение расхода топлива наряду с затрудненным запуском.

Форсунки разных производителей отличаются от других производителей, но применяются все основные функции, процедуры обслуживания и советы по обслуживанию.

Еще больше усложняет ситуацию то, что в категории механических сопел существует множество различных конструкций форсунок, которые в некоторых случаях имеют общие рабочие характеристики, но не во всех случаях.

Гидравлические форсунки обычно классифицируют по конструкции форсунок. Есть тарельчатый, игольчатый, многорежимный и электрогидравлический стили. В каждой категории дизайна часто есть подмножества стилей, например, те, которые используются строго с приложениями прямого впрыска (IDI) или прямого впрыска (DI).

Независимо от конструкции механический инжектор, не содержащий электронных компонентов, может и нуждается в обслуживании. Электронные усовершенствованные форсунки в легких условиях эксплуатации традиционно не обслуживаются, и их необходимо заменять как единое целое.

Следует понимать три термина, относящихся к испытаниям и обслуживанию форсунок. Это давление открытия форсунки (NOP), обратная утечка и прямая утечка.

Форсунку форсунки можно рассматривать как гидравлический переключатель. Одним из элементов его дизайна является давление, при котором он открывается. Обычно это устанавливается либо с помощью регулировки натяжения пружины, либо на некоторых моделях с регулировочными шайбами. Термин «давление открытия» или «давление открытия» также используется вместо давления открытия форсунки.

Независимо от того, какой термин используется, он описывает величину давления, которое должно быть создано топливным насосом перед тем, как форсунка подаст топливо в цилиндр.Каждая модель двигателя и конструкция сопла имеют собственное значение NOP, которое обычно варьируется от 1000 до 5880 фунтов на квадратный дюйм.

В некоторых форсунках используется внутренний открывающийся клапан, который возвращает неиспользованное топливо в бак. Внутренняя утечка является результатом зазора между клапаном сопла и корпусом сопла. Он измеряется во время стендовых испытаний в течение десяти секунд и регистрируется как обратная утечка.

Прямая утечка - это способность форсунки не капать и не протекать до тех пор, пока не будет реализовано NOP. Подтверждает герметичность сопла.Для проверки на прямую утечку на испытательном стенде создается давление примерно на 150 фунтов на квадратный дюйм ниже NOP. Никаких видимых капель не допускается.

Для правильного обслуживания форсунки ее необходимо снять с двигателя и доставить на предприятие, специализирующееся на этих процедурах. Эти магазины традиционно относятся к категории услуг по инжекционным насосам и форсункам. Там техник задокументирует проблемы и опасения и, используя испытательный стенд, подтвердит все значения, визуально проверяя схему распыления топлива.

Затем форсунка будет разобрана, очищена ультразвуком, заменены изнашиваемые детали и снова собраны. Затем форсунка будет возвращена на испытательное приспособление, будут установлены критические давления и повторно оценена форма распыления.

Профилактика - лучшее лекарство

Самая эффективная программа для форсунок, которую следует внедрить на вашей ферме, - это не допустить ухудшения качества компонента до уровня, при котором требуется серьезное обслуживание. Не следует понимать, что форсунки никогда не будут нуждаться в профессиональном обслуживании, а только для продления часов работы до того, как это потребуется.Хорошо, что это очень просто.

Ключ к поддержанию производительности форсунок начинается с чистого топлива и фильтров как на оборудовании, так и в баке для хранения топлива на ферме. Второй шаг - никогда не использовать в двигателе неочищенное топливо, особенно если в механической системе впрыска используется дизельное топливо с низким или сверхнизким содержанием серы.

Процесс удаления серы также подрывает естественную смазывающую способность топлива (сера НЕ является смазкой), и сопло изнашивается с экспоненциальной скоростью.Это создает проблемы с давлением и внутренней утечкой, которые потребуют замены деталей. Продукт, который добавляет смазывающие свойства и способствует удалению лака и нагара, разрушит любые отложения, которые ухудшат работу форсунки.

