Как устроен карбюратор: Устройство карбюратора

Принцип работы и устройство карбюратора

На первый взгляд карбюратор может показаться очень сложным устройством. Однако небольшой объём теоретических знаний поможет полностью разобраться с его принципом работы. Что, в свою очередь, позволит самостоятельно выполнять чистку и регулировку карбюратора. Для выполнения этих операций на должном уровне достаточно базовой информации.

Как работает карбюратор

Независимо от модели, принцип работы карбюратора аналогичен. Конструктивно любой карбюратор выполнен по следующей схеме: канал для создания топливовоздушной смеси, в котором есть специальное калибровочное отверстие для входа воздуха, поплавковая камера и выход для готовой смеси.

При работающем моторе во впускном коллекторе (элемент, соединяющий силовой агрегат и топливную систему) создаётся пониженное давление, по отношению к атмосферному. Это приводит к возникновению вакуума в карбюраторе. Благодаря этому в карбюратор, по специальному сужающемуся каналу затягивается воздух и выполняется захват бензина из топливной камеры. В процессе эти ингредиенты смешиваются, что приводит к созданию топливовоздушной смеси, которая воспламеняется в КЗ (камере сгорания) и заставляет двигаться поршни. Количество топлива в готовой смеси зависит от давления, создаваемого в смешивающей камере. Благодаря тому, что камера соединена с атмосферой, из-за разницы давления, бензин поднимается вверх, смешиваясь с воздухом. Далее смесь поступает в камеру сгорания. Сужение прохода ускоряет движение воздуха, что приводит к ещё большему его разряжению.

Подача топлива с воздухом

Управление подачей топлива и воздуха осуществляется педалью газа, она соединена с воздушной заслонкой (ВЗ) и элементом, перекрывающим поплавковую камеру (ПК). Когда педаль свободна, мотор работает на холостом ходу (ХХ). Заслонка почти полностью закрывает калиброванный канал подачи воздуха, а игла проём в топливной камере. Деталь для перекрытия поплавковой камеры выполнена в виде иглы, разделённой на несколько частей, каждая из которых имеет свою толщину. Таким образом, чем выше она поднимается, тем больше происходит подача топлива. Воздушная заслонка работает по такому же принципу, чем шире проём, тем больше поток.

Что такое холостой ход карбюратора — ХХ

Холостой ход можно сравнить с режимом ожидания. Он необходим для стабильного поддержания нужных оборотов в момент, когда автомобиль не едет, чтобы мотор не заглох. В этот случае, воздушная смесь насыщена минимальным количеством топлива, необходимым для поддержания стабильной работы системы.При отпущенной педали газа, игла золотника максимально перекрывает главный канал подачи бензина. Воздушная заслонка остаётся чуть открытой. Проход, через который осуществляется подача бензина, размещён за воздушной заслонкой. Горючая смесь начинает поступать по этому каналу только тогда, когда в карбюраторе есть увеличенное разряжение, которое возникает при сильном открытии воздушной заслонки. Для создания топливовоздушной смеси на ХХ в конструкции предусмотрен дополнительный канал подачи кислорода.  В нём есть специальный элемент для регулировки качества горючей смеси. Чем сильнее закручен винт, тем больше смесь насыщается бензином. Увеличиваются обороты холостого хода, и наоборот — откручивание винта снижает их. Таким образом, выполняя регулировку этого винта можно добиться оптимальных опций, повысить экономичность.

Для правильной дозировки ингредиентов горючей смеси, в местах забора устанавливаются жиклёры. Они представляют собой специальный элемент с определённым диаметром прохода, который не позволяет расходовать топлива или воздуха выше установленной нормы. Также жиклёр может выполнять функцию регулировочного винта.

Для чего нужна поплавковая камера в карбюраторе

 

1 — держатель оси поплавка;
2 — язычок поплавка;
3 — поплавок

ПК является одним из основных элементов карбюратора, в котором находится топливо. Уровень жидкости в камере регулируется и контролируется с помощью специального поплавка. К нему прикреплена иголка. Она закрывает канал подачи горючей смеси из бензобака. При уменьшении уровня топлива, поплавок начинает опускаться, а иголка поднимается. При заполнении камеры поплавок поднимается и уровень стабилизируется.

В карбюраторе предусмотрен механизм дополнительного подсоса управления ДЗ. Этот элемент предназначен для ручного обогащения смеси. Для этой функции предусмотрен дополнительный канал, он меньше, чем основной. Управление механизмом подсоса реализовано специальным рычагом на приборной панели. Сначала необходимо вытянуть полностью на себя элемент, тем самым максимально открыть заслонку, по мере прогрева мотора рычаг нужно постепенно вернуть в исходное положение.

Регулировка карбюратора

Регулировка карбюратора может осуществляться только на хорошо прогретом моторе. Независимо от конструкции, принцип выполнения калибровки элементов идентичный.

  • Поплавковая камера. Регулировка и контроль уровня жидкости в ёмкости осуществляется с помощью поплавка, соединённого проволокой с иглой. Уровень необходимого топлива в камере указан в руководстве по эксплуатации конкретной модели автомобиля. Сверьте текущие показатели, замерьте с помощью штангенциркуля высоту зеркала. Если уровень выше нормы, аккуратно возьмите в руку поплавок и прогните его вниз методом механического воздействия на проволоку. Если уровень топлива ниже нормы — поднимите его.
  • Настройка ХХ. Оптимальное количество оборотов на ХХ составляет 800-900 единиц. Закрутите винт качества смеси до упора и выкрутите его на 4-5 оборота обратно. Закрутите до упора винт количества и открутите 3 раза. Включите двигатель, постепенно начните закручивать первый винт, в процессе обороты должны поднять и начаться нестабильная работа мотора. Когда начнётся этап неустойчивости, начните закручивать регулировочный элемент, пока двигатель снова не начнёт работать стабильно. В завершение выполните корректировку винтом количества.
  • Регулировка жиклёров. С помощью подсоса нужно закрыть воздушную заслонку. Хвостовик тяги должен находиться в конце паза штока ПУ карбюратора. При отклонении следует устранить подгибанием тяги. Затем нужно снять крышку, а потом замерить зазор от кромки стенки камеры до ВЗ. Необходимые показатели указаны в руководстве по эксплуатации. Настройка выполняется с помощью регулировочного винта ПУ.

Элементарный карбюратор | Устройство автомобиля

 

Что называется карбюрацией и карбюратором?

Процесс приготовления горючей смеси вне цилиндров двигателя называется карбюрацией, а прибор, в котором она приготавливается – карбюратором.

Как устроен и работает элементарный карбюратор?

Элементарный (простейший) карбюратор (рис.48) состоит из поплавковой камеры 1 с поплавком 2 и запорной иглой 3, смесительной камеры 6 с диффузором 7 и дроссельной заслонкой 8. Поплавковая и смесительная камеры сообщаются между собой каналом, в котором установлен жиклер 5 с распылителем 4. Распылитель выведен в горловину диффузора так, что топливо будет находиться в нем ниже верхнего края на 2-3 мм, что предотвращает его вытекание при неработающем двигателе. Поплавковая камера каналом А сообщается с атмосферой. Бензин из топливного бака поступает в поплавковую камеру через открытую запорную иглу, опирающуюся на рычажок пустотелого поплавка. Когда бензин достигнет заданного уровня, поплавок всплывает и своим рычажком воздействует на запорную иглу, прекращая поступление бензина в поплавковую камеру. Смесительная камера верхней частью сообщается с атмосферой, нижней – с цилиндром 10 через клапан 9.

Рис.48. Элементарный карбюратор.

Работает карбюратор так. При вращении коленчатого вала поршень 11 движется от ВМТ к НМТ, над ним создается разрежение, которое через открытый впускной клапан 9 и дроссельную заслонку 8 передается в смесительную камеру. Следовательно, в смесительной камере давление ниже атмосферного (0,075-0,090 МПа), а в поплавковой – атмосферное давление (0,1 МПа). Из-за разности давлений бензин начинает вытекать из распылителя в мелко распыленном виде в смесительную камеру, туда же устремляется и воздух. В суженной части диффузора скорость движения воздуха увеличивается, он подхватывает распыленный бензин. При этом бензин испаряется и, смешавшись с воздухом, образует горючую смесь, которая через открытую дроссельную заслонку и впускной клапан поступает в цилиндр, наполняя его. Совершается такт впуска.

С увеличением открытия дроссельной заслонки увеличивается количество истекаемого бензина, то есть скорость его истечения обгоняет истечение воздуха. Горючая смесь обогащается. А при пуске двигателя бензин в силу своей инертности отстает от скорости поступления воздуха. Горючая смесь обедняется. Кроме того, такой карбюратор не обеспечивает работу двигателя на холостом ходу.

На графике (рис. 49) показаны кривые, характеризующие работу элементарного карбюратора (кривая 1) и требуемого состава горючей смеси (кривая 2) в зависимости от режима работы двигателя. Из графика видно, что элементарный карбюратор нуждается в ряде дополнительных устройств для обогащения горючей смеси на всех режимах работы двигателя. Карбюраторы, устанавливаемые на современных двигателях, имеют такие устройства.

Рис.49. Характеристики элементарного (1) и идеального (2) карбюратора.

Как подразделяются карбюраторы в зависимости от направления потока горючей смеси?

Карбюраторы в зависимости от направления потока горючей смеси подразделяются на карбюраторы о восходящим, падающим и горизонтальным потоками. Наибольшее распространение получили карбюраторы с падающим потоком, так как у них лучшие условия смесеобразования и наполнения цилиндров.

Как устроено и работает пусковое устройство карбюратора?

Пусковое устройство карбюратора (рис.50) представляет собой воздушную заслонку 2 с автоматическим клапаном 3, установленную в верхней части карбюратора, управляют которой с места водителя. Во время пуска холодного двигателя заслонку прикрывают или закрывают полностью, что и вызывает обогащение горючей смеси.

При полностью закрытой заслонке воздух проходит только через автоматический клапан 3, нагруженный слабой пружиной 4, что предотвращает переобогащение горючей смеси. Бензин проходит через жиклер 6, выбрызгивается через распылитель 1, смешивается с воздухом и образует горючую смесь. Часть бензина проходит через жиклер холостого хода 5 и в канале смешивается с воздухом, образует горючую смесь, которая через отверстие 7 поступает в цилиндры.

Рис.50. Пусковое устройство карбюратора.

Как устроена и работает система холостого хода карбюратора?

Система холостого хода (рис.51) состоит из топливного 7 и воздушного 6 жиклеров, канала 5, в котором бензин смешивается с воздухом и образуется эмульсия, отверстия 3 для плавного перехода работы двигателя с малой частоты вращения коленчатого вала на холостом ходу на среднюю. При закрытой дроссельной заслонке через это отверстие подсасывается воздух, предотвращая переобогащение горючей смеси. Через выходное отверстие 1 горючая смесь поступает в цилиндры.

Сечение этого отверстия можно изменять регулировочным винтом 2, регулируя работу двигателя с малой частотой вращения коленчатого вала на холостом ходу.

Рис. 51.Система холостого хода карбюратора.

Работает система холостого хода так. При закрытой дроссельной заслонке бензин из распылителя 4 истекать не будет, так как над заслонкой отсутствует разрежение. За счет разрежения под дроссельной заслонкой бензин через топливный жиклер 7 поступает в канал 5, где, смешиваясь с воздухом, проходящим через воздушный жиклер 6, образует эмульсию, которая опускается вниз. Через отверстие 3 к эмульсии подмешивается воздух, образуя горючую смесь, которая и поступает в цилиндры двигателя. При открывании дроссельной заслонки эмульсия будет выходить одновременно из обоих отверстий, что способствует плавному переходу от малой частоты вращения коленчатого вала на холостом ходу к средней.

Как устроена и работает главная дозирующая система карбюратора?

Главная дозирующая система карбюратора обеспечивает работу двигателя на средних нагрузках, когда от него не требуется получения полной мощности и карбюратор должен приготавливать обедненную (экономичную) горючую смесь. В современных карбюраторах торможение истечения бензина осуществляется путем пневматического торможения (рис.52). Бензин из поплавковой камеры поступает в эмульсионный колодец 9 через главный топливный жиклер 10. В этот колодец опущена эмульсионная трубка 8 с отверстиями. В верхней части трубки установлен воздушный жиклер 7, через который в эмульсионный колодец поступает воздух. При работе двигателя с увеличением открытия дроссельной заслонки 1 в смесительной камере 2 и канале 5 увеличивается разрежение. Воздушная заслонка 6 полностью открыта. Из-за разности давлений бензин из поплавковой камеры через жиклер 10 поступает в эмульсионный колодец 9 и, смешиваясь с воздухом, проходящим через жиклер 7 и отверстия в эмульсионной трубке 8, образует эмульсию, которая по каналу 5 выходит в горловину малого диффузора 4, где смешивается с воздухом и образует горючую смесь. Проходя в горловину большого диффузора 3, скорость потока смеси несколько уменьшается, а давление – повышается, что способствует улучшению наполнения цилиндров.

По мере увеличения открытия дроссельной заслонки и расхода бензина в эмульсионном колодце все большее количество отверстий в эмульсионной трубке сообщается с воздухом, тормозя истечение топлива, что и вызывает обеднение горючей смеси. Сечение топливного и воздушного жиклеров подбирают таким образом, чтобы карбюратор приготавливал обедненную смесь. По этой схеме работает карбюратор К-126.

Рис.52. Главная дозирующая система с эмульсионным колодцем.

Воздух с целью торможения истечения топлива можно подводить и непосредственно в канал распылителя (рис.53). При этом топливо, проходящее через жиклер 4, и воздух, проходящий через жиклер 3, смешиваются в канале, и образуется эмульсия. Через распылитель 2 она поступает в кольцевую щель 1 горловины малого диффузора, откуда захватывается воздухом, смешивается с ним, образует горючую смесь и поступает в цилиндры. В этом случае воздух также тормозит истечение топлива, предотвращая переобогащение горючей смеси. По этой схеме работает карбюратор К-88.

Рис.53. Главная дозирующая система с подводом воздуха непосредственно в канал распылителя.

Какое назначение экономайзера в карбюраторе, как он устроен и работает?

Экономайзер в карбюраторе служит для обогащения горючей смеси, когда дроссельная заслонка открывается на 85% и более с тем, чтобы двигатель развивал наибольшую мощность. На большинстве отечественных карбюраторов устанавливают экономайзеры с механическим приводом. Состоит он (рис.54) из клапана 4, нагруженного пружиной 5, стремящейся удерживать его в закрытом положении, штока 2, тяги 3, рычага 8, дроссельной заслонки 9, жиклера 6 экономайзера, главного топливного жиклера 7 с распылителем 1.

Рис.54. Экономайзер с механическим приводом.

Работает экономайзер так. При открытии дроссельной заслонки на 85 % и более шток опускается и воздействует на клапан. Он открывается, и бензин через жиклер экономайзера (помимо главного топливного жиклера) из поплавковой камеры проходит в распылитель и далее в смесительную камеру.

Это вызывает обогащение горючей смеси до мощностной, и двигатель развивает наибольшую мощность. С уменьшением нагрузки, когда дроссельная заслонка прикрывается, шток отходит от клапана экономайзера и пружина закрывает клапан. Дополнительная подача топлива прекращается, горючая смесь обедняется (становится экономичной).

Какое назначение ускорительного насоса в карбюраторе?

Ускорительный насос подает порцию топлива в смесительную камеру карбюратора при резком открытии дроссельной заслонки с тем, чтобы предотвратить обеднение горючей смеси, так как в это время истечение топлива отстает от поступления воздуха в смесительную камеру карбюратора.

Как устроен и работает ускорительный насос?

Ускорительный насос (рис.55) состоит из колодца 1, в котором установлен поршень 8, жестко соединенный со штоком 2. На шток надета пружина 4. Шток планкой 3, тягой 6 и рычагом 7 соединен с дроссельной заслонкой 9. Колодец сообщается с поплавковой камерой через обратный шариковый клапан 5, а со смесительной камерой – через нагнетательный клапан 10 и жиклер-распылитель 11.

Когда дроссельная заслонка закрыта, поршень находится в верхнем положении, и топливо через открытый шариковый клапан поступает в колодец, заполняя его подпоршневое пространство. Нагнетательный клапан в это время опущен вниз. При резком открытии дроссельной заслонки усилие через рычаг 7, тягу 6, планку 3 и пружину 4 передается на поршень 8, который, опускаясь, давит на топливо. Под давлением топлива шариковый обратный клапан закрывается, а нагнетательный 10 – открывается и топливо через жиклер-распылитель 11 подается воздухом в смесительную камеру, где, смешиваясь с воздухом, образует горючую смесь, которая поступает в цилиндры двигателя.

Рис.55. Ускорительный насос.

Если дроссельную заслонку удерживать в этом положении, то топливо ускорительным насосом подаваться не будет, но будет работать главная дозирующая система. Чтобы ускорительный насос подал очередную порцию топлива, необходимо отпустить педаль газа, дроссельная заслонка закроется, шариковый клапан опустится, и топливо заполнит подпоршневое пространство в колодце. Теперь при резком нажатии на педаль газа ускорительный насос подаст порцию топлива в смесительную камеру.

Для чего применяется балансировка карбюратора?

Балансировка карбюратора необходима для предотвращения обогащения горючей смеси в случае засорения воздушного фильтра и таким образом снижения расхода топлива. В несбалансированном карбюраторе поплавковая камера непосредственно сообщается с атмосферой. В таком карбюраторе в случае засорения воздушного фильтра в смесительной камере увеличивается разрежение, а в поплавковой остается неизменным, что ведет к увеличению истечения топлива из распылителя и к повышенному его расходу. В сбалансированном карбюраторе воздух в поплавковую и смесительную камеры поступает после воздушного фильтра, и его засорение не вызывает разности давлений в поплавковой и смесительной камерах. Следовательно, не будет и избыточного истечения топлива из распылителя. Для поступления воздуха в поплавковую камеру в сбалансированном карбюраторе в верхней части над воздушной заслонкой устанавливается заборная трубка или выполняется канал, сообщающий камеры. Карбюраторы современных автомобилей отечественного производства сбалансированы.

***
Проверьте свои знания и ответьте на контрольные вопросы по теме «Система питания карбюраторных двигателей»

бензин, воздух, горючий, дроссельный, жиклер, заслонка, камера, карбюратор, смесь, топливо

Смотрите также:

Карбюратор | механика | Британика

  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • Этот день в истории
  • Викторины
  • Подкасты
  • Словарь
  • Биографии
  • Резюме
  • Популярные вопросы
  • Обзор недели
  • Инфографика
  • Демистификация
  • Списки
  • #WTFact
  • Товарищи
  • Галереи изображений
  • Прожектор
  • Форум
  • Один хороший факт
  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • Britannica объясняет
    В этих видеороликах Britannica объясняет различные темы и отвечает на часто задаваемые вопросы.
  • Britannica Classics
    Посмотрите эти ретро-видео из архивов Encyclopedia Britannica.
  • #WTFact Видео
    В #WTFact Britannica делится некоторыми из самых странных фактов, которые мы можем найти.
  • На этот раз в истории
    В этих видеороликах узнайте, что произошло в этом месяце (или любом другом месяце!) в истории.
  • Demystified Videos
    В Demystified у Britannica есть все ответы на ваши животрепещущие вопросы.
  • Студенческий портал
    Britannica — это главный ресурс для учащихся по ключевым школьным предметам, таким как история, государственное управление, литература и т. д.
  • Портал COVID-19
    Хотя этот глобальный кризис в области здравоохранения продолжает развиваться, может быть полезно обратиться к прошлым пандемиям, чтобы лучше понять, как реагировать сегодня.
  • 100 женщин
    Britannica празднует столетие Девятнадцатой поправки, выделяя суфражисток и политиков, творящих историю.
  • Britannica Beyond
    Мы создали новое место, где вопросы находятся в центре обучения. Вперед, продолжать. Просить. Мы не будем возражать.
  • Спасение Земли
    Британника представляет список дел Земли на 21 век. Узнайте об основных экологических проблемах, стоящих перед нашей планетой, и о том, что с ними можно сделать!
  • SpaceNext50
    Britannica представляет SpaceNext50. От полёта на Луну до управления космосом — мы исследуем широкий спектр тем, которые подпитывают наше любопытство к космосу!

Содержание

  • Введение

Краткие факты

  • Факты и сопутствующий контент

Как работает карбюратор?

Как работает карбюратор? — Объясните этот материал

Вы здесь: Домашняя страница > Инжиниринг > Карбюраторы

  • Дом
  • Индекс А-Я
  • Случайная статья
  • Хронология
  • Учебное пособие
  • О нас
  • Конфиденциальность и файлы cookie

Реклама

Топливо плюс воздух равно движению — это основная наука, стоящая за большинством транспортных средств. которые путешествуют по земле, по морю или по небу. Автомобили, грузовики и автобусы превращают топливо в энергию, смешивая его с воздухом и сжигая в металлические цилиндры внутри их двигателей. Точно сколько топлива и воздуха потребности двигателя меняются от момента к моменту, в зависимости от того, как долго он работает, как быстро вы едете и множество других факторы. В современных двигателях используется система с электронным управлением. позвонил впрыск топлива для регулирования топливно-воздушной смеси таким образом ровно с минуты поворота ключа до момента переключения двигатель снова выключается, когда вы достигаете пункта назначения. Но пока эти были изобретены умные устройства, практически все двигатели полагались на изобретательные устройства для смешивания воздуха и топлива, называемые карбюраторами (пишется «карбюратор» в некоторых странах и часто сокращается до «карбюратора»). Что они собой представляют и как они работают? Давайте посмотрим поближе!

Работа: Коротко о карбюраторах: они добавляют топливо (красный) в воздух (синий), чтобы получилась смесь, подходящая для сгорания в цилиндрах. Цилиндры современных автомобилей более эффективно питаются системами впрыска топлива, которые потребляют меньше топлива и меньше загрязняют окружающую среду. Но вы по-прежнему найдете карбюраторы в двигателях старых автомобилей и мотоциклов, а также в компактных двигателях газонокосилок и бензопил.

Содержание

  1. Как двигатели сжигают топливо
  2. Что такое карбюратор?
  3. Кто изобрел карбюратор?
  4. Как работает карбюратор?
  5. Узнать больше

Как двигатели сжигают топливо

Двигатели — это механические вещи, но они тоже химические вещества: они разработан вокруг химической реакции, называемой сгоранием : когда вы сжигаете топливо в воздухе, вы выделяете тепловую энергию и производите углерод диоксид и вода как продукты жизнедеятельности. Для эффективного сжигания топлива вам должны использовать много воздуха. Это в равной степени относится и к автомобильному двигателю. что касается свечи, костра на открытом воздухе, угля или дрова в чьем-то доме.

С костром вам никогда не придется беспокойтесь о том, что у вас слишком много или слишком мало воздуха. При пожарах в помещении не хватает воздуха и гораздо важнее. Слишком мало кислорода вызовет пожар в помещении (или даже устройство для сжигания топлива, такое как газовая печь центрального отопления (котел), чтобы производят опасные загрязнения воздуха, в том числе токсичные угарный газ.

Рекламные ссылки

Работа: Теоретически двигателю автомобиля требуется в 14,7 раз больше воздуха, чем топлива, чтобы топливовоздушная смесь сгорала должным образом. Это называется стехиометрической смесью и получается 94 процента воздуха и 6 процентов топлива. На практике соотношение может быть другим.

С автомобильным двигателем все немного сложнее. Если у вас есть достаточно атомов кислорода, чтобы сжечь все ваши атомы топлива, это называется стехиометрическая смесь . (Стехиометрия является частью химии, химический эквивалент проверки того, что у вас достаточно каждого ингредиента прежде чем приступить к приготовлению пищи по рецепту.) В случае автомобильного двигателя, соотношение обычно составляет около 14,7 частей воздуха на 1 часть топлива (хотя это зависит от того, из чего именно состоит топливо). Слишком много воздуха и недостаточно топлива означает, что двигатель горит «бедный», когда слишком много топлива и недостаточно воздуха называется сжигание «богатых». Немного избыточное количество воздуха (слегка обедненная смесь) даст лучшую экономию топлива, а небольшое количество воздуха (слегка богатая смесь) даст лучшую производительность. Иметь слишком много воздуха так же плохо, как и слишком маленький; оба вредны для двигателя по-разному.

«Карбюратор называют «Сердцем» автомобиля, и нельзя ожидать, что двигатель будет работать правильно, выдавать нужную мощность или работать плавно, если его «сердце» не выполняет свои функции должным образом».

Эдвард Кэмерон, The New York Times, 1910

Что такое карбюратор?

Бензиновые двигатели рассчитаны на всасывание точно необходимого количества воздуха, поэтому топливо сгорает правильно, независимо от того, запускается ли двигатель холодным или греется на максимальной скорости. Правильный подбор топливно-воздушной смеси работа умного механического устройства под названием карбюратор : а трубка, которая пропускает воздух и топливо в двигатель через клапаны, смешивая их вместе в разных количествах, чтобы удовлетворить широкий спектр различных условия вождения.

Вы можете подумать, что слово «карбюратор» довольно странное, но оно происходит от глагола «карбюратор». Это химический термин, означающий обогащение газа путем соединения его с углеродом. или углеводороды. Итак, технически карбюратор — это устройство, которое насыщает воздух (газ) топливом. (углеводород).

Фото: Регулировка ручного карбюратора «дроссель» (клапан впуска воздуха) в двигателе DeSoto Firedome 1956 года выпуска. Фото Лори Пирсон предоставлено Корпусом морской пехоты США и DVIDS.

Кто изобрел карбюратор?

Карбюраторы существуют с конца 19 века. века, когда они были впервые разработаны пионером автомобилестроения (и основатель Mercedes) Карл Бенц (1844–1929). Раньше были попытки «карбюрации» другими способами. Например, французский пионер двигателей Жозеф Этьен Ленуар (1822–1819 гг.).00) изначально использовал вращающийся цилиндр с прикрепленными губками, которые погружались в топливо при повороте, вынимая его из контейнера и перемешивая с воздухом. [1]

На приведенной ниже диаграмме, которую я раскрасил для облегчения понимания, показан исходный Карбюратор Benz 1888 года выпуска; основной принцип работы (объясненный в рамке ниже) остается прежним и по сей день.

Иллюстрация: очень упрощенная схема оригинального карбюратора Карла Бенца из его патент 1888 г. Топливо из бака (синий, D) поступает в то, что он назвал генератором (зеленый, A). внизу, где он испаряется. Пары топлива проходят вверх по серой трубе и встречаются с поступающим воздухом. вниз по той же трубе, которая входит из атмосферы через перфорацию вверху. Воздух и топливо смешиваются в красной камере (F), затем проходят через клапан (бирюзовый, G) в цилиндр H, где они сжечь, чтобы сделать власть. Работа из патента США 382 585: Карбюратор Карла Бенца. 8 мая 1888 г., любезно предоставлено Управлением по патентам и товарным знакам США.

Как работает карбюратор?

Фото: Типичный карбюратор не на что смотреть! Фото Дэвида Хоффмана предоставлено ВМС США и Викисклад.

Карбюраторы сильно различаются по конструкции и сложности. Самый простой из возможных по сути большая вертикальная воздушная труба над цилиндрами двигателя с горизонтальная топливная труба, соединенная с одной стороны. Когда воздух течет вниз трубы, он должен проходить через узкий изгиб посередине, который заставляет его ускоряться и заставляет его давление падать. Это перегнулось раздел называется Вентури . Падение давления воздуха создает эффект всасывания, который всасывает воздух через топливную трубку в сторона.

Работа: Эффект Вентури: когда жидкость течет в более узкое пространство, ее скорость увеличивается, но давление падает. Это объясняет, почему ветер свистит между зданиями и почему лодки, плывущие параллельно друг другу, часто сталкиваются друг с другом. Это пример закона сохранения энергии: если бы давление не падало, жидкость получала бы дополнительную энергию, втекая в узкое сечение, что нарушало бы один из самых основных законов физики.

Воздушный поток втягивает топливо, чтобы присоединиться к нему, что нам и нужно, но как можно ли отрегулировать топливовоздушную смесь? Карбюратор имеет два поворотных клапаны выше и ниже трубки Вентури. Вверху есть клапан, называемый дросселем , который регулирует, сколько воздуха может проходить дюйм. Если дроссель закрыт, меньше воздуха проходит через трубу и Вентури всасывает больше топлива, поэтому двигатель получает богатую топливом смесь. Это удобно, когда двигатель холодный, при первом запуске и работает довольно медленно. Под трубкой Вентури есть второй клапан. называется дроссельная заслонка . Чем больше дроссельная заслонка открыта, тем больше воздух проходит через карбюратор и чем больше топлива он всасывает из труба в сторону. Чем больше топлива и воздуха поступает в двигатель, тем высвобождает больше энергии и производит больше мощности, и машина едет быстрее. Вот почему открытие дроссельной заслонки заставляет автомобиль ускоряться: это эквивалентно дуновению костра, чтобы получить больше кислорода и сделать его сгореть быстрее. Дроссель соединен с педалью акселератора в машине или дроссель на руле мотоцикла.

Подача топлива в карбюратор немного сложнее, чем мы описывали до сих пор. К топливной трубе прикреплен своего рода мини-топливный бак, называемый поплавково-питательная камера (небольшой бачок с поплавком и клапаном внутри). Когда камера подает топливо в карбюратор, уровень топлива падает, а вместе с ним падает и поплавок. Когда поплавок опускается ниже определенного уровня, он открывает клапан, пропуская топливо. в камеру, чтобы заправить ее из основного бензобака. Как только камера заполняется, поплавок поднимается, закрывает клапан, и подача топлива снова отключается. ( поплавковая камера работает как туалет, с поплавком эффективно выполняет ту же работу, что и шаровой кран — клапан, который помогает наполнять туалет. с нужным количеством воды после промывки. Что общего у автомобильных двигателей и туалетов? Больше, чем вы могли подумать!)

В общем, вот как это все работает:

  1. Воздух поступает в верхнюю часть карбюратора из воздухозаборника автомобиля, проходя через фильтр, очищающий его от мусора.
  2. При первом запуске двигателя воздушную заслонку (синюю) можно настроить так, чтобы она почти перекрывала верхнюю часть трубы, чтобы уменьшить количество поступающего воздуха (увеличив содержание топлива в смеси, поступающей в цилиндры).
  3. В центре трубы воздух нагнетается через узкий изгиб, называемый трубкой Вентури. Это ускоряет и приводит к падению его давления.
  4. Падение давления воздуха создает всасывание в топливной трубе (справа), всасывая топливо (оранжевый).
  5. Дроссель (зеленый) — это клапан, который поворачивается для открытия или закрытия трубы. Когда дроссельная заслонка открыта, в цилиндры поступает больше воздуха и топлива, поэтому двигатель производит больше мощности, и автомобиль едет быстрее.
  6. Смесь воздуха и топлива стекает в цилиндры.
  7. Топливо (оранжевое) подается из мини-топливного бака, называемого поплавковой камерой.
  8. Когда уровень топлива падает, поплавок в камере опускается и открывает верхний клапан.
  9. Когда клапан открывается, в камеру поступает больше топлива из основного бензобака. Это заставляет поплавок подниматься и снова закрывать клапан.

Узнайте больше

На этом сайте

  • Тормоза
  • Бензиновые автомобильные двигатели
  • Шестерни
  • Дизельные двигатели
  • Колеса и оси

Книги

Для читателей постарше
  • Карбюраторы Холли: как восстановить Майк Мавигран. КарТех, 2016.
  • Руководство по карбюратору Rochester
  • Майка Стаблфилда. Хейнс, 1994.
  • .
  • Карбюраторы Weber от Пэта Брейдена. Книги HP, 1988.
  • .
Для младших читателей
  • Car Science by Richard Hammond. Дорлинг Киндерсли, 2007. От материалов, из которых они сделаны, до того, как они рассекают воздух, эта книга объясняет науку, которая заставляет автомобили двигаться (9–12 лет).

Видеоролики

  • Карбюраторы — пояснение: это видео от Engineering Explained охватывает почти ту же тему, что и моя статья, но рассказывает нам о том, что происходит. Он также распространяется на карбюраторы со второй трубкой Вентури.
  • Карбюраторы поплавкового типа, объяснение Pimpinpenz. Хороший наглядный обзор поплавкового карбюратора с игольчатым клапаном.

Статьи

  • Попрощавшись с карбюраторами, Nascar готовит переход на систему впрыска топлива Пол Стенквист. The New York Times, 20 июля 2011 г. Как Nascar наконец отказалась от карбюраторов в гоночном сезоне 2012 г. и почему это заняло так много времени.
  • Технология; «Прощай, карбюраторы» Джона Холуса. Нью-Йорк Таймс, 22 октября 19 г.81. Статья из архива The Times предвещает появление впрыска топлива в начале 1980-х годов.
  • Новый карбюратор Форда с регулируемой скоростью Вентури от EF Lindsley. Popular Science, август 1976 г. В этой старой статье из архива Pop Sci есть несколько отличных иллюстраций в разрезе различных типов карбюраторов Вентури.

Патенты

Для получения более подробной технической информации см.:

  • Патент США 382,585: Карбюратор Карла Бенца. 8 мая 1888 г. Оригинальное устройство смешения топлива с воздухом, изобретенное в конце 19 в.19 века пионером автомобилестроения Карлом Бенцем.
  • Патент США 1,520,261: Карбюратор Джорджа Ф. Риттера и др., Tillotson Manufacturing. 23 декабря 1924 года. Типичный карбюратор начала 20 века.
  • Патент США 1 938 497: Карбюратор Чарльза Н. Пога. 5 декабря 1933 г. Эта конструкция направлена ​​​​на то, чтобы испарить больше топлива и обеспечить большую мощность двигателя.
  • Патент США 4,501,709: Карбюратор Вентури с изменяемой геометрией Тадахиро Ямамото и Тадаки Оота, Nissan. 26 февраля 1985 г. В карбюраторе этого более современного типа размер трубки Вентури автоматически изменяется для поддержания постоянного уровня всасывания.

Каталожные номера

  1. ↑   Газовые и нефтяные двигатели: Практический трактат о внутреннем сгорании Двигатель Уильяма Робинсона. Э. и Ф.Н. Спон, 1890, стр. 175.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты.

Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.

Авторские права на текст © Chris Woodford 2009, 2021. Все права защищены. Полное уведомление об авторских правах и условия использования.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *