Как масло попадает в гидротрансформатор акпп: Устройство гидротрансформатора

Содержание

Устройство гидротрансформатора

Под термином трансмиссия понимают все механизмы, установленные между маховиком двигателя и ведущими колесами. Обычно трансмиссия с автоматической коробкой передач включает в себя: гидротрансформатор, коробку передач, шрусы или карданную передачу, раздаточную коробку, главную передачу, дифференциал и полуоси. Как правило, картер трансформатора прикручивается к картеру коробки или они имеют единый общий картер. Гидротрансформатор осуществляет связь двигателя с коробкой передач, и частично его функции схожи с функциями сцепления. В случае использования автоматической коробки передач решение о переключении, а также его качество, принимается и обеспечивается системой управления. Это в значительной мере облегчает процесс управления транспортным средством, делает его менее трудоемким, особенно, в условиях плотных городских потоков.
Гидродинамическая передача
В настоящее время имеются два типа гидродинамических передач: гидромуфта и гидротрансформатор.

Гидромуфта — самый простой элемент гидропривода. Ее отличительная особенность заключается в том, что крутящий момент на ведущем валу гидромуфты всегда равен моменту на выходном валу. Конструкция гидромуфты очень проста. Она состоит из насосного и турбинного колес примерно одинаковой конструкции, находящихся в заполненном маслом картере (рис 1а и 1б).

При вращении насосного колеса масло под воздействием центробежной силы начинает двигаться по направляющим лопаткам к периферии, приобретая при этом кинетическую энергию. Из насосного колеса оно попадает в турбинное колесо, где при соприкосновении с лопатками турбины отдает ему часть своей энергии, приводя его, тем самым, во вращение.
При быстром вращении насосного колеса масло совершает сложное движение, состоящее из переносного и относительного движений. Первое возникает за счет вращения масла вместе с насосным колесом. Второе определяется перемещением масла вдоль насосного колеса к периферии. Относительное движение вызвано действием центробежных сил, возникающих в масле в результате вращения вместе с насосным колесом (рис 2).


В результате на выходе из насосного колеса абсолютная скорость потока масла определяется векторной суммой скоростей переносного и относительного движений (рис 3).

Часть энергии потока масла, определяемая его переносной скоростью отдается через лопатки турбинному колесу.
Гидротрансформатор.
Принцип действия гидротрансформатора (трансформатора) такой же, как и гидромуфты. Те же самые относительное и переносное движения масла. Но для увеличения крутящего момента на выходном валу трансформатора введен дополнительный элемент – реакторное колесо (реактор, иногда статор). Реактор устанавливается между выходом из турбины и входом в насосное колесо (рис 4),


и предназначен для направления потока масла, выходящего из турбинного колеса, таким образом, чтобы его скорость совпадала с направлением вращения насосного колеса. В этом случае неизрасходованная в турбинном колесе энергия масла используется для дополнительного увеличения частоты вращения насосного колеса, что соответствующем образом увеличивает кинетическую энергию масла. Следствием этого является увеличение крутящего момента на валу турбинного колеса, по сравнению с моментом, подводимым к насосному колесу от двигателя. Следует отметить, что соотношение моментов на насосном и турбинном колесах определяется отношением угловых скоростей этих элементов. Максимальное увеличение крутящего момента происходит при полностью остановленной турбине. Такой режим работы трансформатора называется стоповым. Современные трансформаторы имеют коэффициент трансформации момента на стоповом режиме 2,0-2,5. Под термином “коэффициент трансформации» понимается отношение момента, развиваемого турбинным колесом, к моменту на насосном колесе.

Затем, в процессе увеличения частоты вращения турбинного колеса, происходит снижение эффективности работы реактора, и крутящий момент на валу турбинного колеса уменьшается. Это вполне объяснимо, поскольку, чем выше частота вращения турбинного колеса, тем меньше влияние переносной скорости потока масла на лопатки этого колеса. В момент, когда частота вращения турбины составит приблизительно 85% частоты вращения насосного колеса, реакторное колесо, благодаря муфте свободного хода, теряет связь с картером трансмиссии и начинает свободно вращается вместе с потоком, не воздействуя на него. В результате этого трансформатор переходит в режим работы гидромуфты, коэффициент трансформации которой равен 1.
Трансформатор обладает несколькими благоприятными свойствами. Его установка приводит к плавному изменению крутящего момента, нагружающего трансмиссию, что увеличивает долговечность агрегатов трансмиссии и снижает затраты на ее ремонт. Плавное изменение крутящего момента самым благоприятным образом сказывается при движении по слабонесущим грунтам и скользкой дороге (лед, снег), поскольку в этом случае снижается вероятность срыва грунта и буксования ведущих колес. Кроме того, трансформатор является превосходным демпфером крутильных колебаний двигателя, которые гасятся маслом и не пропускаются в механическую часть трансмиссии.
Природа любой гидродинамической передачи такова, что в нем всегда имеет место скольжение, т.е. угловая скорость турбинного колеса никогда не равна угловой скорости насосного колеса. Естественно, что это приводит к снижению топливной экономичности автомобиля. Поэтому для улучшения топливно-экономичных характеристик автомобиля в автоматических трансмиссиях предусматривается блокировка трансформатора.
Методы блокировки трансформатора. Блокировочная муфта позволяет обойти гидротрансформатор и напрямую соединить двигатель с входным валом коробки передач. Таким образом, устраняется скольжение между насосным и турбинным колесом, что приводит к повышению топливной экономичности автомобиля.
Типичная конструкция блокировочной муфты трансформатора показана на рисунке 5.

Ступица нажимного диска (рис 6)шлицами соединяется со ступицей турбинного колеса. Между нажимным диском и ступицей расположены пружины, выполняющие роль демпфера крутильных колебаний (рис 6). В процессе блокировки поршень совершает колебания относительно ступицы, деформируя пружины, которые поглощают крутильные колебания, возбуждаемые двигателем. Механическая энергия проходит через пружинный демпфер и попадает на выходной вал трансформатора.

Для улучшения работы блокировочной муфты к внутренней поверхности кожуха трансформатора или нажимного диска прикрепляется фрикционная накладка (рис 7).

Блокировочные муфты всех трансформаторов имеют однотипные конструкции нажимного диска, и для их управления обычно используются одинаковые гидравлические схемы. На рисунках 8 и 9

упрощенно показан один из вариантов управления муфтой трансформатора. В выключенном состоянии масло подается между картером и нажимным диском. Это предохраняет муфту от самопроизвольного включения. Масло, перед тем, как попасть в трансформатор, проходит между диском и кожухом, и далее из трансформатора поступает в систему охлаждения.
Для блокировки трансформатора клапан управления переключает контур, и давление подается к поршню с другой стороны. Масло, находящееся ранее между поршнем и кожухом трансформатора сливается через вал турбины, что обеспечивает плавность включения муфты. Турбинное колесо теперь соединено с валом двигателя и трансформатор заблокирован.
Иногда управление блокировкой трансформатора осуществляет через коробку передач. Четырехскоростная автоматическая коробка передач AOD (Ford) имеет вспо,/могательный входной вал, который напрямую, через пружинный демпфер, связан с двигателем (рис 10).

На третьей и четвертой передачах этот вал через блокировочную муфту включения повышающей передачи соединяется с планетарной коробкой передач. На третьей передаче 60% мощности двигателя передается механически и 40% через трансформатор. На четвертой передаче все 100% мощности двигателя передаются механически через этот вал. На первой, второй и передаче заднего хода весь поток мощности проходит через гидротрансформатор.
Что может выйти из строя в трансформаторе? В первую очередь муфта свободного хода реактора. Здесь возможны два варианта: ролики муфты из-за износа начинают проскальзывать, и муфта не может в этом случае полностью передавать на картер момент, воспринимаемый реактором; ролики могут заклиниться, и в муфте будет отсутствовать режим свободного хода, что не позволит трансформатору переходить на режим работы гидромуфты.

Иногда выходит из строя блокировочная муфта. Чаще всего это происходит из-за значительного износа фрикционной накладки. Во всех отмеченных выше случаях ремонт трансформатора возможен только в специализированных сервисных центрах. Редко, но бывает, в трансформаторе оказываются поврежденными лопатки насосного, турбинного или реакторного колес. В этом случае замена трансформатора неизбежна.

Как попадает масло в гидротрансформатор акпп?

Из насосного колеса оно попадает в турбинное колесо, где при соприкосновении с лопатками турбины отдает ему часть своей энергии, приводя его, тем самым, во вращение. При быстром вращении насосного колеса масло совершает сложное движение, состоящее из переносного и относительного движений.

Как залить масло в бублик АКПП?

Заводим двигатель, держим машину на тормозе и переключаем рычаг АКПП вниз до Драйва останавливаясь на каждой позиции примерно 2-3 секунды, после Драйва одним движением переводим в Паркинг. Глушим. 3. Результатом будет вылитое масло из бублика примерно через 1-4 секунды после перевода в Паркинг селектора.

Как залить масло в бублик?

Заливаешь в бублик грам 300 масла, перед установкой на машину чтобы при заводке бублик на сухую не крутился) затем после установки акпп: если коробка щуповая, то делаешь уровень на незаведённую, затем заводишь и выводишь уровень, и напоследок проходишь по режимам (p-r-n-d-n-r-p) и точно выводишь уровень!

Как залить масло в коробку автомат?

На моделях с щупом жидкость АКПП заливается через горловину щупа. Щуп извлекается, затем в горловину вставляется воронка для масла АКПП. Если воронки нет, используется чистый гибкий шланг; На другом конце шланга также можно закрепить любую подходящую воронку.

Для чего нужен гидротрансформатор на акпп?

Гидротрансформатор дает возможность машинам с автоматической трансмиссией работать на холостых оборотах, благодаря полному отсоединению трансмиссии от двигателя. … В данном устройстве для передачи движения от двигателя трансмиссии используется жидкость.

Сколько литров масла в гидротрансформаторе?

Гидротрансформаторный тип АКПП нуждается в хорошем охлаждении. Часть масла, около 2 литров, в процессе работы АКПП передается гидротрансформатору, набор шестерен и насосная станция также нуждаются в 3-4 литрах жидкости. Через радиатор и магистраль масло перемещается обратно в коробку передач, теряя еще 2 литра.

Как работает Бублик в акпп?

Если просто, «бублик» АКПП работает подобно гидравлическому редуктору. … При этом энергия передается через поток трансмиссионной жидкости ATF (трансмиссионного масла АКПП). Результат — мягкое включение передач, отсутствие ударных нагрузок. В двух словах, коленвал двигателя связан с насосным колесом.

Как определить неисправность гидротрансформатора?

Основные признаки неисправности гидротрансформатора АКПП

  1. ощущение вибрации на скорости до 80 км/ч может ощущаться из-за срыва блокировки ГДТ;
  2. характерное «жужжание» или похожие на него звуки указывают на то, что засорился масляной фильтр;

Что происходит при поломке гидротрансформатора?

Обороты двигателя падают, но само переключение на следующую ступень не происходит. В случае же неисправности, блокировка не зацепляется за двигатель, а начинает проскальзывать. Крутящий момент с двигателя передается дерганно, что и вызывает такое поведение автомобиля.

Гидротрансформатор АКПП «Бублик»- Устройство. Принцип работы. Основные проблемы

Гидротрансформатор выполняет важную роль в автоматической коробке передач, он занимает пространство между корпусом силового агрегата и трансмиссией авто. Гидротрансформатор в АКПП работает, как муфта сцепления – передает вращение от работающего мотора непосредственно на автомат. Внешнее сходство гидротрансформатора АКПП с характерной формой тора позволяет называть данное устройство бубликом. Гидротрансформатор автоматической коробки передач – составная часть гидросистемы трансмиссии. Управление его работой осуществляется при помощи специального гидроблока.

Устройство гидротрансформатора коробки-автомат

Основное предназначение гидротрансформатора АКПП – это обеспечение плавного и своевременного перехода автоматической трансмиссии с одной передачи на другую. Первые образцы гидротрансформаторов для КПП были созданы в ХХ веке. С целью модернизации устройства ГТР, применялись новые технологии. Гидротрансформаторы АКПП становились более сложными по конструкции.

Помимо обеспечения плавности перехода на различные передачи, новые гидротрансформаторынаделены дополнительной функцией сцепления. При этом в момент переключения скоростей (понижающей либо повышающей) гидротрансформатор размыкает непосредственную связь двигателя внутреннего сгорания с коробкой передач. Гидротрансформатор АКПП частично принимает на себя силу крутящего момента. Именно это обеспечивает уникальную плавность при переключении скоростей.

В отличие от механической КПП, в автомате передача крутящего момента осуществляется не под воздействием механического трения между фрикционными дисками гидротрансформатора АКПП. Соединение двигателя и автоматической коробки передач происходит, благодаря давлению трансмиссионной жидкости. Срабатывает эффект вращения мельницы от ветра.Устройство гидротрансформатора обеспечивает сохранение целостности автоматической коробки и защиту от механических повреждений за счет важной функции – амортизации.

Фрикционные диски гидротрансформатора АКПП образуют сборный пакет, состоящий из деталей мобильного и неподвижного типов. При включении передачи в магистралях создается необходимое давление. При помощи специального устройства – гидравлического толкателяфрикционы гидротрансформатора АКПП взаимно сжимаются, включается заданная скорость.

Как действует гидротрансформатор АКПП

Современный гидротрансформатор блокируется при сравнивании скоростей оборотов валов – входного и выходного. На практике это случается после развития скорости транспортного средства, равной более 70 км/час. Тормозная накладка поршня гидротрансформатора замедляет вращение масляной жидкости. Валы двигателя внутреннего сгорания и коробки передач взаимно фиксируются. Силовой агрегат и трансмиссия образуют единое целое, происходит синхронное вращение валов.

Когда гидротрансформатор полностью передает вращение на АКПП от силового агрегата, потери мощности равны нулю. Данная функция гидротрансформатора напоминает действие педали механизма сцепления на коробке перемены передач механического типа.

Во время работы гидротрансформатора кинетическая энергия двигателя расходуется на движение масла, которое разогревается от трения. При взаимном касании фрикциона со стальным диском происходит интенсивное истирание накладки, фрагменты износа в виде пыли попадают в масляный состав гидротрансформатора. Стабильность работы автоматической трансмиссии и ходовой части находится в прямой зависимости от степени износа фрикционных накладок и смазочного материала.

Описание конструкции гидротрансформатора АКПП

Гидротрансформатор АКПП передает мощность от двигателя внутреннего сгорания непосредственно на узлы и детали автоматической трансмиссии. Принцип работы АКПП –гидротрансформатор не только передает вращение на коробку передач, он эффективно погашает амплитуду вибраций и сводит к минимуму силы механических ударов со стороны маховика.

Составные части гидротрансформатора:

  • Насосное и турбинное колеса.
  • Блокировочная муфта.
  • Насос.
  • Реакторное колесо.
  • Муфта свободного хода.

Все рабочие механизмы размещены в корпусе устройства гидротрансформатора:

  • насос напрямую работает от коленвала движка;
  • турбина сопряжена с шестеренками АКПП;
  • реакторное турбинное колесо – с турбиной и насосом;
  • в гидротрансформатор вставлены уникальные лопасти оригинальной конфигурации;
  • масло движется по внутреннему пространству коробки, благодаря гидротрансформатору;
  • назначение блокировочной муфты – блокировать гидротрансформатор в заданных режимах;
  • муфта свободного хода вращает реакторное колесо в противоположном направлении.

Принцип работы гидротрансформатора

Работа «бублика» осуществляется по замкнутому циклу. Смазочное вещество является главным рабочим материалом гидротрансформатора. Его вязкостные характеристики существенно отличаются от свойств масла, используемого в МКПП. При работе гидротрансформатора АКПП смазочное вещество под воздействием насосного колеса принудительно подается на лопатки реактора и турбины. Лопатки создают дополнительные завихрения и ускоряют движение масла,скорость вращения рабочих колес гидротрансформатора существенно падает, момент соответственно возрастает.

Ускорение вращения коленвала способствует выравниванию скоростей колеса насоса и турбины гидротрансформатора. При большой скорости автомобиля гидротрансформатор только передает крутящий момент по аналогии с работой гидромуфты. При блокировке ГТР вращение передается напрямую от силового агрегата на АКПП.

При переходе на другую передачу элементы гидротрансформатора разъединяются. Процесс сглаживания угловых скоростей возобновляется до окончательного выравнивания вращенияработающих турбин.

Функционирование гидротрансформатора происходит под постоянным контролем электронного блока управления ЭБУ. Датчики, установленные на гидротрансформаторе, подают сигналы на ЭБУ. Исходя из поступающих данных, формируются выходные управляющие команды. Если электронные приборы сообщают об ошибке, это означает, что возникли какие-то проблемы с ГТР.

Важно: Признаки неисправностей гидротрансформатора АКПП могут проявляться как в механической, так и электронной частях механизма. При экстренной остановке коробки-автомата необходимо провести тщательную диагностику с последующим ремонтом элементов гидротрансформатора.

На представленной схеме показано в разрезе, из чего состоит гидротрансформатор автоматической коробки перемены передач.

Спираль справа – схематическое изображение траектории движения масла внутри корпуса гидротрансформатора.

Здесь изображен принцип работы гидротрансформатора в различных режимах.

Признаки неисправности гидротрансформаторов АКПП

Гидротрансформатор занимает лидирующие позиции по надежности среди различных узлов и деталей АКПП. Он полностью вырабатывает заявленный эксплуатационный срок. Однако, это не означает, что ГТР вечен. С помощью характерных симптомов опытные водители могут определить место возможных поломок в гидротрансформаторе и автоматической коробке передач.

Признаки неисправности гидротрансформатора:

  1. Возникновение характерного звука (шуршащего, механического) при переключении скоростей. Этот малозаметный звук уходит, когда увеличиваются обороты, и машина ускоряется. Данный симптом указывает на деформации опорных игольчатых подшипников гидротрансформатора.
  2. При громком стуке металла нужно проверить состояние лопастей и колеса гидротрансформатора в сборе.
  3. Вибрации коробки передач на скорости 60 – 90 км/час (причина – неравномерное истирание фрикционов системы блокировки).
  4. Загрязнение масла (запах гари, темный оттенок, густая консистенция).
  5. Перегрев гидротрансформатора.
  6. Засорение клапана гидроблока.
  7. Снижение уровня трансмиссионного масла.
  8. Проблемы с динамикой машины (обгонная муфта нуждается в замене).
  9. Неожиданная остановка транспортного средства означает, что повреждены шлицы на турбинном колесе гидротрансформатора. При этом требуется установить новые шлицы или полностью менять деформированное колесо на новый механизм.
  10. Глохнет двигатель при переходе на другую передачу. Здесь виновата управляющая автоматика.

Появившиеся признаки и неполадки в гидротрансформаторе АКПП игнорировать не рекомендуется. Если вовремя не заменить изношенный фрикцион блокировки, гидротрансформатор начнет чрезмерно перегреваться, выходной вал коробки передач – вибрировать, масляный насос преждевременно выйдет из строя. Соответственно, прекратится подача масла в гидроблок и к пакетам сцепления АКПП.

Совет: При смене масляного фильтра рекомендуется производить полную замену масла в автоматической коробке передач и двигателе внутреннего сгорания одновременно. В случае, когда на контрольном щупе замечены следы пыли алюминия, следует проверить муфту свободного хода, которая изготовлена из данного материала, а также степень выработки торцовой шайбы.

Если на остановке при работающем моторе остро ощущается запах оплавленного пластика, это свидетельствует о чрезмерном перегреве гидротрансформатора. Основная причина повышения температуры ГТР – снижение объема смазочного материала (эффект масляного голодания гидротрансформатора и автоматической коробки передач). Охлаждающая система автоматической коробки передач тоже часто отказывает в работе. Причина дефекта СО кроется в чрезмерной засоренности теплообменника гидротрансформатора. После замены масла и тщательного обследования системы охлаждения неприятный запах гидротрансформатора улетучится.

Ремонт ГТР

Для многих автовладельцев ремонт гидротрансформатора АКПП является сложной процедурой.Не все люди обладают необходимыми знаниями, свободным временем, желанием, чтобы качественно восстановить функции гидротрансформатора своими руками. Самая большая сложность в ремонте гидротрансформатора состоит в его демонтаже с автомобиля. Профессиональные механики обладают набором специальных инструментов и приспособлений, чтобы благополучно снять гидротрансформатор с коробки передач.

Непосредственный ремонт гидротрансформатора АКПП начинается с механического разрезания корпуса на токарном станке и внимательной диагностики состояния каждого механизма. В процессе ремонта гидротрансформатора необходимо заменить следующие элементы:

  • корпус бублика;
  • сальники;
  • уплотнительные кольца.

Перед разрезанием и диагностикой демонтированного гидротрансформатора рекомендуется слить масло в подготовленный тазик, а также тщательно промыть фрикционы и другие составляющие устройства.

Важно: Кольца и уплотнительные сальники гидротрансформатора необходимо менять на новые детали, даже при кажущемся удовлетворительном их состоянии. Во избежание протечек смазочного материала, устанавливать старые уплотнения категорически не рекомендуется.

Замена гидротрансформатора – лучшее решение. Однако, подавляющее большинство владельцев авто склоняются к тому, чтобы не покупать новый корпус или гидротрансформатор АКПП в сборе. В этом случае производится сваривание частей корпусной детали. При этом соблюдается главное условие: обеспечение абсолютной герметичности сварного шва корпуса гидротрансформатора. После установки отремонтированного устройства на автоматическую коробку передач производится балансировка этого бублика в сборе.

Мероприятие по замене гидротрансформатора АКПП сопровождается частичной или полнойзаменой трансмиссионного масла во всей системе.

Случаются поломки гидротрансформатора АКПП, которые не подлежат восстановлению. Автомеханики рекомендуют установить новый гидротрансформатор взамен поврежденного механизма.

Совет: Опытные мастера утверждают, ремонт гидротрансформатора автоматической коробки передач не отличается большой сложностью. Однако, перед самостоятельным проведением восстановительных работ в условиях гаража автовладельцам нужно внимательно ознакомиться с особенностями конструкции гидротрансформатора, методами диагностики, ремонта и пр. Для успешного проведения ремонта гидротрансформатора своими руками не помешает обзавестись специальными инструментами и необходимым оборудованием.

Чтобы увидеть, как производится ремонт гидротрансформатора АКПП на одном из специализированных предприятий, предлагается ознакомиться с материалами видео ролика, посвященного данной теме https://www.youtube.com/watch?v=hNXUsosCFh5.

Что в гидротрансформаторах ломается чаще и быстрее всего

Износ тормозной прокладки фрикциона – наиболее часто является причиной, приводящей к ремонту гидротрансформатора:

  1. Изношенная прокладка удаляется.
  2. Место ее расположения тщательно очищается от засохшего клеевого состава.
  3. Наносится новый клеевой состав.
  4. Устанавливается новая фрикционная прокладка.

Замена прокладки гидротрансформатора необходима для обеспечения герметичности системы и предотвращения утечек трансмиссионного масла. Если ее не заменить вовремя, возникают неприятные последствия:

  • элементы износа в виде мелких кусочков заполняют масляные каналы в гидроплите;
  • масляное голодание гидротрансформатора;
  • рост температуры;
  • повышенный износ сальников, втулок;
  • проскальзывание стертой муфты блокирования;
  • выход из строя электромагнитных соленоидов и электронных приборов;
  • деформации фрикционных накладок гидротрансформатора;
  • преждевременное разрушение сопряженных металлических узлов и деталей вследствие
  • вибрационных колебаний изношенных муфт (старение железа).

Прочие поломки гидротрансформаторов АКПП

Автомеханики сервисных компаний в процессе диагностики ГТР часто выявляют дополнительные дефекты в гидротрансформаторах автоматических коробок передач:

  1. Деформации и поломка лопастей гидротрансформатора.
  2. Износ ступицы вследствие работы при повышенных температурах.
  3. Нарушение блокировки, заклинивание муфты обгона.
  4. Разрушение подшипников.
  5. Прогорание корпуса гидротрансформатора АКПП.

Почти все перечисленные дефекты выявляются только при вскрытии корпусной детали гидротрансформатора. После определения поломок производится их замена на новые рабочие элементы.

Если ремонт гидротрансформатора производится в условиях специализированных мастерских, оснащенных современным оборудованием, технологическими приспособлениями, оригинальными запчастями, восстановленный гидротрансформатор будет служить в течение длительного срока. Время эксплуатации отремонтированного механизма составляет около 80% от первоначального ресурса. Частичная либо полная замена трансмиссионного масла также входит в перечень ремонтных услуг. Длительность ремонта гидротрансформатора автоматической коробки передач в среднем занимает три рабочих дня.

Рекомендации по обслуживанию и эксплуатации ГТР автоматических коробок передач

По мнению квалифицированных специалистов, поломанный гидротрансформатор невозможно полноценно восстановить без разрезания корпуса.

При самостоятельном обслуживании бублика в гаражных условиях нужно избегать применения концентрированных растворителей и прочих чистящих, моющих средств. Это вызвано тем, что структура резиновых уплотнителей гидротрансформатора быстро разрушается под воздействием агрессивных веществ.

«Бублик», убийца АКПП: что ломается в гидротрансформаторах и как их чинят


И чем мощнее становились двигатели, тем сильнее нагревалась жидкость в ГТД, тем сложнее было обеспечить его охлаждение, и тем больше работы по передаче крутящего момента старались переложить на сцепление блокировки.

Что ломается в гидротрансформаторе?

Раз есть сцепление внутри «бублика», значит, оно изнашивается — вечных фрикционных пар не бывает. К тому же продукты их износа загрязняют внутренности ГТД, поток горячей жидкости с абразивом «выедает» металл лопаток и других внутренних частей. Также потихоньку стареют, выходят из строя от перегрева или просто разрушаются уплотнения-сальники, а иногда выходят из строя подшипники или даже ломаются лопасти турбинных колес.

Продукты износа фрикционной накладки попадают и в саму АКПП, ведь охлаждение ГТД идет прокачкой масла через насос коробки и общий теплообменник. А в гидроблоке АКПП (о нем нужно рассказывать отдельно) есть еще много разных мест, где грязь может что-то забить или жидкость может проточить лишние отверстия, повредить соленоидные клапаны, замкнуть проводники…

В общем, со временем ГТД становится основным источником «грязи» в АКПП, которая обязательно выведет ее из строя. У некоторых АКПП проблема осложняется тем, что материал накладок «приклеен» к основе, и по мере износа в жидкость начинают попадать клеющие вещества, ускоряя процессы загрязнения в разы.

Таким образом, поживший «бублик» нужно менять или ремонтировать, пока он не сломал всю коробку передач. К слову, старые АКПП, у которых блокировка срабатывала редко, только на высших передачах или ее не имелось вовсе, имеют заметно большие интервал замены масла и ресурс.

Наиболее печальный случай

К чему это приводит, можно увидеть на примере широко распространенной 5-ступенчатой АКПП Mercedes 722.6. Она ставилась на несколько десятков моделей Mercedes-Benz, Jaguar, Chrysler, Dodge, Jeep и SsangYong c 1996 года и ставится по сей день.

В этой коробке передач гидротрансформатор блокируется на всех передачах, и специальный клапан регулирует его прижатие. Даже при плавном разгоне включается частичная блокировка, а при резком блокировка включается почти сразу. Машина получается экономичной и динамичной.


Буксует гидротрансформатор: причины, признаки и ремонт

Как известно, подавляющее большинство так называемых «классических» гидромеханических АКПП отличаются высокой надежностью и имеют большой ресурс (при условии соблюдения ряда правил эксплуатации и обслуживания коробки автомат). Однако, гидротрансформатор или «бублик» АКПП, который является неотъемлемой частью данного агрегата и часто считается самой коробкой автомат, может выходить из строя намного раньше, чем сама автоматическая трансмиссия.

На практике, если говорить о многих современных автоматах, АКПП может пройти 200-250 тыс. км. и более, в то время как ГДТ нуждается в ремонте или замене уже к 120-150 тыс. км. При этом важно обращать внимание на признаки, которые указывают, что с гидротрансформатором АКПП возникли проблемы. В противном случае «бублик» может вывести из строя и коробку, что значительно усложняет ремонт и увеличивает расходы.

Зачастую, одним из важных симптомов, которые говорят о неисправности ГДТ, является пробуксовка гидротрансформатора. В этой статье мы поговорим о том,  почему возникает пробуксовка гидротрансформатора, что это такое, а также как понять, что буксует гидротрансформатор во время диагностики АКПП.

Содержание статьи

Проскальзывание гидротрансформатора: почему происходит и основные признаки

Итак, гидротрансформатор или гидромуфта АКПП представляет собой сцепление автоматической коробки передач. При этом данное устройство сильно отличается от привычного механического сцепления, которое устанавливается на МКПП и большом количестве роботизированных КПП с одним сцеплением.

Чтобы было понятно,  принцип работы гидротрансформатора заключается в том, что корпус гидротрансформатора через особую переходную пластину прикреплен к маховику двигателя. Вращение корпуса происходит вместе с маховиком. Кстати, сам ГДТ герметичен, внутри корпуса «бублика» АКПП находится трансмиссионная жидкость ATF.

Так вот, маховик раскручивает специальное насосное колесо, расположенное внутри гидротрансформатора. В результате масло проходит через реактор гидротрансформатора, затем попадает на турбину (турбинное колесо), заставляя ее вращаться. Турбина передает энергию на первичный вал АКПП. Как видно, гидротрансформатор играет роль сцепления между двигателем и коробкой, однако жесткой связи нет, так как энергия передается через масло.

Такое решение позволяет не только передавать, но и дополнительно преобразовывать крутящий момент от двигателя, что позволяет оптимизировать усилие, добиться мягкого включения передач АКПП, снизить вибрации, ударные нагрузки и т.д.  Также в современных ГДТ активно используется блокировка гидротрансформатора.

Блокировка ГДТ необходима для минимизации потерь, неизбежно возникающих по причине отсутствия жесткой связи и передачи момента через жидкость внутри гидротрансформатора. Также к снижению КПД приводит и то, что рабочая жидкость (масло ATF) сильно разогревается.  В двух словах, в определенных режимах внутри ГДТ срабатывает механическая блокировка, которая по своему принципу напоминает механическое сцепление.  

Блокировка «бублика» позволяет передавать крутящий момент от двигателя напрямую, а не через жидкость, что обеспечивает повышение КПД, лучшую топливную экономичность, более интенсивный разгон автомобиля и т.д.

  • Как видно, устройство данного элемента достаточно сложное, а также работает ГДТ под нагрузками. Вполне очевидно, что часто возникают поломки и преждевременный износ. Зачастую, первые признаки неисправности гидротрансформатора выглядят так, что машина теряет в динамике, хуже реагирует на нажатие педали газа,  увеличивается расход топлива и т.д.

Ранний признак проблем с ГДТ, когда обороты ДВС немного повышены при езде, то есть, например, если в норме на третьей передаче и скорости 60 км/ч было 2500 или 3000 об/мин при движении по ровной дороге, то стало 3500 и больше при движении в точно таких же условиях с той же скоростью (третья передача,  ровная дорога, отсутствие дополнительной загрузки и т.д.).

Также среди начальных признаков можно выделить проскальзывание гидротрансформатора (пробуксовку гидротрансформатора). Если буксует гидротрансформатор или проскальзывает, это проявляется так, что, например, при езде на той или иной передаче и разгоне на ней обороты двигателя растут не плавно, а резко увеличиваются (подскакивают на 500-600  об/мин и выше).

Если, например, автомобиль с АКПП стал плохо разгоняться, пропала динамика и коробка работает шумно, частой причиной является неисправность обгонной муфты реактора внутри ГДТ. Также нужно обратить внимание на симптом, когда при включении R или D не едет машина, причем водитель жмет на газ и обороты мотора явно повышаются, однако мотор крутится немного «тяжелее», чем при нажатии на газ на нейтральной передаче N.

В таком случае высока вероятность того, что шлицы турбины гидротрансформатора срезало. Если же двигатель глохнет при включении D  на АКПП или обороты мотора падают или скачут, проблема может быть связана с блокировкой гидротрансформатора. Данная неисправность на многих авто диагностируется путем подключения сканера.

Если определяется ошибка типа «муфта блокировки гидротрансформатора, нет передачи крутящего момента», это указывает на то, что буксует гидротрансформатор. Причины могут быть разными, хотя часто виновником оказывается клапан (соленоид) блокировки ГДТ, который «залипает» или полностью не работает.  В любом случае, такая неисправность приводит  к тому, что блокировка не срабатывает, передача момента не осуществляется напрямую, возникают потери в ГДТ, падает динамика разгона и т.д. 

Дефектовка и ремонт гидротрансформатора

В случае появления признаков поломки «бублика», не следует сразу спешить менять  ГДТ на новый или контрактный гидротрансформатор. С учетом высокой стоимости данного устройства, оптимально выполнить его переборку. Другими словами, нужно знать, где ремонтируют гидротрансформаторы с гарантией, а также продают отдельные детали (например, крышка гидротрансформатора, сальники и другие составные элементы).

Также без должного опыта не рекомендуется пытаться снять или установить гидротрансформатор на машину своими руками. Операция не сильно сложная, однако ряд ошибок при снятии и обратной сборке может привести к поломкам не только ГДТ, но и АКПП или даже ДВС.  Лучше всего комплексно выполнять все работы в сервисе, который специализируется на ремонте АКПП.

При этом важно понимать, что во многих сервисах осуществляется только снятие гидротрансформатора и последующая установка, причем для ремонта «бублик» передается в другое место. Это значит, что если напрямую выйти на сервис, который сам ремонтирует гидротрансформаторы «под ключ», зачастую можно сэкономить до 15-25% на общей стоимости ремонта.

Рекомендуем также прочитать статью о том, что такое блокировка гидротрансформатора и как она работает. Из этой статьи вы узнаете, как блокируется «бублик» АКПП, а также для чего нужна блокировка гидротрансформатора коробки передач.

Также не следует приобретать новый гидротрансформатор по низкой цене. Для справки, новое устройство для самых простых АКПП стоит минимум 900-1000 у.е. Если же якобы новый «бублик» АКПП отдают заметно дешевле, под видом нового реализуется так называемый восстановленный б/у гидротрансформатор, который перед продажей попросту окрашен свежей краской.

  • Сам ремонт гидротрансформатора является сложным процессом, в рамках которого герметичный корпус ГДТ сначала разрезается, после чего осуществляется мойка внутренних деталей и производится дефектовка. Затем изношенные и поврежденные элементы меняются на новые, восстанавливаются накладки блокировки гидротрансформатора, осуществляется замена сальников, уплотнительных колец и т.д.

Если же изначально проблемой была течь гидротрансформатора, в этом случае дефект заваривают или «пересыпают» внутренности в новый корпус. Так или иначе, важно правильно заварить все разрезы и дефекты для полного восстановления герметичности.

При этом просто заварить корпус недостаточно, так как необходимо выполнять тщательную балансировку гидротрансформатора перед установкой на авто, чтобы исключить биение.

Что в итоге

С учетом приведенной выше информации становится понятно, что «бублик» АКПП (гидротрансформатор) является важнейшим элементом в устройстве коробок передач данного типа. Данное устройство не просто связывает между собой мотор и коробку подобно сцеплению, но и является преобразователем крутящего момента.

Более того, современные ГДТ имеют систему блокировки под управлением электроники, что также заметно усложняет общее устройство гидротрансформатора. Так или иначе, необходимо понимать, что любые проблемы с ГДТ заметно сокращают ресурс и самой АКПП. Грязь и мусор из «бублика» попадает в масло, проскальзывание и пробуксовка гидротрансформатора приводят к толчкам АКПП, масло ATF перегревается при неработающей блокировке и т.д.

При этом оптимальным решением является своевременная диагностика, после чего выполняется ремонт гидротрансформатора коробки автомат, который позволяет полностью восстановить работоспособность устройства по цене до 30-35% от общей стоимости нового ГДТ.

Как правило, после качественного ремонта гидротрансформатор имеет ресурс около  60-70% по сравнению с новым. Главное, все работы должны выполнять опытные специалисты, которые имеют необходимое специализированное оборудование и предоставляют расширенную гарантию.

     

Читайте также

Что такое «бублик» в АКПП: устройство, неисправности и ремонт

Начнем с того, что АКПП является сложным механизмом, основной задачей которого является максимально плавное и своевременное переключение передач в автоматическом режиме (без участия водителя).

Хотя сегодня существует несколько типов коробок автомат, гидромеханический автомат и вариатор продолжают оставаться самыми распространенными и востребованными версиями автоматических трансмиссий.

При этом устройство таких АКПП сильно отличается от привычной «механики» и роботизированных коробок передач. Более того, сцепление также реализовано при помощи отдельного механизма, который зачастую принято считать единым целым с АКПП.

Речь идет от так называемом «бублике» коробки автомат. Далее мы рассмотрим «бублик» в коробке автомат, что это такое, какие функции выполняет данный элемент, а также какие поломки возникают и как выполняется ремонт.

Содержание статьи

«Бублик» в коробке автомат: что это такое

Итак, «бубликом» в обиходе принято называть гидротрансформатор. Такое название устройство получило благодаря своей форме. Как правило, ГДТ устанавливается в паре с «клаccическими» гидромеханическими АКПП и вариаторами CVT. Также изредка данный элемент ставится в паре с преселективными коробками.

Чтобы было понятно, гидротрансформатор фактически является сцеплением коробки-автомат. Основной его задачей является преобразование и передача крутящего момента от двигателя на коробку. При этом в устройстве нет дисков сцепления (по аналогии с МКПП), которые взаимодействуют между собой путем замыкания и прямого контакта.

Если просто, «бублик» АКПП работает подобно гидравлическому редуктору. ГДТ (гидромуфта) снижает обороты, повышает крутящий момент с коэффициентом трансформации до 2.4. При этом энергия передается через поток трансмиссионной жидкости ATF (трансмиссионного масла АКПП). Результат — мягкое включение передач, отсутствие ударных нагрузок.

В двух словах, коленвал двигателя связан с насосным колесом. Это колесо внутри ГДТ разгоняет трансмиссионное масло, после чего происходит его перенаправление на турбинное колесо. Турбинное колесо связано с АКПП. Масло раскручивает турбинное колесо, после чего перенаправляется обратно на насосное колесо.

Также жидкость попадает на лопатки направляющего колеса-реактора. Это колесо ускоряет поток жидкости и перенаправляет его в сторону вращения. В результате поток жидкости ускоряется до момента выравнивания скорости вращения насосного и турбинного колес.

В этот момент гидротрансформатор начинает работать в режиме гидромуфты, когда крутящий момент уже не преобразуется, колесо-реактор крутится свободно, не влияя на поток жидкости.

Чем большей оказывается разница в скорости вращений насосного и турбинного колес, тем большее ускорение получает поток жидкости ATF. Однако минусом является высокий нагрев. От нагрева КПД «бублика» падает. Если же происходит выравнивание скорости вращения колес, передавать кутящий момент через жидкость уже нет острой необходимости (с учетом потерь).

По этой причине ГДТ получили элементы фрикционного сцепления, то есть передача момента основана на трении. Такой режим называется блокировка гидротрансформатора, когда происходит соединение входного и выходного валов, то есть передача момента идет напрямую.

На начальном этапе блокировка срабатывала в автоматическом режиме (к срабатыванию приводило давление рабочей жидкости). В дальнейшем АКПП получили электронное управление, а за блокировку ГДТ стал отвечать отдельный клапан.

В любом случае, основной задачей стало решение соединять валы напрямую, исключая передачу момента через масло. Также несколько изменились и функции фрикционных накладок блокировки. Подобно сцеплению механической коробки,  при разгоне автомобиля с АКПП фрикционы блокировки  ГДТ немного смыкаются, слегка пробуксовывают, при этом момент передается на коробку более эффективно, без сильных потерь.

При этом блокировка гидротрансформатора в современных АКПП происходит как можно раньше, чтобы повысить КПД. Получается, «бублик» сегодня эффективно объединяет в себе функции гидравлического редуктора и обычного механического сцепления.

Как может показаться на первый взгляд, решение оптимальное. Однако вполне очевидно, что высокий нагрев жидкости ATF никуда не делся (особенно в паре с мощными ДВС), а наличие фрикционных (трущихся) элементов блокировки в конструкции говорит о том, что они подвержены износу.

Именно по этой причине гидравлический узел, который кажется очень надежным, на самом деле  испытывает значительные нагрузки,  быстро изнашивается и вполне может выйти из строя при определенных условиях.

Другими словами, в гидротрансформаторе вполне могут возникать преждевременные и неожиданные поломки. Специалисты также не без оснований считают «бублик» слабым звеном в устройстве АКПП.

Признаки проблем с гидротрансформатором АКПП

Как правило, на проблемы с ГДТ указывает состояние масла в коробке автомат. Проверять состояние смазки рекомендуется, как минимум, один раз в месяц. Зачастую это позволяет своевременно выявить неполадки АКПП или гидротрансформатора и сразу заняться их устранением.

  • Если цвет ATF после замены быстро меняется (изначально прозрачное масло мутнеет, темнеет и становится непрозрачным), это часты признак проблем с фрикционными накладками.
  • Также на неполадки ГДТ указывают признаки, когда автомобиль хуже тянет, теряется динамика разгона, увеличился расход топлива, заметны рывки при спокойном движении или в режиме торможения двигателем, появились вибрации, слышен вой при замедлении, машина стала откатываться назад при трогании в гору.

Таки или иначе, указанные выше признаки и симптомы являются основанием для того, чтобы проверить «бублик». Зачастую вовремя принятые меры позволяют избежать серьезного повреждения как ГДТ, так и самой АКПП.  

Частые поломки гидротрансформатора и ремонт

Прежде всего, частой проблемой ГДТ является загрязнение его «внутренностей» и масла АТФ продуктами износа уже известных фрикционных накладок.

К этому нужно добавить, что горячая жидкость (нагрев вполне может быть выше 100 градусов по Цельсию), смешанная с абразивными частицами, циркулирует по системе, буквально «выедая» металл на лопатках колес и других элементах внутри «бублика».

Еще высокий нагрев приводит к тому, что быстро выходят из строя сальники, прокладки, уплотнители и другие элементы. Высокие температуры негативно воздействуют на подшипники, может произойти разрушение колес ГДТ.

Также мелкая абразивная пыль от фрикционной накладки из ГДТ попадает вместе с маслом и в саму АКПП, повреждая каналы гидроблока, загрязняя клапана (соленоиды), ухудшая охлаждение масла ATF и т.д.

Получается, именно гидротрансформатор сильно загрязняет трансмиссионное масло,  ухудшая работу и повреждая детали АКПП. Если учесть, что часто фрикционные накладки приклеены к поверхностям, по мере износа в масло попадает не только абразив, но и клей, что еще сильнее ускоряет процесс загрязнения трансмиссионного масла в коробке автомат.

Не трудно догадаться, что если гидротрансформатор отработал около 150-200 тыс. км., его нужно полностью менять или выполнять ремонт гидротрансформатора. С учетом того, что цена на новый ГДТ достаточно высокая (иногда сопоставима со стоимостью самой АКПП), ремонт бублика АКПП  по понятным причинам намного более предпочтителен. 

Если же «бублик» не ремонтировать или не менять, АКПП в  скором времени выйдет из строя. Исключением можно считать только старые АКПП, где блокировка  ГДТ или отсутствовала, или  срабатывала редко на повышенных передачах. Такие коробки имеют как больший ресурс, так и увеличенный интервал замены масла по сравнению с современными аналогами.

Если рассматривать проблемы и поломки гидротрансформатора на обычном примере, с одной стороны, производители стараются сделать машину динамичной и экономичной.  Для этого гидротрансформатор блокируется на всех передачах, причем срабатывает блокировка всегда (степень блокировки, полная или частичная, зависит от интенсивности разгона и нагрузок, этим управляет электроника).

Однако изнашиваются накладки блокировки очень быстро. В результате масло сильно загрязняется, постепенно повреждая АКПП. Часто в случае с современным автоматами на пробегах чуть более 100 тыс. км. плавная блокировка пропадает, вместо этого машина с автоматом дергается при разгоне, появляются рывки АКПП, пробуксовки и т.д.

Единственным способом увеличения ресурса коробки автомат является своевременная замена масла и фильтров АКПП, а также щадящая эксплуатация с минимальными нагрузками (без резких стартов, пробуксовок в грязи, на льду или в снегу, буксировки прицепа и т.д.).

При этом добавим, что даже регулярная замена масла в ряде случаев не позволяет увеличить ресурс современных ГДТ более чем до 200 тыс. км. К этому пробегу фрикционные накладки обычно уже сильно изношены, становясь источником абразива и мусора.

Не удивительно, что автоматическая коробка с таким ГДТ будет пинаться, толкаться, переключаться с ударами и сильно изнашиваться. Проблему можно решить только своевременным ремонтом или заменой ГДТ до появления первых признаков неполадок уже самой АКПП.

Замена или ремонт гидротрансформаторов

Что касается замены, новый «бублик»  для современных версий АКПП стоит дорого. Если к этому добавить стоимость снятия коробки и другие услуги, получается внушительная сумма. Если говорить о контрактных запчастях, в этом случае не следует спешить покупать гидротрансформатор б/у. Причина — возможен сильный износ такого ГДТ, то есть замена может не решить проблему.   

В случае с ремонтом гидротрансформатора, данная услуга позволяет значительно сэкономить средства. При этом операция сложная и ее можно качественно реализовать только в специализированных мастерских, которые имеют опыт выполнения подобных работ, штат квалифицированных мастеров и профессиональное специализированное оборудование.

Прежде всего,  «бублик» нужно разрезать, отмыть, провести дефектовку, поменять все уплотнения и сальники, заменить фрикционные накладки, гидроцилиндры и другие сломанные или изношенные элементы. Затем ГДТ нужно собрать и снова заварить, причем так, чтобы устройство стало максимально герметичным. 

При этом важно доверять такие работы исключительно профессионалам, та как гидротрансформатор является высокоточным гидравлическим и одновременно механическим устройством, работает в тяжелых условиях (обороты, нагрев, нагрузки).

Любые нарушения и ошибки (дисбаланс, соосность валов), повреждения могут стать причиной немедленного выхода из строя как самого ГДТ, так и АКПП и даже ДВС автомобиля.

Что в итоге

Как видно,  «бублик» АКПП является сцеплением коробки-автомат, при этом данное устройство  в современном исполнении объединяет в себе элементы механического сцепления и гидравлики.

Рекомендуем также прочитать статью о том, как промыть коробку автомат. Из этой статьи вы узнаете о способах промывки АКПП при замене масла, когда необходима такая процедура и каких результатов следует ожидать после выполнения данной манипуляции.

Именно благодаря ГДТ удается обеспечить плавность движения и мягкость при переключении передач на малой скорости, а также снизить потери и повысить КПД автоматических коробок.

При этом особенности конструкции и нагрузки могут стать причиной быстрого выхода из строя указанной дорогостоящей и сложной детали. Чтобы максимально увеличить срок службы гидротрансформатора АКПП, необходимо отказаться от агрессивной езды на высоких оборотах, активных разгонов, пробуксовок.

Также важно регулярно менять масло в коробке автомат, постоянно следить за уровнем и состоянием жидкости ATF, регулярно менять масло и фильтры АКПП,  а также не допускать перегревов автоматической коробки передач.

Читайте также

Гидротрансформатор АКПП: все об устройстве и неисправностях

Гидротрансформатор – это далеко не новое изобретение для автомобильной индустрии. Впервые он появился порядка ста лет назад, но за долгое время своего существования устройство претерпело значительные изменения. Сегодня гидротрансформаторы используют для передачи крутящего во многих отраслях промышленности. Разумеется, автомобильная промышленность исключением не стала. Об особенностях устройства гидротрансформаторов, принципе их работы, а также неисправностях вы сможете узнать из материала Avto.pro.

Экскурс в историю

Прообраз современных гидротрансформаторов был создан еще в 1905 году Германом Феттингером – талантливым немецким инженером, который работал над устройствами для передачи передачи крутящего момента. Свой механизм он назвал гидромуфтой. Изначально его планировалось использовать в судах. Суть работы муфты сводилась к передаче крутящего момента с помощью рециркуляции жидкости, которая заполняла пространство между парой лопастных колес. Такое техническое решение должно было решить проблемы обратной нагрузку на валы, двигатель и их соединительные элементы – жидкость решила бы недостатки жесткой связи между агрегатами и смежными с ними деталями.

Первый автомобиль, оснащенный гидротрансформатором, выпустил концерн General Motors. Это была модель Oldsmobile Custom 8 Cruiser 1939 года. Автолюбители отметили, что управление данным автомобилем было очень легким, простым и, разумеется, комфортным. Чуть позже аналогичные устройства начали применять и в других моделях личного транспорта. Сегодня гидротрансформатор является верным спутников автоматических коробок передач. Автолюбители часто называют его «бубликом» из-за специфической геометрии.

Достоинства и недостатки

Прежде чем мы начнем изучать устройство гидротрансформаторов, давайте разберемся, почему их вообще стали применять. Трансмиссия с жестким соединением первичного вала с двигателем имеет серьезный недостаток: в определенных режимах работы двигателя на трансмиссию приходятся сильные нагрузки, которые становятся причиной ускоренного износа деталей. Трансформатор решил эту проблему. Но у него есть и другие достоинства. Среди них:

  • Обеспечение плавного троганья с места;
  • Потенциальная возможность увеличения крутящего момента от автомобильного двигателя;
  • Устройство практически не нуждается в обслуживании.

Где есть достоинства, там есть и недостатки. Главная особенность гидротрансфортматора – передача момента посредством движения жидкости – является и его главным недостатком. Вот почему автоконцерны продолжают работать над его улучшением:

  • Устройство имеет относительно невысокий КПД;
  • Оно пагубно сказывается на динамике автомобиля;
  • Стоимость устройства довольно высока.

Так как на раскручивание жидкости в гидротрансформаторе требуется время и мощность, динамика автомобиля может пострадать. Кроме того, проектирование и сборка гидротрансформатора требует больших экспертных мощностей и денежных трат. Автомобиль, оснащенный АКПП с трансформатором стоит дороже моделей с наиболее простой механической трансмиссией. Но с учетом того, что устройтсво не только делает работу трансмиссии более плавной, но и увеличивает ее эксплуатационный ресурс, денежные траты окупаются. 

Подробнее о принципе работы

Принцип работы гидротрансформатора сводится к передаче момента от двигателя к автомобильной трансмиссии без создания жесткой связи. Момент передается посредством рециркуляции жидкости. По сути, работает трансформатор АКПП так же, как и гидравлическая муфта. Но не стоит путать два этих устройства – гидротрансформатор несколько сложнее. Он состоит из таких элементов:

  1. Корпус;
  2. Насосное колесо / насос;
  3. Статор / реактор;
  4. Обгонная муфта;
  5. Механизм блокировки / плита блокировки;
  6. Турбинное колесо / турбина.

Если разобрать гидротрансформатор, то можно увидеть следующее: на одной оси размещено турбинное, насосное и реакторное колесо, а весь внутренний объем механизма заполнен трансмиссионной жидкостью. Между каждым из лопастных колес нет жесткого соединения, но оно и не требуется. Насосное колесо имеет жесткое соединение с коленвалом, а значит, при запуске двигателя оно будет проворачиваться вместе с ним. Турбинное колесо имеет жесткое соединение с первичным валом автомобильной АКП. Между этими колесами расположен реактор, иначе называемый статором. Сам же реактор имеет смежный элемент – муфту свободного хода, которая не дает ему вращаться в двух направлениях. Кстати, в обычных гидравлических муфтах, которые часто сравнивают с гидравлическими трансформаторами, статора и муфты нет.

Лопасти всех колес имеет особую геометрию, которая позволяет им захватывать как можно больший объем трансмиссионной жидкости. Работает устройство так: при включении двигателя и по ходу повышения оборотов насосное колесо начинает вращаться со все большей скоростью, постепенно раскручивая и жидкость. Так как турбинное колесо имеет схожую геометрию лопастей, оно начнет вращаться, увлекаемое трансмиссионной жидкостью. Выделяется здесь только реактор – он придает жидкости ускорение. Это становится возможным благодаря особой конструкции лопаток. Они имеют специфический профиль с сужающимися межлопаточными каналами. Жидкость, входя в сужающиеся каналы, выбрасывается в сторону выходного вала с увеличенной скоростью.

Формирование потока жидкости в гидротрансформаторе напрямую определяется скоростью насосного колеса. Скорость вращения последнего, в свою очередь, зависит от скорости вращения коленчатого вала. Как только лопастные колеса синхронизируется, гидротрансформатор начинает работать как гидромуфта – он не увеличивает крутящий момент. Если же нагрузка на выходной вал увеличивается, турбинное колесо немного замедляется. Реактор (статор) блокируется, начиная трансформировать поток трансмиссионной жидкости.

Режимы работы

Для полного понимания принципов работы гидротрансформатора стоит уделить внимание режимам его работы. Как стало понятно из предыдущих разделов, этот агрегат передает крутящий момент без жесткого соединения вращающихся деталей. Однако в силу отсутствия такого соединения агрегат имеет несколько недостатков. В частности, уже упомянутые низкий КПД и посредственная динамика автомобиля. Проблемы удалось решить на конструктивном уровне – введением механизма блокировки, иначе называемого блокировочной плитой. У современных гидротрансформаторов есть несколько режимов работы:

  1. Блокировка;
  2. Проскальзывание.

Блокировочная плита соединена с турбинным колесом, а значит, и с первичным валом коробки передач при помощи пружин демпфера крутильных колебаний. Получив команду от блока управления трансмиссией, она прижимает к внутренней поверхности корпуса агрегата под действием давления жидкости. Так как на плите расположены фрикционные накладки, она может обеспечить жесткое соединение и передачу крутящего момента от силового агрегата трансмиссии даже без участия жидкости. Блокировка может включаться на любой из передач.

Блокировка гидротрансформатора может быть и частичной. Если плита прижимается к корпусу устройства неполностью, гидротрансформатор переходит в режим проскальзывания. Крутящий момент при этом передаваться как через механизм блокировки, так и через циркулирующую жидкость. В этом режиме автомобиль имеет достойные динамические характеристики, а его трансмиссия продолжает работать плавно. Электроника включает частичную блокировку при разгоне и отключает при понижении скорости. У данного режима есть только один недостаток: частое его включение приводит к истиранию фрикционной накладки плиты. Продукты износа попадают в трансмиссионное масло, что отрицательно сказывается на его рабочих свойствах.

Применение гидротрансформаторов

Возьмем пример того, когда гидротрансформатор упрощает пользование автомобилем. Предположим, начинается подъем на гору после движения по ровному участку дороги. Водитель забыл о манипуляциях с педалью акселератора. Так как нагрузка на ведущие колеса увеличилась, а автомобиль сбросил скорость, частота вращения турбины должна уменьшиться. При этом уменьшилось гидравлическое сопротивление – скорость циркуляции трансмиссионного масла в гидротрансформаторе увеличилась. Это означает, что крутящий момент, передаваемый валу турбинного колеса, вырос. Водитель обнаружит, что пока лопастные колеса не синхронизировались, автомобиль двигается так, будто произошел переход на низшую передачу, как это делается в автомобилях с механической коробкой передач.

Пытливый автолюбитель может обнаружить следующее: крутящий момент может преобразовываться гидротрансформатором слишком большое число раз. Что при этом происходит? Необходимая скорость уже достигнута, однако жидкость продолжает набирать скорость вращения. Здесь на выручку приходит механизм блокировки. Он создает жесткую связь между ведущим и ведомым валом. Блокировка устроена так, что потери  мощности будут минимальными. При этом гидротрансформатор не увеличит расход топлива как до, так и после блокировки.

Вот еще один вопрос: если гидротрансформатор сам может менять величину крутящего момента, зачем присоединять его к автоматической коробке передач? Дело в том, что коэффициент изменение крутящего момента данного устройства равен 2,0 – 3,5 (обычно 2,4). Это не тот диапазон передаточных чисел, который нужен для эффективной работа автомобильной трансмиссии. К тому же, гидротрансформатор никак не поможет в движении задним ходом или в случаях, когда ведущие колеса разъединены с двигателем.

Неисправности гидротрансформаторов

Конструкция гидротрансформатора не кажется слишком сложной. Да, каждая деталь устройства спроектирована с учетом того, что к ней будут прилагаться большие нагрузки. Однако учтите тот факт, что в тандеме с трансформатором работает и электроника. Механические и электронные компоненты рано или поздно выходят из строя, причем у разных моделей авто могут быть свои специфические неисправности. Чаще всего автолюбители отмечают следующее:

  • Появление посторонних звуков при работе трансмиссии без приложения нагрузки. Причина: износ опорных или промежуточных подшипников;
  • Появление вибрации на высоких скоростях, реже – во всех режимах работы АКПП. Причина: засоренность масляного фильтра и загрязнение трансмиссионной жидкости;
  • Выход реактора из строя и падение динамике автомобиля. Здесь стоит проверить обгонную муфту;
  • Скрежет, стук гидротрансформатора. Причина: разрушение лопастей;
  • Самопроизвольное переключение ступеней АКПП. Причина: неисправность электронной системы управления;
  • Полный выход трансмиссии из строя. Такое может произойти при обрыве соединения колеса с первичным валом коробки передач. Иногда помогает восстановление шлицевого соединения.

Отдельно стоит сказать об опасности перегрева гидротрансформатора. Если автолюбитель игнорировал необходимость замены трансмиссионного масла, трансформатор будет страдать от сухого трения и перегрева. Также стоит уделять внимание остаточному ресурсу фильтра АКПП и чистоте системы охлаждения агрегата. Обычно проблема устраняется заменой расходников, чисткой и заливкой нового масла. В запущенных случаях требуется замена отдельных узлов гидротрансформатора.

Общие признаки выхода гидротрансформатора из строя: повышенный расход топлива, рывки при движении на постоянной скорости, а также при торможении двигателем, плохое состояние масла при замене. Как правило, масло в агрегате с изношенным гидротрансформатором имеет черный цвет. Некоторые неисправности могут указывать на поломку других деталей автоматической коробки передач, так что если вы заметили ненормальную работу трансмиссии, скорее обращайтесь к специалисту для диагностики своего авто.

Выбор нового агрегата

Найти новый гидротрансформатор не так уж сложно. Автолюбителям важно понимать, что при подборе нельзя допускать ошибок – если он выберет неподходящий агрегат, его не получится установить на свой автомобиль. Как результат, устройство нужно будет возвращать продавцу и начинать поиски снова. Чтобы не допустить ошибку, гидротрансформатор обычно ищут по:

  • VIN-коду;
  • Коду имеющегося агрегата.

Особняком стоит поиск по параметрам автомобиля. Он не всегда дает точный результат, но если вести поиски в проверенных электронных каталогах, то вероятность ошибки становятся меньше. Необходимо указывать практически все технические параметры транспортного средства – от марки, модели и года выпуска до характеристик двигателя и коробки передач.

Отдельно стоит рассказать о ремонте гидротрансформатора. Новое устройство в сборе стоит от 600 до 1000$, а иногда и больше. Ремонт же обходится в среднем в 4-6 раза дешевле. Впрочем, важно учитывать и стоимость снятия коробки передач. Как правило, мастера проводят мойку и дефектовку деталей, меняют уплотнители, гидроцилиндры, фрикционные накладки блокировочной плиты, а также по необходимости балансируют лопаточные колеса. Полный выход гидротрансформатора из строя – это запущенный случай. Автолюбителям достаточно менять расходники и вовремя проводить диагностику.

Вывод

Гидротрансформатор – это один из важных компонентов автоматических коробок передач, который делает эксплуатацию автомобиля еще более простой и комфортной. В силу относительной простоты устройства и применения деталей с большим эксплуатационным ресурсом, он редко выходит из строя. Но не стоит думать, что довести дело до капитального ремонта будет сложно. Если водитель игнорирует необходимость регулярной замены масла и фильтров, поломка случится в самый неожиданный момент. Впрочем, даже изношенный гидротрансформатор можно отремонтировать. Добиться полного выхода устройства из строя нелегко. Если вы заметили, что трансмиссия начала работать ненормально, мы советуем для начала обратиться к специалисту. Он локализует проблему и выяснит, подлежат ли компонента АКП ремонту. Так как новый гидротрансформатор стоит немалых денег, ремонт будет предпочтительнее.

Блог

AAMCO Bay Area | Все, что вам нужно знать о преобразователях крутящего момента

Итак, что такое преобразователь крутящего момента?

Преобразователи крутящего момента

— это особые компоненты двигателя, и их внутренности редко выходят на свет, а если и появляются, то их все еще довольно сложно понять. По сравнению с другими внутренними компонентами вашего автомобиля, гидротрансформатор напоминает что-то из космического корабля. Независимо от того, как этот компонент выглядит или звучит, если у вас есть автомобиль с автоматической коробкой передач, вы используете его ежедневно.

Если у вас есть базовые знания об автомобилях с механической коробкой передач, то вы знаете, что двигатель соединяется с трансмиссией с помощью сцепления. Без этого соединения автомобиль не смог бы полностью остановиться, не заглушив двигатель. Однако автомобили с автоматической коробкой передач не имеют диска сцепления, соединяющего двигатель с трансмиссией; вместо этого у них есть преобразователь крутящего момента. Его внешний вид может показаться не таким уж большим, но внутри него многое происходит.

Гидротрансформатор вашего автомобиля аналогичен сцеплению автомобиля с механической коробкой передач. Однако, в отличие от автомобиля с механической коробкой передач, он использует жидкость для передачи мощности на трансмиссию, предотвращая остановку двигателя и позволяя трансмиссии переключиться.

Описание гидротрансформатора

Гидротрансформатор — это внутренний компонент двигателя в форме пончика, прикрепленный непосредственно между двигателем и трансмиссией.Внутри гидротрансформатора есть две серии изогнутых лопастей, каждая из которых обращена в противоположном направлении. Пространство внутри гидротрансформатора обычно заполнено трансмиссионной жидкостью, которая помогает передавать мощность, генерируемую двигателем, на трансмиссию. Это кажется странным, правда? Не совсем! Двигатель вашего автомобиля приводит в движение одну из турбин, также известную как крыльчатка, которая нагнетает жидкость на турбину. Гидротрансформатор эффективен, поскольку его лопасти сконструированы таким образом, чтобы обеспечить максимальную передачу энергии, уменьшая тепловыделение или турбулентность.

Чтобы лучше понять его работу, представьте, как два вентилятора смотрят друг на друга. Когда один вентилятор подключается к сети (двигателю), он начинает вращать второй вентилятор (трансмиссию). Если лопасти вентилятора имеют одинаковые размеры и вес, они будут вращаться с одинаковой скоростью. Однако это грубое упрощение того, как работает гидротрансформатор.

Есть несколько факторов, которые делают преобразователь крутящего момента более эффективным; это включает в себя статор, который помогает ему перенаправлять поток трансмиссионной жидкости обратно к крыльчатке для повышения эффективности.

Как работает гидротрансформатор?

Немного сложно понять концепцию того, как жидкость может обеспечить силу для перемещения чего-то столь значительного, как транспортное средство. Насос помогает достичь контроля крутящего момента, который работает, направляя жидкость вокруг преобразователя крутящего момента, определяемую вращением коленчатого вала. Внутри корпуса находится турбина, которая вращается, когда перекачиваемая жидкость входит в контакт с лопатками турбины, это помогает измерить величину крутящего момента, который поступает на трансмиссию через входные валы.

Корпус гидротрансформатора соединяется с маховиком, вращающимся с той же скоростью, что и коленчатый вал, внутри корпуса турбины. Рабочее колесо или центробежный насос эффективно перекачивает трансмиссионную жидкость в лопасти турбины, которая, в свою очередь, вращает или передает крутящий момент на трансмиссию. Статор — это барьер, который отбрасывает жидкость прямо обратно в турбину, а не в насос, повышая эффективность системы.

Когда автомобиль работает на холостом ходу, скорость, с которой трансмиссионная жидкость закачивается в турбину, низкая, что означает, что очень маленький крутящий момент передается на двигатель через трансмиссию.Поскольку коленчатый вал вращается быстрее с увеличением дроссельной заслонки, вращающей маховик, жидкость быстрее перемещается от насоса к турбине, заставляя турбину вращаться быстрее, обеспечивая больший крутящий момент через трансмиссию.

Важно отметить, что внутреннее устройство гидротрансформатора все еще остается загадкой. Базовая механика может быть понятна, но сложные вычисления и инженерные решения, лежащие в ее основе, лучше всего понятны тем, кто обладает глубокими знаниями в области механики жидкостей.

Связано: Обслуживание радиаторов и систем охлаждения в районе залива AAMCO

Связанные: Признаки, что пришло время для автоматической настройки

Связано: работает ли система кондиционирования вашего автомобиля

Могут ли возникнуть проблемы с гидротрансформатором?

Существует несколько различных причин неисправности гидротрансформатора, некоторые из которых могут быть очень опасными. Высокий уровень проскальзывания приведет к перегреву, который повредит эластомерные уплотнения, которые помогают удерживать трансмиссионную жидкость в гидротрансформаторе.Когда жидкость начнет вытекать, она вообще перестанет работать.

Также возможно полное торможение или заедание муфты статора. Когда это произойдет, внутренний и внешний элементы сцепления будут постоянно заблокированы, что приведет к неэффективности использования топлива. В случае полной поломки статора он будет свободно вращаться, останавливая двигатель. Когда большое давление создается горячей жидкостью, движущейся внутри корпуса гидротрансформатора, оно может стать слишком высоким, что приведет к его надуванию или взрыву.

Получите информацию о своем автомобиле

Гидротрансформатор вашего автомобиля — это неотъемлемая часть любого автомобиля. Большинство владельцев никогда не взаимодействуют с этой деталью за всю свою жизнь вождения. Однако это срок службы автоматической коробки передач, а также большая часть топливной экономичности. Знакомство с его работой может помочь вам узнать, как диагностировать проблемы, связанные с вашей трансмиссией, экономя время и деньги на ремонт.

Наши услуги

Возникли проблемы с трансмиссией? Возможно, ваш гидротрансформатор неисправен.Зарегистрируйтесь или свяжитесь с ближайшим к вам центром по ремонту автомобилей AAMCO Bay Area для полной диагностики трансмиссии. Мы предлагаем лучший сервис по уходу за автомобилем в Bay Area.

Помимо услуг трансмиссии, мы также специализируемся на услугах автоматической настройки, ремонте подвески, регулярном техническом обслуживании автомобилей, замене масла и многом другом. Наши профессиональные специалисты обладают необходимыми навыками, а также отраслевыми знаниями, чтобы предложить комплексные решения для вашего автомобиля.

Связано: Рекомендуемые заводом-изготовителем услуги по техническому обслуживанию AAMCO Bay Area

Как работает гидротрансформатор?

Преобразователи крутящего момента герметичные; их внутренности редко выходят на свет, а когда они появляются, их все еще довольно сложно понять!

Представьте, что у вас два вентилятора обращены друг к другу.Включите один вентилятор, и он будет обдувать лопасти второго вентилятора воздухом, заставляя его вращаться. Но если вы будете держать второй вентилятор неподвижно, первый вентилятор будет продолжать вращаться.

Именно так работает гидротрансформатор. Один «вентилятор», называемый крыльчаткой, соединен с двигателем (вместе с передней крышкой он образует внешнюю оболочку преобразователя). Другой вентилятор, турбина, соединен с входным валом трансмиссии. Если трансмиссия не находится в нейтральном или парковочном положении, любое движение турбины приведет к перемещению автомобиля.

Вместо воздуха в гидротрансформаторе используется жидкая среда, которую нельзя сжимать — масло, также известное как трансмиссионная жидкость. В автомобилях с автоматической коробкой передач используется гидротрансформатор. В этой статье мы обсудим, зачем автомобилям с автоматической коробкой передач нужен гидротрансформатор и как он работает.

Гидротрансформатор в автоматической коробке передач служит той же цели, что и сцепление в механической коробке передач.

Двигатель должен быть подключен к задним колесам, чтобы автомобиль двигался, и отключен, чтобы двигатель мог продолжать работать, когда автомобиль остановлен.Один из способов сделать это — использовать устройство, которое физически соединяет и разъединяет двигатель и трансмиссию — сцепление. Другой метод заключается в использовании гидравлической муфты определенного типа, например, преобразователя крутящего момента, который расположен между двигателем и трансмиссией.

Внутри очень прочного корпуса гидротрансформатора есть три компонента, которые работают вместе для передачи мощности на трансмиссию:

Насос внутри гидротрансформатора представляет собой тип центробежного насоса.Во время вращения жидкость выбрасывается наружу, подобно тому, как в процессе отжима стиральной машины вода и одежда выбрасываются наружу из стирального бака. Когда жидкость выбрасывается наружу, создается вакуум, который втягивает больше жидкости в центр.

Затем жидкость поступает на лопасти турбины , которая соединена с трансмиссией (шлиц посередине — это место, где он соединяется с трансмиссией). Турбина заставляет трансмиссию вращаться, что в основном приводит в движение ваш автомобиль.Лопатки турбины изогнуты так, что жидкость, которая входит в турбину снаружи, должна изменить направление, прежде чем она покинет центр турбины. Именно это изменение направления вызывает вращение турбины.

Поскольку турбина заставляет текучую среду менять направление, текучая среда заставляет турбину вращаться.

Жидкость выходит из турбины в центре, двигаясь в другом направлении, чем при входе. Жидкость выходит из турбины, двигаясь против направления вращения насоса (и двигателя).Если позволить жидкости попасть в насос, это замедлит двигатель, потеряв мощность. Вот почему гидротрансформатор имеет статор.

Статор находится в самом центре гидротрансформатора. Его задача — перенаправить жидкость, возвращающуюся из турбины, прежде чем она снова попадет в насос. Это резко увеличивает эффективность гидротрансформатора.

Вкратце, гидротрансформатор — это тип гидравлической муфты, которая позволяет двигателю вращаться в некоторой степени независимо от трансмиссии.Он отвечает за нагнетание жидкости для автоматической коробки передач, нагнетание давления, которое обеспечивает усилие, необходимое для переключения передач трансмиссии.

Изношенный или неисправный преобразователь крутящего момента может препятствовать созданию надлежащего давления в трансмиссионной жидкости, что, в свою очередь, отрицательно влияет на работу и работу трансмиссии. Систематический осмотр у профессионала — лучший способ выявить причину проблем в работе и порекомендовать наиболее эффективное решение.

При правильной настройке это сложное устройство может оказать огромное влияние на производительность, экономичность и долговечность вашего автомобиля, а также превратить вашу автоматическую коробку передач в мощный двигатель!

Хотите узнать больше?
Посетите одно из наших заведений!

Блог AAMCO | Что такое гидротрансформатор [и как он работает]?

Вы когда-нибудь замечали, что ваша машина не может проработать неделю на баке бензина, а не проработает всего два дня? Ваша машина когда-нибудь ломалась и могла ли вообще куда-нибудь ехать, несмотря на то, что двигатель, казалось, работал нормально? Приходилось ли вашему механику когда-нибудь поднимать гидротрансформатор во время любой из этих проблем?

Гидротрансформатор — это то, что заставляет автоматическую коробку передач в легковых и грузовых автомобилях двигаться.И хотя они являются неотъемлемой частью автоматического транспортного средства, многие люди не понимают, как они работают. Читайте дальше, чтобы узнать, что такое гидротрансформатор и как он помогает вам катиться по дороге.

Что такое крутящий момент

Прежде чем мы перейдем к идее гидротрансформатора, давайте кратко рассмотрим, что такое крутящий момент. Проще говоря, крутящий момент — это потенциальная энергия, которую вы создаете, когда что-то скручиваете. Заводные игрушки, с которыми вы играли в детстве, и машины, которые катятся вперед после того, как вы их тянете назад, работают на крутящем моменте.

В автомобилях вращение коленчатого вала двигателя создает крутящий момент. Это то, что позволяет разгонять машину. Чем выше крутящий момент ваш двигатель, тем быстрее он работает.

Важность гидротрансформатора

Преобразователь крутящего момента передает крутящий момент от двигателя на вращающуюся ведомую нагрузку. В автомобиле с автоматической коробкой передач преобразователь крутящего момента соединяет источник питания с нагрузкой.

Анатомия

Преобразователи крутящего момента

состоят из пяти основных компонентов: крыльчатки, турбины, статора, муфты и жидкости.Статор — это то, что делает преобразователь крутящего момента преобразователем крутящего момента; без статора это просто гидравлическая муфта.

Крыльчатка представляет собой деталь с наклонными лопастями, которая чем-то похожа на вентилятор. Этот кусок механически вращается двигателем. Во время вращения крыльчатка проталкивает трансмиссионную жидкость через свои лопасти; чем быстрее он идет, тем быстрее движется жидкость.

Когда жидкость покидает рабочее колесо, она перемещается в турбину, почти идентичную лопаточную деталь, которая находится напротив рабочего колеса.Жидкость, попадающая на расположенные под углом лопасти турбины, заставляет турбину вращаться, что приводит к вращению трансмиссионного вала и насоса в вашем автомобиле. Жидкость перенаправляется через центр турбины, где снова ударяет по крыльчатке.

Здесь вступает в силу статор; статор находится в центре гидротрансформатора. Это еще одна серия лопастей вентиляторного типа, которые расположены под углом, так что, когда трансмиссионная жидкость попадает в них, она снова меняет направление. Статор удерживает трансмиссионную жидкость, которая вращается в направлении, противоположном двигателю, от удара о корпус преобразователя и его замедления.

Гидротрансформатор также имеет корпус, который прикреплен к двигателю вместе с крыльчаткой. В большинстве преобразователей крутящего момента также используется блокирующая муфта, которая блокирует рабочее колесо и турбину вместе на высоких скоростях для повышения топливной экономичности автомобиля.

Фазы

Гидротрансформатор работает в трех фазах: остановка, ускорение и сцепление.

Во время остановки двигатель продолжает вращаться, как и крыльчатка.Но турбина не может вращаться, поэтому машина не движется. Вот что происходит, когда у вас работает двигатель, включена передача и вы нажимаете ногу на тормоз, поэтому машина не движется.

Ускорение — это когда в игру вступает сила умножения крутящего момента. По мере увеличения числа оборотов двигателя крыльчатка начинает двигаться быстрее, что заставляет турбину двигаться быстрее. Но на этом этапе крыльчатка все еще движется быстрее, чем турбина.

Муфта — это то, что происходит при движении на высоких скоростях.Скорости крыльчатки и турбины на этом этапе почти идентичны, и это когда некоторые модели блокируют их вместе с помощью фрикционной муфты для повышения эффективности. На самом деле статор в основном не участвует в этом процессе, поскольку при достаточно высоких скоростях жидкость будет двигаться таким образом, чтобы не было риска столкновения с корпусом преобразователя.

КПД

Одна из важнейших задач статора — повышение эффективности гидротрансформатора. Перенаправляя жидкость, выходящую из турбины, статор может собирать эту кинетическую энергию и возвращать ее в цикл.Это позволяет преобразователям крутящего момента увеличивать крутящий момент для большего ускорения.

Но гидротрансформаторы не могут быть эффективными на 100 процентов, пока не произойдет блокировка; в процесс вовлечены трение и некоторая потеря кинетической энергии. Преобразователи крутящего момента наиболее эффективны на очень низких скоростях. Хотя такие компании, как Buick, поиграли с добавлением дополнительных турбин в свои муфты крутящего момента, эти модели никогда не были такими эффективными, как традиционные трехкомпонентные модели, и были сняты с производства.

Общие проблемы

Существует несколько распространенных причин выхода из строя гидротрансформатора, некоторые из которых могут быть опасными. Постоянно высокое проскальзывание гидротрансформатора может вызвать перегрев, который может повредить эластомерные уплотнения, удерживающие трансмиссионную жидкость в гидротрансформаторе. Жидкость начнет вытекать, а когда в системе закончится жидкость, она может вообще перестать работать.

Муфта статора также может заедать или ломаться.Во время заклинивания внутренние и внешние элементы сцепления могут навсегда заблокироваться, что приведет к огромному снижению эффективности использования топлива. Если муфта статора вообще выйдет из строя, статор будет свободно вращаться, и ваш автомобиль может вообще не двигаться самостоятельно.

В некоторых случаях вы можете увидеть деформацию и фрагментацию лезвия. В большинстве случаев это приведет к тому, что гидротрансформатор будет работать не так эффективно, что приведет к сокращению расхода бензина. В некоторых крайних случаях преобразователь может самоуничтожиться.

Внутри корпуса гидротрансформатора движется много давления и горячей жидкости. В некоторых случаях это давление может стать слишком высоким, и корпус может взорваться или даже взорваться. Если корпус разорвется, вам грозит опасность разлетающихся осколков и горячего масла.

Узнайте больше о том, как работает ваш автомобиль

Гидротрансформатор — одна из самых важных частей автомобиля, о которой забывают. Это то, что позволяет автомобилям с автоматической коробкой передач работать, и это большая часть того, что определяет вашу топливную экономичность.Небольшое знание того, как работают эти детали, может помочь вам диагностировать проблемы, которые в противном случае могли бы быть связаны с трансмиссией, что сэкономит вам много денег на ремонте.

Слив из гидротрансформатора — CarTechBooks

Ральф Калал

Замена трансмиссионной жидкости обычно не включает слив жидкости из гидротрансформатора. Процедура, указанная во многих заводских руководствах по замене трансмиссионной жидкости, заключается в простом слить и очистить поддон, а затем установить достаточно новой жидкости, чтобы заменить то, что было слито.

Но что, если вы хотите заменить старую жидкость и в гидротрансформаторе?

На некоторых автомобилях, особенно отечественных, невозможно слить старую ATF из гидротрансформатора, не запустив двигатель и не повернув гидротрансформатор, который откачивает содержимое. Однако, поскольку это происходит, необходимо одновременно добавить новую ATF для замены откачиваемой жидкости. На других автомобилях — обычно европейских марок, но иногда и на отечественных — в самом гидротрансформаторе есть сливная пробка, которая позволяет сливать его при выключенном двигателе.

На этих автомобилях в «колоколообразном корпусе» гидротрансформатора будет смотровая панель, которую можно снять, чтобы открыть сливной болт, который обычно утоплен в гидротрансформатор. Однако необходимо будет повернуть коленчатый вал, чтобы привести болт в нижнюю часть вращения преобразователя. Это можно сделать, надев на гайку шкива, расположенную на переднем конце коленчатого вала, большой отбойный молоток и головку или очень большой накидной гаечный ключ. Затем снимите сливную пробку и дайте преобразователю стечь в дренажный поддон.Когда он пустой, затяните его до значения крутящего момента, указанного в заводском руководстве по ремонту.

Однако на большинстве автомобилей это не так просто, потому что в гидротрансформаторе нет сливной пробки. Единственный способ полностью слить эти гидротрансформаторы — это заставить гидротрансформатор откачать старую жидкость из себя. Вот как это делается:

Для этого нужен хотя бы один помощник, а лучше два. Кроме того, убедитесь, что у вас есть достаточный запас необходимого ATF. Вам понадобится больше, чем полная мощность трансмиссии, потому что часть будет вылита в поддон, часть войдет в гидротрансформатор, а часть будет откачана со старой жидкостью.

После замены жидкости в поддоне поддона, как описано в этой главе, отсоедините обратную линию от охлаждающей части радиатора трансмиссии к трансмиссии. Есть две линии, одна на кулер и одна на возврат. Обратитесь к заводскому руководству, чтобы определить обратную линию. Если это гибкая линия, отключите ее на коробке передач. Если это негибкая линия, отключите ее от кулера. Важно получить обратную линию, потому что она также опорожняет охладитель коробки передач.Эти линии часто соединяются с помощью быстроразъемных соединений, и для их снятия может потребоваться специальный инструмент (см. Главу 1).

Присоедините кусок шланга к гибкой линии или к фитингу охладителя. Направьте шланг в емкость, достаточно большую, чтобы вместить содержимое гидротрансформатора плюс кварту или две. Вам нужно будет видеть, как жидкость льется в емкость.

Затем один человек запускает двигатель, а другой смотрит, как сливается жидкость, чтобы увидеть, когда начинает вытекать свежая жидкость, а третий добавляет свежую жидкость так же быстро, как старая жидкость откачивается из гидротрансформатора и сливается из него. кулер.На некоторых автомобилях жидкость не циркулирует в гидротрансформаторе, если трансмиссия не находится на «ведущей» передаче, поэтому для этого процесса требуется, чтобы автомобиль был на передаче, с включенным стояночным тормозом и чьей-либо ногой на педали тормоза. Но на большинстве автомобилей жидкость будет циркулировать в гидротрансформаторе, когда трансмиссия находится в «парковке».

Как только начнет вытекать свежая жидкость, заглушите двигатель. Снова подсоедините линию (и) охладителя и залейте свежую жидкость в трансмиссию до отметки «полный».

Так читается теория. Но на многих автомобилях это просто непрактично. Когда производители автомобилей заявляют, что жидкости для автоматических трансмиссий хватает на весь «срок службы» автомобиля, у них нет причин беспокоиться о том, что трубопроводы охладителей трансмиссионной жидкости будут легкодоступными, а довольно часто это не так.

Но, если вы все еще хотите удалить эту старую жидкость из гидротрансформатора и не можете получить доступ к охлаждающим трубопроводам, есть две альтернативы. Во-первых, вы можете просто поменять жидкость еще пару раз.Конечно, это грязно. Но если у вас есть многоразовая прокладка поддона, она не будет стоить дороже, чем цена дополнительной трансмиссионной жидкости. Вы не сможете удалить всю старую жидкость, но сможете подойти довольно близко. Во-вторых, после замены жидкости вы можете использовать ручной насос, чтобы время от времени откачивать жидкость, заменяя ее столько, сколько удаляете. Это избавит вас от необходимости ронять сковороду и, в конечном итоге, получить тот же результат.

Как слить жидкость из гидротрансформатора?

Пошаговые инструкции по сливу гидротрансформатора .

Поскольку гидротрансформатор (Т-преобразователь) является помощником номер один для вашей трансмиссии, хорошо ухоженный Т-преобразователь делает трансмиссию счастливой. Неправильный Т-преобразователь может вызвать пробуксовку трансмиссии, заглохание, странные шумы и гораздо более серьезные повреждения трансмиссии автомобиля. Со временем мусор от разрушения внутренних движущихся частей может загрязнить трансмиссионное масло и помешать эффективной работе Т-преобразователя, что приведет к повреждению трансмиссии.Хорошая идея — предпринять дополнительный шаг по включению хорошей промывки Т-преобразователя, поскольку обычно он не входит в стандартную замену трансмиссионного масла. Цель T-Converter — помочь автоматической коробке передач автомобиля работать хорошо и обеспечить плавное и беззаботное переключение между передачами. Промывка Т-преобразователя может быть быстрым и легким процессом, однако для некоторых моделей автомобилей могут возникнуть некоторые проблемы. Все зависит от типа соединений на соединительных магистралях трансмиссионного масла автомобиля.

Давайте начнем с проверки трансмиссионного масла, чтобы определить , нужно ли промыть масло Т-преобразователя вашего автомобиля. Если при осмотре трансмиссионного масла обнаруживаются частицы мусора, скорее всего, трансмиссию и Т-преобразователь необходимо заменить. Став Pro-active , вы можете продлить срок службы трансмиссии, вместо того чтобы откладывать на потом и нести дорогостоящий ремонт. Давайте подробно рассмотрим, как Слить масло из Т-конвертера.

Инструменты, необходимые для выполнения работы:
Ведро (слив масла)
Воронка
Инструмент для развальцовки (зависит от марки и модели)
Трансмиссионное масло (потребуется дополнительное масло)
Торцевой ключ
Отвертка
Руководство по эксплуатации автомобиля

Шаг 1
Есть 2 метода выполнения этой задачи. (в зависимости от марки / модели автомобиля. См. руководство к автомобилю, чтобы определить метод преформы.)

Метод а. Отсоедините линию охлаждения коробки передач.( Обычно подключается к радиатору, но проверьте руководство к автомобилю, чтобы узнать конкретное местоположение вашего автомобиля. )

Проверьте инструменты, необходимые для снятия охлаждающей магистрали автомобиля, обратившись к руководству по эксплуатации автомобиля. Возможно, потребуется развальцовочный инструмент . Гибкую пластину двигателя, возможно, потребуется снять, чтобы получить доступ к охлаждающей магистрали « возврат » трансмиссии. Расположение и тип охлаждающих магистралей могут различаться в зависимости от марки / модели автомобиля. К трансмиссии подключены две линии.Один из них — это охлаждающая линия , а другой — возвратная линия . Вы отключите возвратную линию . Обратитесь к руководству, чтобы определить, какая линия является возвратной линией для марки / модели вашего автомобиля.

Метод б. На некоторых моделях масло будет сливаться непосредственно из «колпака» Т-преобразователя. Следующим шагом будет поиск Т-преобразователя. Обычно Т-преобразователь находится между дренажным поддоном трансмиссии и гибкой пластиной двигателя на ходовой части автомобиля.Поворачивайте Т-образный преобразователь, пока не увидите отверстие шестигранной гайки. Найдя отверстие Hex , используйте шестигранный инструмент подходящего размера, чтобы открутить шестигранник до полного удаления масляной пробки.

Шаг 2
Поместите ведро или масляный поддон под линию охлаждения трансмиссии или Т-преобразователь (в зависимости от метода), когда трансмиссия находится на нейтральной передаче. Далее заводим двигатель.

Шаг 3
Метод a. Залить трансмиссионное масло New в щуп трансмиссии.В то же время позвольте старому маслу стечь в ведро ожидания. (Для этой задачи потребуется достаточный запас дополнительных литров трансмиссионного масла.)

Метод б. Пропустите шаг 3. Поскольку трансмиссионное масло сливается непосредственно из Т-преобразователя.

Шаг 4
Метод a. Попросите помощника медленно переключать передачи в трансмиссии на каждой передаче, и в то же время Свежее трансмиссионное масло продолжает заливать маслоизмерительный щуп трансмиссии при работающем двигателе.Убедитесь, что стояночный тормоз включен. По сути, этап 4 — это переработка старого трансмиссионного масла из трансмиссии и Т-преобразователя и его замена новым свежим маслом.

Метод б. Пропустите шаг 4 , так как трансмиссионное масло сливается непосредственно из гидротрансформатора.

Шаг 5
Оба метода a и b будут Тест-драйв автомобиля на несколько миль, а затем перепроверьте уровень трансмиссионного масла, как только вы убедитесь, что старое масло полностью слито из трансмиссии и трансмиссия теперь долита новым свежим маслом до соответствующего уровня.

Заключение:
* Внутренние части Т-преобразователя постоянно вращаются и вращаются во время движения автомобиля. Он прикреплен к трансмиссии и отвечает за движение автомобиля. Для его оптимальной работы требуется чистое масло . Уход за трансмиссией и Т-преобразователем путем регулярной промывки маслом определенно продлит срок службы автомобиля .

* Максимальный пробег на бензине достигается, когда трансмиссия и двигатель вращаются на скорости .Когда масло стареет и становится загрязненным металлической стружкой , грязью и мусором , вращение Т-преобразователя может замедлить . Это приводит к пониженному КПД трансмиссии и Т-преобразователя.

* Замена Т-преобразователя может потребоваться, если получил серьезные повреждения . В интересах владельца автомобиля проявлять инициативу по любым вопросам, связанным с трансмиссией.Проявление активности может действительно спасти ваш кошелек, потому что замена T-Converter намного дешевле, чем капитальный ремонт всей системы передачи.

Связанные

Что такое гидротрансформатор и как он работает?

Преобразователи крутящего момента

— это то, о чем никогда не следует говорить во время разговора на званом обеде.

Плохие драйверы? Может быть. Движение? Абсолютно.Преобразователи крутящего момента? Возможно нет.

Если вы заправляетесь бензином, вы, вероятно, хорошо представляете, что такое «крутящий момент». Вы, вероятно, также хорошо понимаете, как работает сцепление с механической коробкой передач. Но если вы не механик или не проводите много времени с автоматами, вы вряд ли встретите много гидротрансформаторов или сможете заглянуть внутрь одного.

Гидротрансформатор в автомобиле с автоматической коробкой передач выполняет ту же функцию, что и сцепление в автомобиле с ручным управлением, позволяя двигателю продолжать работать, когда колеса останавливаются.

КАК ЭТО РАБОТАЕТ?

Гидротрансформатор — это элегантное решение очень сложной проблемы. Сложная проблема, которую можно решить множеством способов, особенно сейчас, когда технологии стали настолько продвинутыми.

Это решение использует немного физики и много умственных способностей, используя гидравлическую муфту, серию муфт и турбин, чтобы двигатель и трансмиссия вращались независимо друг от друга.

Если вы посмотрите на гидротрансформатор, он немного похож на промышленный салатник.Учитывая тот факт, что он работает с использованием гидравлической муфты, вся сборка герметична и закрыта, а это означает, что вам будет сложно найти возможность заглянуть внутрь нее.

Вместо воды, которая очень легко сжимается под высоким давлением, преобразователь крутящего момента использует трансмиссионное масло для привода турбины, чтобы трансмиссия вращалась независимо от двигателя.

ПОЧЕМУ ЭТО ВАЖНО?

Когда вы едете со скоростью 50 миль в час, 6 передач и 2900 об / мин, ваша трансмиссия будет вращаться практически с той же скоростью, что и двигатель.

Вы начинаете подъезжать на светофоре и в автомобиле с ручным управлением; вы, вероятно, сначала сбрасываете передачи, если сможете снова уехать, не останавливаясь. По мере того, как вы ползете до остановки и ваши обороты становятся все ниже и ниже, вам нужно будет опустить сцепление, чтобы отделить трансмиссию от двигателя и предотвратить его остановку.

В автомобиле с автоматической коробкой передач у нас нет такой роскоши, как ручное разделение. По определению, автомобиль с автоматической коробкой передач делает это автоматически.Здесь в игру вступает гидротрансформатор.

Гидротрансформатор состоит из следующих основных частей: корпуса, ребер, насоса и крыльчатки.

Корпус и ребра прикреплены непосредственно к маховику, что означает, что они всегда вращаются с той же скоростью, что и двигатель. По мере того, как насос вращается, он циклирует трансмиссионное масло, выталкивая его наружу и всасывая больше в центре с помощью вакуума. Затем это нагнетает трансмиссионное масло в крыльчатку, которая начинает вращать трансмиссию независимо от двигателя.

ДОВОЛЬНО УМНЫЙ, ПРАВИЛЬНО?

Что еще более впечатляет, так это то, что это может увеличить крутящий момент, когда вы опускаете ногу и набираете высокие обороты.

Автомобили с автоматом раньше были изрядно бесполезны. Они были неэффективными, резкими, дорогими и даже не очень хорошо переключали передачи. Как и все остальное, технологии сделали их лучше. Не просто немного лучше — осмелимся ли мы так сказать, лучше, чем автомобиль с механической коробкой передач?

Современные семиступенчатые и восьмиступенчатые системы с двойным сцеплением столь же экономичны и часто быстрее в 0–60 раз, чем их аналоги с ручным управлением.

Что дальше автоматизировать?

MAT FOUNDRY GROUP ЯВЛЯЕТСЯ ВЕДУЩИМ ПРОИЗВОДИТЕЛЕМ СЕРЫХ И ЧУГУННЫХ КОМПОНЕНТОВ ДЛЯ АВТОМОБИЛЕЙ. ЧТОБЫ УЗНАТЬ БОЛЬШЕ О НАС ПРОСМОТРЕТЬ НАШИ ПРОДУКТЫ ИЛИ СВЯЗАТЬСЯ С НАМИ СЕГОДНЯ

Как работает гидротрансформатор на автоматической коробке передач?

Вкратце, преобразователь крутящего момента представляет собой тип гидравлической муфты, которая позволяет двигателю вращаться в некоторой степени независимо от трансмиссии . Он отвечает за нагнетание давления жидкости автоматической коробки передач , нагнетание давления, которое обеспечивает усилие, необходимое для переключения передач трансмиссии .

Щелкните, чтобы увидеть полный ответ

Также необходимо знать, как трансмиссионная жидкость попадает в гидротрансформатор?

Преобразователи крутящего момента передают мощность с помощью установленной на двигателе турбины для проталкивания масла ( жидкости ) через турбину со стороны трансмиссии до тех пор, пока эта турбина не перестанет пропускать жидкость без движения. К сожалению, многие преобразователи крутящего момента можно заправлять только тогда, когда трансмиссия уже снята с автомобиля.

Точно так же как выглядит гидротрансформатор? Преобразователи крутящего момента состоят из пяти основных компонентов: крыльчатки, турбины, статора, муфты и жидкости. Статор — это то, что делает преобразователь крутящего момента преобразователем крутящего момента ; без статора это просто гидромуфта.

Добавить комментарий

Ваш адрес email не будет опубликован.