Хорошо то, что существует множество отличных и легко доступных марок присадок, которые можно использовать для обработки вашего наливного топливного бака перед поставкой от поставщика.

Лучшие продукты обычно включают в себя не только смазку и моющее средство, но и другие ключевые ингредиенты для правильной работы, такие как улучшитель цетанового числа, анти-гель, уменьшение влажности и фунгицид.Многие фермеры не согласны с и без того высокой стоимостью дизельного топлива и считают стоимость хорошей присадки ненужной или «змеиным маслом», но эта логика нарушается, если подсчитать.

Качественная присадка увеличит стоимость топлива примерно на пять-семь центов за галлон и может быть немного ниже при покупке оптом. Если ваша ферма использует 5000 галлонов дизельного топлива в год, это равносильно увеличению затрат на топливо от 250 до 350 долларов США.

Сравните это с улучшенными характеристиками, меньшим расходом топлива, а также временем и расходами на обслуживание форсунок; нет лучшей окупаемости вашего оборудования, чем переработка каждого галлона использованного топлива и поддержание работы форсунок в соответствии с конструкцией.

Утраченное искусство механического впрыска топлива

Представьте старые заводные настольные часы. Теперь скрестим его с бензиновым двигателем, добавив крошечный коленчатый вал и поршни. Добавьте несколько кусочков Бака Роджерса, чтобы он выглядел как тостер Руба Голдберга. Пропустите через него бензин под давлением в сотни фунтов на квадратный дюйм. Наконец, подправьте весь беспорядок - возможно, подачу масла, некоторые сбалансированные части - чтобы он не разбился при использовании.

Поздравляем! Вы создали механический топливный насос, еще до появления цифровых двигателей.Думайте об этом как о заводном механизме «если-то»: «если» - это состояние двигателя, физически сообщаемое насосу с помощью нескольких аналоговых датчиков и рычагов. «Потом» - это доставка топлива.

Род Маклин

В общем, так функционирует современная система управления двигателем во всем, от Фордов до Феррари. Разница в самом процессе. В современных автомобилях используются электронные датчики и форсунки с компьютерным управлением. Механический ФИ - это мозг и мышцы в одной коробке, единый орган, отвечающий как за логику, так и за распределение.И до конца 1960-х, если вы хотели машину без карбюратора, это был ваш единственный выбор.

Уэс Ингрэм и его деловой партнер Херб Сэнборн совместно работают над восстановлением и модификацией механических топливных насосов для старинных автомобилей Alfa Romeo. Ингрэм занимается этим с восьмидесятых, когда, по его словам, «машины все еще ездили каждый день». Сэнборн, океанолог на пенсии, присоединился к нему в 2000 году. Мы посетили их в вашингтонском магазине Ingram Enterprises, потому что это один из немногих центров для такой работы.Также потому, что инъекция SPICA, которую можно было найти на всех автомобилях Alfa в США с 1969 по 1981 год, широко критикуется. И это хороший способ проиллюстрировать тьму и свет техники.

Рид Маклин

Как и многие автопроизводители, Alfa Romeo неохотно пришла к впрыску топлива, чтобы сохранить производительность при минимальных выбросах. Согласно легенде, карбюраторный Alfas не прошел тест EPA на запах в 1968 году, поэтому эта марка ушла на год.Когда он вернулся, он привез линейку автомобилей с версией его гоночного впрыска, который можно найти на прототипах, таких как T33. Выходная мощность не изменилась, и большинство Alfas в остальном мире сохранили углеводы. Некоторые эксперты по марке утверждают, что инженерная стоимость насоса была такого же порядка, как и двигатель в легендарном купе GTV.

Дизельное топливо ведет себя иначе, чем бензин, но, как и большинство ТНВД, SPICA напоминает дизельный агрегат. Насос имеет ременной привод от коленчатого вала на половине частоты вращения двигателя.Он подает топливо под высоким давлением по расписанию к одной форсунке на каждом впускном отверстии. Каждый из них, по сути, представляет собой подпружиненный клапан, который открывается только при попадании жидкости под давлением определенного фунта на квадратный дюйм.

Ранние гоночные системы впрыска были почти бинарными, нацеленными на максимальную мощность без особого внимания к управляемости. Таким образом, интеллект SPICA заключается не в том, что он качает топливо, а в том, как это сделать. Сам насос представляет собой гидравлическое устройство: один плунжер на цилиндр, нагнетающий давление бензина и приводится в действие крошечным шатуном.Что делает его выход линейным с частотой вращения. Но поскольку топливный аппетит газового двигателя не является линейным - и здесь вы можете винить все, от законов физики до выбора настройки, - насос должен компенсировать это.

Род Маклин

Чтобы правильно объяснить, как это происходит, потребуется книга. Но в целом сложный трехмерный кулачок живет в задней части насоса. Он движется вперед и назад с частотой вращения, приводимый в движение центробежной силой, и вращается в осевом направлении с помощью рычажного механизма, соединенного с педалью газа.Последователь на этом кулачке перемещает зубчатую рейку, которая вращает плунжеры насоса, изменяя их объем. Несколько механических компенсирующих устройств еще больше изменяют геометрию толкателя в зависимости от таких факторов, как температура охлаждающей жидкости и барометрическое давление.

Все выглядит так, будто Леонардо да Винчи пытался создать искусственное сердце, но потерпел неудачу и вместо этого переключился на гироскопы. Пока загружен на граппу. С отключенными панелями доступа отвести взгляд практически невозможно.

Удивительные подробности изобилуют.Берем поршни. Они работают в стальных бочках с зазором микронного уровня. Никакие уплотнения не отделяют их от масла в поддоне насоса. Одна только их посадка сдерживает количество топлива в 400 фунтов на квадратный дюйм, которое они могут произвести. Все это для марки, в которой несоответствия в производстве означают, что панели кузова не всегда подходят друг к другу при перестановке между автомобилями.

Задумайтесь об этом на мгновение.

Род Маклин

Ingram и Sanborn ремонтируют более 120 насосов в год.Сохраните несколько стандартизированных деталей, все должно быть очищено или изготовлено. («В восьмидесятые не было даже запчастей, - говорит Ингрэм. - Завод не хотел, чтобы кто-то с ним возился».) Изношенные поршни тщательно подбираются вручную со стволами из складированных запчастей. Поскольку их допуски по существу неизмеримы, работа должна выполняться наощупь, с примерно 50-процентным уровнем брака. Стенд потока обеспечивает равномерный выход. При перестройке автоспорта смесь изменяется путем ручной настройки формы кулачка насоса или его рычажного механизма - результаты основаны либо на опыте, либо на динамометрических испытаниях методом проб и ошибок.

«Люди заменяли эти продукты углеводами, потому что не понимали их, - говорит Ингрэм. «Половина автомобилей не работала должным образом, когда они были новыми, но завод опасался EPA, и они не хотели, чтобы механики знали слишком много.

«Я просто ненавидел, когда хорошие детали отправляются в мусор. Но люди приходят сюда. Это потрясающие маленькие кусочки. И знаете что? Это безумие - нас поддерживают. Больше работы, чем когда-либо».

По часовой стрелке, сверху слева: бочки подбираются вручную.Скамья Санборна. Коленчатый вал, кулачок, штоки и один плунжер насоса.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Системы насос-форсунок

и насосных систем

Системы насос-форсунок и насосных агрегатов

Magdi K. Khair, Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием.Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Реферат : В насос-форсунках и насос-форсунках отдельный насос обслуживает каждый цилиндр двигателя. В свое время система насос-форсунок была способна развивать самое высокое давление впрыска среди всех типов систем впрыска. Несмотря на то, что были разработаны передовые системы насос-форсунок с электронным управлением с возможностью многократного впрыска и регулирования расхода, на смену насос-форсункам постепенно приходит технология Common Rail.

Введение

В системах насос-форсунок (UI) и насос-насосов (UP) каждый цилиндр двигателя обслуживается отдельным насосом впрыска или насосом высокого давления в непосредственной близости от цилиндра. Системы блочного насоса (UP) позволяют укоротить топливные магистрали высокого давления, располагая насос рядом с форсункой. Объединение насосного элемента и инжектора в один узел, как в системах насос-форсунок (UI), позволяет полностью исключить эти линии. Исключение или уменьшение длины топливопроводов высокого давления в системах впрыска UI / UP дает два преимущества:

  • Уменьшение проблем с динамикой линии : трудности с динамикой линии в насос-форсунках / насосных системах вызывают меньше проблем, чем в их аналогах насос-линия-форсунка (P-L-N).Возможность наложения волн, которая мешает системам P-L-N, вызывая последующие закачки и способствуя задержкам впрыска, значительно снижается. Однако следует отметить, что проблемы динамики линии, возникающие в узких проходах насос-форсунок, могут все же модулировать скорость впрыска [371] .
  • Более высокое давление впрыска : система UI традиционно имела самое высокое давление впрыска среди всех типов систем впрыска.В начале 2000-х годов системы UI имели допустимое давление 200 МПа по сравнению с 160 МПа в системах Common Rail. С тех пор пиковое давление впрыска в системе UI / UP выросло до 250 МПа для некоторых приложений 2007 модельного года.

Что касается давления топлива, следует отметить, что давления в системе впрыска топлива с общей топливораспределительной рампой также выросли и в некоторых системах достигли или превысили давления, доступные из систем UI / UP. Хотя нет никаких технических причин, удерживающих давление UI / UP от дальнейшего роста, производители двигателей все чаще используют системы Common Rail в приложениях, где традиционно преобладают системы UI / UP.По этой причине системы UI / UP, скорее всего, не претерпят значительных изменений, кроме их текущего пикового давления, составляющего около 250 МПа.

Обе системы UI и UP приводятся в действие от распределительного вала двигателя. В одной общей конструкции механической системы регулирование подачи топлива обычно достигалось путем вращения насосного элемента (плунжера) таким же образом, как это делается в системах P-L-N. С внедрением электроники в дизельные двигатели были разработаны системы насос-форсунок с электронным управлением (EUI) и насос-насос с электронным управлением (EUP).В них используется перепускной клапан с электромагнитным управлением для регулирования подачи топлива.

Благодаря наличию топливных магистралей насосную систему агрегата можно отнести к варианту системы впрыска P-L-N. Однако конструкция насос-насосов и насос-форсунок часто схожа, поэтому их удобно обсуждать вместе. Фактически, некоторые производители предлагают свои системы впрыска как в версии UI, так и в версии UP (сравните Рисунок 4 и Рисунок 11).

Коммерческое применение насос-форсунок началось в 1930-х годах на дизельных двигателях Winton (дочерняя компания GM) и GM.Winton продолжала поставлять двигатели Electro-Motive Corporation (EMC), а GM передала производство дизельных двигателей своему Detroit Diesel Division. Линия двухтактных двигателей Detroit Diesel Corporation - одно из наиболее известных применений технологии насос-форсунок. С 1930-х до середины 1980-х годов компания Detroit Diesel использовала конструкцию с механическими насос-форсунками. В 1985 году двухтактный двигатель Detroit Diesel серии 92 стал первым дизельным двигателем для тяжелых условий эксплуатации, в котором применен узел впрыска с электронным управлением [2151] .С момента появления электронного управления насос-форсунки продолжали развиваться до более высокого уровня сложности. Эволюция для легких и тяжелых условий эксплуатации шла разными путями.

Возможно, наиболее совершенной конструкцией насос-форсунок для легких условий эксплуатации является инжектор PPD, который в течение короткого времени производился Volkswagen Mechatronic (совместное предприятие Volkswagen и Siemens VDO), начиная с 2004 года, для применений Euro 4 2006 модельного года. В этом инжекторе использовался пьезоэлектрический привод, и он был способен производить до 2 предварительных впрысков и 2 дополнительных впрыска в дополнение к основному впрыску.Тем не менее, это произошло в то время, когда системы Common Rail уже стали применяться в легких грузовых автомобилях и быстро завоевали популярность. Инжектор PPD не мог конкурировать с системами Common Rail, и вскоре после его запуска был снят с производства. Начиная с 2007 года, он был заменен на Common Rail для приложений Euro 5. С тех пор системы Common Rail стали предпочтительным выбором для легких двигателей, а насос-форсунки быстро исчезают из новых конструкций двигателей.

Для тяжелых условий эксплуатации электронные насос-форсунки продолжали развиваться.Эволюция некоторых из этих конструкций описана в статье о системах впрыска в двигателях HD. Вершина конструкции насос-форсунок для тяжелых условий эксплуатации представлена ​​двухклапанными конструкциями форсунок Delphi E3 и Caterpillar MEUI-C для двигателей, отвечающих стандартам выбросов загрязняющих веществ на дорогах Агентства по охране окружающей среды США 2007 года. В то время как эти передовые конструкции насос-форсунок обладают такими возможностями, как регулирование скорости и множественный впрыск, системы Common Rail для тяжелых условий эксплуатации достигли такой степени, что они заменяют насос-форсунки во многих новых конструкциях двигателей для рынков с наиболее строгими стандартами выбросов.Чтобы облегчить этот переход, производители оборудования для впрыска топлива разработали системы Common Rail, которые можно легко установить на платформы двигателя, которые изначально были разработаны для насос-форсунок или насосных систем, что позволяет избежать необходимости в совершенно новой конструкции двигателя.

###

Впрыск дизельного топлива

Впрыск дизельного топлива

Magdi K. Khair, Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Целью системы впрыска топлива является подача топлива в цилиндры двигателя с точным контролем момента впрыска, распыления топлива и других параметров. К основным типам систем впрыска относятся насос-форсунка, насос-форсунка и common rail. Современные системы впрыска достигают очень высокого давления впрыска и используют сложные электронные методы управления.

Основные принципы

Назначение системы впрыска топлива

На характеристики дизельных двигателей сильно влияет конструкция их системы впрыска. Фактически, наиболее заметные успехи, достигнутые в дизельных двигателях, явились прямым результатом разработки превосходных систем впрыска топлива. Хотя основная цель системы - подавать топливо в цилиндры дизельного двигателя, именно то, как это топливо подается, определяет разницу в характеристиках двигателя, выбросах и шумовых характеристиках.

В отличие от своего аналога двигателя с искровым зажиганием, система впрыска дизельного топлива подает топливо под чрезвычайно высоким давлением впрыска. Это означает, что конструкции компонентов системы и материалы должны быть выбраны таким образом, чтобы выдерживать более высокие нагрузки, чтобы работать в течение продолжительного времени, что соответствует целевым показателям долговечности двигателя. Для эффективной работы системы также необходимы более высокая точность производства и жесткие допуски. Помимо дорогих материалов и производственных затрат, системы впрыска дизельного топлива характеризуются более сложными требованиями к управлению.Все эти функции составляют систему, стоимость которой может составлять до 30% от общей стоимости двигателя.

Основное назначение системы впрыска топлива - подавать топливо в цилиндры двигателя. Чтобы двигатель мог эффективно использовать это топливо:

  1. Топливо должно впрыскиваться в надлежащее время, то есть необходимо контролировать время впрыска и
  2. Необходимо подать правильное количество топлива для удовлетворения требований к мощности, то есть необходимо контролировать дозирование впрыска.

Однако для достижения хорошего сгорания по-прежнему недостаточно подавать точно отмеренное количество топлива в нужное время. Дополнительные аспекты имеют решающее значение для обеспечения надлежащей работы системы впрыска топлива, в том числе:

  • Распыление топлива - обеспечение того, чтобы топливо распылялось на очень мелкие частицы топлива, является основной задачей при проектировании систем впрыска дизельного топлива. Маленькие капли гарантируют, что все топливо испарится и участвует в процессе сгорания.Любые оставшиеся капли жидкости плохо горят или выходят из двигателя. Хотя современные системы впрыска топлива способны обеспечивать характеристики распыления топлива, намного превосходящие то, что необходимо для обеспечения полного испарения топлива в течение большей части процесса впрыска, некоторые конструкции систем впрыска могут иметь плохое распыление в течение некоторых коротких, но критических периодов фазы впрыска. Конец процесса закачки - один из таких критических периодов.
  • Массовое смешивание —Хотя распыление топлива и полное испарение топлива имеют решающее значение, обеспечение того, чтобы испарившееся топливо содержало достаточное количество кислорода во время процесса сгорания, не менее важно для обеспечения высокой эффективности сгорания и оптимальной производительности двигателя.Кислород поступает из всасываемого воздуха, захваченного в цилиндр, и достаточное количество должно быть увлечено топливным жиклером, чтобы полностью смешаться с имеющимся топливом во время процесса впрыска и обеспечить полное сгорание.
  • Использование воздуха - Эффективное использование воздуха в камере сгорания тесно связано с объемным смешиванием и может быть достигнуто путем сочетания проникновения топлива в плотный воздух, который сжимается в цилиндре, и деления общего количества впрыскиваемого топлива на число струй.Должно быть предусмотрено достаточное количество форсунок, чтобы захватить как можно больше доступного воздуха, избегая при этом перекрытия форсунок и образования зон, богатых топливом, с дефицитом кислорода.

Основное назначение системы впрыска дизельного топлива графически представлено на Рисунке 1.

Рисунок 1 . Основные функции системы впрыска дизельного топлива

Определение терминов

Для описания компонентов и работы систем впрыска дизельного топлива используется множество специализированных понятий и терминов.Некоторые из наиболее распространенных из них включают [922] [2075] :

Сопло относится к части узла сопла / иглы, которая взаимодействует с камерой сгорания двигателя. Такие термины, как P-тип, M-тип или S-тип сопла, относятся к стандартным размерам параметров сопла в соответствии со спецификациями ISO.

Держатель форсунки или Корпус форсунки относится к части, на которой устанавливается форсунка. В обычных системах впрыска эта часть в основном выполняла функцию крепления форсунки и предварительного натяга игольной пружины форсунки.В системах Common Rail он содержит основные функциональные части: сервогидравлический контур и гидравлический привод (электромагнитный или пьезоэлектрический).

Инжектор обычно относится к держателю сопла и соплу в сборе.

Начало впрыска (SOI) или Время впрыска - время, когда начинается впрыск топлива в камеру сгорания. Обычно он выражается в градусах угла поворота коленчатого вала (CAD) относительно ВМТ хода сжатия.В некоторых случаях важно различать , указанный SOI, и фактический SOI. SOI часто указывается легко измеряемым параметром, таким как время, в течение которого электронный триггер отправляется на инжектор, или сигнал от датчика подъема иглы, который указывает, когда игольчатый клапан инжектора начинает открываться. Точка в цикле, где это происходит, - это обозначенная SOI. Из-за механического отклика форсунки может быть задержка между указанным КНИ и фактическим КНИ, когда топливо выходит из сопла форсунки в камеру сгорания.Разница между фактическим КНИ и указанным КНИ заключается в запаздывании форсунки .

Начало поставки. В некоторых топливных системах впрыск топлива согласован с созданием высокого давления. В таких системах начало подачи - это время, когда насос высокого давления начинает подавать топливо в форсунку. Разница между началом подачи и SOI зависит от продолжительности времени, необходимого для распространения волны давления между насосом и инжектором, и зависит от длины линии между насосом высокого давления и инжектора, а также от скорости звука. в топливе.Разница между началом подачи и SOI может быть обозначена как задержка впрыска .

Конец впрыска (EOI) - это время в цикле, когда впрыск топлива прекращается.

Количество впрыскиваемого топлива - количество топлива, подаваемого в цилиндр двигателя за рабочий такт. Часто выражается в мм 3 / ход или мг / ход.

Продолжительность впрыска - это период времени, в течение которого топливо поступает в камеру сгорания из форсунки.Это разница между EOI и SOI, связанная с количеством впрыска.

Схема впрыска. Скорость впрыска топлива часто меняется в течение периода впрыска. На рисунке 2 показаны три распространенные формы нормы: пыльник, пандус и квадрат. Скорость открытия и Скорость закрытия относится к градиентам скорости впрыска во время открывания и закрывания игольчатого сопла, соответственно.

Рисунок 2 . Общие формы скорости закачки

События множественного впрыска. В то время как обычные системы впрыска топлива используют одно событие впрыска для каждого цикла двигателя, более новые системы могут использовать несколько событий впрыска. На рисунке 3 определены некоторые общие термины, используемые для описания событий множественной инъекции. Следует отметить, что терминология не всегда последовательна. Основной впрыск Событие обеспечивает основную часть топлива для цикла двигателя. Один или несколько впрысков перед основным впрыском, предварительных впрысков , обеспечивают небольшое количество топлива перед событием основного впрыска.Предварительный впрыск может также обозначаться как пилотный впрыск . Некоторые называют предварительный впрыск, который происходит относительно долго перед основным впрыском, как пилотный, а тот, который происходит за относительно короткое время перед основным впрыском, как предварительный впрыск. Инъекции после основных инъекций, после инъекций, , могут происходить сразу после основной инъекции (, закрытие после инъекции, ) или относительно долгое время после основной инъекции (, поздняя дополнительная инъекция, ).Постинъекции иногда называют постинъекциями . Несмотря на то, что терминология сильно различается, близкая повторная инъекция будет называться повторной инъекцией, а поздняя повторная инъекция - повторной инъекцией.

Рисунок 3 . Множественные события инъекции

Термин разделенный впрыск иногда используется для обозначения стратегий множественного впрыска, когда основной впрыск делится на два меньших впрыска приблизительно равного размера или на меньший предварительный впрыск, за которым следует основной впрыск.

В некоторых системах впрыска топлива могут возникать непреднамеренные последующие впрыски, когда форсунка на мгновение повторно открывается после закрытия. Иногда их называют вторичными впрысками .

Давление впрыска не всегда используется в литературе. Это может относиться к среднему давлению в гидравлической системе для систем Common Rail или к максимальному давлению во время впрыска (пиковое давление впрыска) в обычных системах.

Основные компоненты топливной системы

Компоненты системы впрыска топлива

За некоторыми исключениями, топливные системы можно разделить на две основные группы компонентов:

  • Компоненты стороны низкого давления —Эти компоненты служат для безопасной и надежной подачи топлива из бака в систему впрыска топлива.Компоненты стороны низкого давления включают топливный бак, топливный насос и топливный фильтр.
  • Компоненты стороны высокого давления —Компоненты, создающие высокое давление, дозирующие и подающие топливо в камеру сгорания. К ним относятся насос высокого давления, топливная форсунка и форсунка для впрыска топлива. Некоторые системы могут также включать аккумулятор.

Форсунки для впрыска топлива можно разделить на тип отверстий или дроссельных игл, а также на закрытые или открытые.Закрытые форсунки могут приводиться в действие гидравлически с помощью простого подпружиненного механизма или с помощью сервоуправления. Открытые форсунки, а также некоторые новые конструкции форсунок с закрытыми форсунками могут приводиться в действие напрямую.

Дозирование количества впрыскиваемого топлива обычно осуществляется либо в насосе высокого давления, либо в топливной форсунке. Существует ряд различных подходов к измерению топлива, включая: измерение давления с постоянным интервалом времени (PT), измерение времени при постоянном давлении (TP) и измерение времени / хода (TS).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *