Назначение системы питания карбюраторного двигателя: Система питания карбюраторных двигателей.

Содержание

Система питания карбюраторных двигателей.


Система питания карбюраторного двигателя




Система питания карбюраторного бензинового двигателя с искровым зажиганием служит для хранения топлива, его очистки от механических примесей, приготовления горючей смеси, а также для подачи горючей смеси в цилиндры двигателя и отвода из них отработавших газов. Кроме того, в функции системы питания входит очистка воздуха, используемого для приготовления горючей смеси.

Горючая смесь состоит из топлива и воздуха, соединенных в определенной пропорции и тщательно перемешанных друг с другом. При сгорании горючей смеси в цилиндрах двигателя выделяется тепловая энергия, преобразуемая затем в механическую энергию.

Система питания карбюраторного двигателя (Рис. 1) состоит из топливного бака 6, топливного насоса 7, воздушного фильтра 1, карбюратора 4, топливопроводов 5, впускного 2 и выпускного 3 трубопроводов, приемной трубы 8 глушителей и собственно глушителей

9 и 10.

Основным топливом, используемым для работы карбюраторных двигателей с принудительным воспламенением, является бензин – жидкий продукт переработки нефти, горючая смесь лёгких углеводородов.

***



Схема работы карбюраторной системы питания

Топливо (бензин) из бака подается насосом 7 по топливопроводам 5 в карбюратор 4. Через воздушный фильтр 1 в карбюратор поступает воздух. Приготовленная в карбюраторе из топлива и воздуха горючая смесь подается в цилиндры двигателя по впускному трубопроводу 2. Отработавшие газы отводятся из цилиндров двигателя в окружающую среду через выпускной трубопровод 3, приемную трубу 8 глушителей, основной 10 и дополнительный 9 глушители.

В системе питания бензиновых двигателей автомобилей обязательными элементами являются фильтры очистки топлива (у двигателей грузовых автомобилей — фильтры грубой и тонкой очистки), а также воздушный фильтр.

Топливо из бака через фильтры насосом подается к карбюратору, где смешивается в определенной пропорции с воздухом, поступающим через воздухоочиститель. Полученная горючая смесь из-за разрежения в цилиндрах двигателя с большой скоростью перемещается по впускному трубопроводу, при этом дополнительно перемешиваясь, и попадает в цилиндры двигателя, где и сгорает посредством искрового воспламенения от электрической свечи.

За счет давления образовавшихся при сгорании горючей смеси газов, воздействующих на детали и узлы кривошипно-шатунного механизма, осуществляется работа двигателя.

***

Автомобильный бензин


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Система питания

Система питания двигателя служит для приготовления горючей смеси из паров топлива и воздуха в определенных пропорциях, подачи ее в цилиндры двигателя и отвода из них отработавших газов. За подачу топлива в цилиндры в современных автомобилях отвечает система впрыска топлива, основными элементами, которой являются форсунки.

Устройство системы питания

В систему питания карбюраторного двигателя входят: топлив­ный бак, фильтр-отстойник, топливопроводы, топливный насос, фильтр тонкой очистки топлива, карбюратор, воздухоочиститель, впускной трубо­провод, выпускной трубопровод, приемные трубы, глушитель, приборы контроля уровня топлива.

Работа система питания

При работе двигателя топливный насос засасывает топливо из топлив­ного бака и через фильтры подает в поплавковую камеру карбюратора. При такте впуска в цилиндре двигателя создается разрежение и воздух, пройдя через воздухоочиститель, поступает в карбюратор, где смешивается с парами топлива и в виде горючей смеси подается в цилиндр, и там, сме­шиваясь с остатками отработавших газов, образуется рабочая смесь. После совершения рабочего хода, отработавшие газы выталкиваются поршнем в выпускной трубопровод и по приемным трубам через глушитель в окру­жающую среду.

Системы питания и выпуска отработавших газов двигателя автомобиля:

1 — канал подвода воздуха к воздушному фильтру; 2 — воздушный фильтр; 3 — карбюратор; 4 — рукоятка ручного управления воздушной заслонкой; 5 — рукоятка ручного управления дроссельны­ми заслонками; 6 — педаль управления дроссельными заслонками; 7 — топливо проводы; 8 — фильтр-отстойник; 9 — глушитель; 10 — приемные трубы; 11 — выпускной трубопровод; 12 — фильтр тонкой очистки топлива; 13 — топливный насос; 14 — указатель уровня топлива; 15 — датчик указателя уровня топлива; 16 — топливный бак; 17— крышка горловины топливного бака; 18 — кран; 19 — выпускная труба глушителя.

Топливо. В качестве топлива в карбюраторных двигателях обычно ис­пользуют бензин, который получают в результате переработки нефти.

Требования, предъявляемые к бензинам:

• быстрое образование топливовоздушной смеси;

• скорость сгорания не более 40 м/с;

• минимальное коррозирующее воздействие на детали двигателя;

• минимальное отложение смолистых веществ в элементах системы питания;

• минимальное вредное воздействие на организм человека и окружаю­щую среду;

• способность длительное время сохранять свои свойства.

Автомобильные бензины в зависимости от количества легко испаряющихся фракций подразделяют на летние и зимние.

 Для автомобильных карбюраторных двигателей выпускают бензины А-76, АИ-92, АИ-98 и др. Буква «А» обозначает, что бензин автомобильный, цифра — наименьшее октановое число, характеризующее детонационную стойкость бензина. Наибольшей детонационной стойкостью обладает изооктан, (его стой­кость принимают за 100), наименьшей —  н-гептан (его стойкость равна 0). Октановое число, характеризующее детонационную стойкость бензи­на, — процентное содержание изооктана в такой смеси с н-гептаном, ко­торая по детонационной стойкости равноценна испытуемому топливу. Например, исследуемое топливо детонирует так же, как смесь 76 % изо­октана и 24 % н-гептана. Октановое число данного топлива равно 76. Октановое число определяется двумя методами: моторным и исследова­тельским. При определении октанового числа вторым методом в марки­ровке бензина добавляется буква «И». Октановое число определяет до­пустимую степень сжатия.

 

 

Топливный бак. На автомобиле устанавливают один или несколько топливных баков. Объем топливного бака должен обеспечивать 400—600 км пробега автомобиля без заправки. Топливный бак  состоит из двух сварных половинок, выполненных штамповкой из освинцованной стали. Внутри бака имеются перегородки, придающие жесткость конструкции и препятствующие образованию волн в топливе. В верхней части бака приварена наливная горловина, которая закрывается пробкой. Иногда для удобства заправки бака топливом используют выдвижную горловину с сетчатым фильтром. На верхней стенке бака крепится датчик указателя уровня топлива и топливо заборная трубка с сетчатым фильтром. В днище бака имеется резьбовое отверстие для слива отстоя и удаления механических примесей, которое закрыто пробкой. Наливную горловину бака закрывают плотно пробкой, в корпусе которой имеется два клапана — паровой и воздушный. Паровой клапан при повышении давления в баке открывается и выводит пар в окружающую среду. Воздушный клапан открывается, когда идет расход топлива и создается разрежение.

 

Топливные фильтры. Для очистки топлива от механических примесей применяют фильтры грубой и тонкой очистки. Фильтр-отстойник грубой очистки отделяет топливо от воды и крупных механических примесей. Фильтр-отстойник  состоит из корпуса, отстойника и фильтрующего элемента, который собран из пластин толщиной 0,14 мм. На пластинах имеются отверстия и выступы высотой 0,05 мм. Пакет пластин установлен на стержень и пружиной поджимается к корпусу. В собранном состоянии между пластинами имеются щели, через которые проходит топливо. Крупные механические примеси и вода собираются на дне отстойника и через отверстие пробки в днище периодически удаляются.

Топливный бак (а) и работа выпускного (б) и впускного (в) клапанов: 1— фильтр-отстойник; 2 — кронштейн крепления бака; 3 — хомут крепления бака; 4 — датчик указателя уровня топлива в баке; 5 — топливный бак; 6 — кран; 7 — пробка бака; 8 — горловина; 9 — облицовка пробки; 10 — резиновая прокладка; П — корпус пробки; 12 — выпускной клапан; 13 — пружина выпускного клапана; 14 — впускной клапан; 15 — рычаг пробки бака; 16 -пружина впускного клапана.

Фильтр-отстойник: 1 — топливо провод к топливному насосу; 2 — прокладка корпуса; 3 — корпус-крышка; 4 — топливо провод от топливного бака; 5 — прокладка фильтрующего элемента; 6 — фильтрующий элемент; 7— стойка; 8 — отстойник; 9— сливная пробка; 10 — стержень фильтрующего элемента; 11 — пружина; 12 — пластина фильтрующего элемента; 13 — отверстие в пластине для прохода очищенного топлива; 14 — выступы на пластине; 15 — отверстие в пластине для стоек; 16 — заглушка; 17 — болт крепления корпуса-крышки.

Фильтры тонкой очистки топлива с фильтрующими элементами: a — сетчатый; б — керамический; 1— корпус; 2— входное отверстие; 3— прокладка; 4— фильтрующий элемент; 5— съемный стакан-отстойник; 6 — пружина; 7— винт креплении стакана; 8— канал для отвода топлива.

Фильтр тонкой очистки. Для очистки топлива от мелких механических примесей применяют фильтры тонкой очистки , которые состоят из корпуса, стакана-отстойника и фильтрующего сетчатого или керамического элемента. Керамический фильтрующий элемент — пористый материал, обеспечивающий лабиринтное движение топлива. Фильтр удерживается скобой и винтом.

Топливо проводы соединяют приборы топливной системы и изготовляются из медных, латунных и стальных трубок.

Топливный насос системы питания

Топливный насос служит для подачи топлива через фильтры из бака в поплавковую камеру карбюратора. Применяют насосы диафрагменного типа с приводом от эксцентрика распределительного вала. Насос  состоит из корпуса, в котором крепится привод — двуплечий рычаг с пружиной, головки, где размещены впускные и нагнетательные клапаны с пружинами, и крышки. Между корпусом и головкой зажаты края диафрагмы. Шток диафрагмы к рычагу привода крепится шарнирно, что позволяет диафрагме работать с переменным ходом.
Когда двуплечий рычаг (коромысло) опускает диафрагму вниз, в полости над диафрагмой создается разрежение, за счет чего открывается впускной клапан и наддиафрагменная полость заполняется топливом. При сбегании рычага (толкателя) с эксцентрика диафрагма поднимается вверх под действием возвратной пружины. Над диафрагмой давление топлива повышается, впускной клапан закрывается, открывается нагнетательный клапан и топливо поступает через фильтр тонкой очистки в поплавковую камеру карбюратора. При смене фильтров поплавковую камеру заполняют топливом с помощью устройства для ручной подкачки. В случае выхода диафрагмы из строя (трещина, прорыв и т. п.) топливо поступает в нижнюю часть корпуса и вытекает через контрольное отверстие.

Воздушный фильтр служит для очистки воздуха, поступающего в карбюратор, от пыли. Пыль содержит мельчайшие кристаллы кварца, который, оседая на смазанных поверхностях деталей, вызывает их изнашивание.

Требования, предъявляемые к фильтрам:


• эффективность очистки воздуха от пыли;
• малое гидравлическое сопротивление;
• достаточная пылеемкость:
• надежность;
• удобство в обслуживании;
• технологичность конструкции.


По способу очистки воздуха фильтры делятся на инерционно-масляные и сухие.
Инерционно-масляный фильтр состоит из корпуса с масляной ванной, крышки, воздухозаборника и фильтрующего элемента из синтетического материала.
При работе двигателя воздух, проходя через кольцевую щель внутри корпуса и, соприкасаясь с поверхностью масла, резко изменяет направление движения. Вследствие этого крупные частицы пыли, находящиеся в воздухе, прилипают к поверхности масла. Далее воздух проходит через фильтрующий элемент, очищается от мелких частиц пыли и поступает в карбюратор. Таким образом, воздух проходит двухступенчатую очистку. При засорении фильтр промывают.
Воздушный фильтр сухого типа состоит из корпуса, крышки, воздухозаборника и фильтрующего элемента из пористого картона. При необходимости фильтрующий элемент меняют.

Назначение и приборы системы питания карбюраторных двигателей

 

Какое назначение системы питания в карбюраторных двигателях?

Система питания карбюраторных двигателей служит для хранения топлива, очистки воздуха и топлива, приготовления горючей смеси, подвода ее в цилиндры двигателя и отвода отработавших газов из них.

Какие приборы входят в систему питания карбюраторных двигателей и их взаимодействие?

Система питания карбюраторного двигателя (рис.47) состоит из топливного бака 10, топливного фильтра-отстойника 12, топливного насоса 1, фильтра тонкой очистки топлива 4, карбюратора 3, воздушного фильтра 2, впускного трубопровода, выпускного трубопровода 15, газоотводящей трубы 14 с глушителем шума выпуска отработанных газов 13, соединительных трубопроводов и бензостойких шлангов 8, топливозаборного крана 11; указателя уровня топлива в топливном баке 9, педали управления дроссельной заслонкой 7, кнопки управления воздушной 5 и дроссельной 6 заслонками карбюратора.

Рис.47. Система питания карбюраторного двигателя.

При работе двигателя топливо из топливного бака принудительно с помощью топливного насоса подается в поплавковую камеру карбюратора, предварительно очистившись в фильтре-отстойнике и фильтре тонкой очистки. Одновременно в карбюратор поступает воздух, предварительно очищенный в воздушном фильтре. В карбюраторе топливо смешивается с воздухом в заданной пропорции и образуется горючая смесь, которая по впускному трубопроводу поступает в цилиндры двигателя, где сжимается, воспламеняется и сгорает, выделяя тепловую энергию, которая с помощью механизмов и систем преобразуется в механическую и в виде крутящего момента передается на колеса автомобиля, приводя его в движение. Отработавшие газы по выпускному трубопроводу отводятся в атмосферу.

***
Проверьте свои знания и ответьте на контрольные вопросы по теме «Система питания карбюраторных двигателей»

двигатель, карбюратор, карбюраторный, питание, система, топливный, топливо, трубопровод

Смотрите также:

Система питания карбюраторного двигателя: характеристика, устройство

Долгое время для изготовления и доставки горючей смеси в цилиндры ДВС, для выведения отработанных газов применялась система питания карбюраторного двигателя. Она выполняет следующие задачи:

  • смешивает воздух и горючее в нужном соотношении;
  • готовит однородную смесь;
  • транспортирует её к цилиндрам;
  • выводит из ДВС отработанные газы.

Производство топливно-воздушной смеси называется карбюрацией. Общее устройство карбюраторного мотора состоит из следующих функциональных узлов:

  1. Приборы, в которых хранится бензин и измеряется его объем.
  2. Топливные фильтры.
  3. Устройства для доставки горючего.
  4. Фильтры воздуха.
  5. Приборы для изготовления топливно-воздушной смеси.
  6. Устройства, которые подают её в цилиндры.
  7. Приборы для выведения отработавших газов и снижения шума при их выходе.

Как работает простейший карбюратор

В функционировании системы питания карбюратора можно выделить следующие этапы:

  1. Горючее из бака откачивается насосом и течёт по трубопроводу, попадая в карбюратор. При этом уровень топлива в бензобаке контролируется указателем, в электрической цепи которого присутствует датчик.
  2. Бензин очищается с помощью фильтра-отстойника и фильтра тонкой очистки.
  3. Воздух попадает в карбюратор после воздушного фильтра.
  4. Изготовленная топливно-воздушная смесь из карбюратора поступает в цилиндры через впускной трубопровод. В нем она нагревается.
  5. Отработанные газы выводятся из двигателя системой выпуска. В неё входит трубопровод, труба и глушитель, снижающий уровень шума при выпуске газов.

Образование топливной струи

Из бензобака горючее поступает в поплавковую камеру. Топливо в ней всегда находится на постоянном уровне. Для этого используются поплавок и топливный клапан. Когда бак наполняется горючим до предельного уровня, то поплавком игла прижимается к седлу. Таким образом, поступление бензина останавливается.

Когда уровень горючего снижается, поплавок начинает опускаться. В результате открывается доступ бензина в камеру. Возрастания расхода бензина вызывает снижение его уровня. Это приводит к увеличению проходного сечения для горючего. Зазор для бензина образовывается между иглой и седлом. К поплавковой камере присоединена труба.

Даже при максимальной наполненности бензин в ней находится ниже, чем края выходного отверстия распылителя. Благодаря этому горючее не вытекает, когда ДВС не работает.

Воздух в карбюратор поступает по главному воздушному каналу. Посередине его сечение уменьшается. За счёт этого создаётся диффузор. Он ускоряет поток воздуха, улучшает испарение бензина и смесеобразования, увеличивает тягу в распылителе. Самая узкая часть диффузора соединена с концом распылителя. За счёт дроссельной заслонки регулируется количество топливно-воздушной смеси, которая поступает в цилиндры.

Заслонка соединена с педалью. При нажатии на неё она меняет своё положение. Чем больше заслонка открывается, тем больший объем топливно-воздушной смеси попадает в цилиндры. В результате растёт мощность, которую вырабатывает мотор. Так регулируется объем горючей смеси, которая поступает в цилиндры.

Распад топливной струи

Из жиклёра горючее поднимается в распылитель, при этом расходуется энергия. Когда разница между скоростями бензина и воздуха достигает 4-6 м/c, топливная струя распадается. Капли в размере достигают 20-120 мкм, оптимальным значением, считается 50 мкм.

Чем больше температура горючего, тем мельче капли. Это объясняется более низким коэффициентом поверхностного натяжения, возрастанием разницы между скоростями бензина и воздуха.

За счет чего движется бензин

Воздушный поток движется в 25 раз быстрее, чем бензин. Карбюратор работает по такому же принципу, что и пульверизатор. Между камерой с поплавком и диффузором имеется перепад давлений. Это приводит к тому, что бензин покидает поплавковую камеру, двигаясь по топливному калиброванному отверстию и распылителю к диффузору.

Затем горючее оказывается в главном воздушном канале. На сегодняшний день давление, при котором начинается транспортировка бензина, составляет 100 Па. Если же значение меньше, то по карбюратору двигается лишь воздушный поток.

Скорость воздушного потока, проходящего через диффузор, растёт. По этой причине давление в распылительной области снижается. Когда мотор не работает, разность давлений между камерой с поплавком и распылительной областью отсутствует.

Во время запуска мотора при всасывании в цилиндре возникает тяга. Т.к. распылительная область сообщается с цилиндром с помощью впускного трубопровода и главноговоздушного калиброванного отверстия, то тяга из цилиндра достигает распылительной зоны.

После этого появляется перепад давлений между камерой с поплавком и диффузором, что приводит к движению бензина из камеры в распылитель. Затем в главном воздушном канале горючее образует смесь с воздухом и движется к цилиндрам.

Движение воздуха и топливно-воздушной смеси

Ускорению воздуха при движении по диффузору способствует образованию тяги в распылительной области. Уменьшение размеров диффузора возможно лишь до определённого значения. В противном случае настанет момент, когда уменьшение диффузора приведёт к увеличению сопротивления для движения воздушного потока.

В результате упадёт мощность двигателя, потому что цилиндры станут меньше наполняться. Часть трубки, которая соединяет горловину диффузора с осью дроссельной заслонки, называется «смесительная камера».

При образовании топливно-воздушной смеси участвует не весь бензин. Это происходит по причине того, что часть бензина не испаряется и не перемешивается с воздушным потоком. Незадействованные капли горючего двигаются вместе с воздухом. Встречая на своём пути стенки смесительной камеры и выпускного трубопровода, остатки топлива откладываются на них.

При этом образуется плёнка, медленно движущаяся. Для её испарения производится нагрев впускного трубопровода во время работы ДВС. Существуют 2 вида подогрева:

  • с помощью жидкости, для этого используют систему охлаждения двигателя;
  • за счёт тепла выхлопных газов.

Виды карбюраторов

Топливно-воздушная смесь окончательно образовывается во впускном трубопроводе ДВС. Воздушный поток в смесеобразовательном приборе может двигаться в разных направлениях. Поэтому карбюраторы бывают нескольких видов:

  1. Устройства, в которых поток смеси падает, т.е. течёт сверху вниз. Они отличаются большой мощностью, экономичностью, удобным для ремонта расположением на моторе.
  2. Приборы, в которых поток смеси восходящий, т.е. она двигается снизу вверх. Это устаревшие конструкции.

Как улучшить образование топливно-воздушной смеси

Сложность изготовления топливно-воздушной смеси заключается в том, что данный процесс осуществляется очень быстро. Воздух и смесь проходят через впускной тракт мотора со скоростью 30 — 100 м/c, а время образования смеси не превышает 20 мс. Факторы, которые улучшают смесеобразование и испарение бензина:

  • легкоиспаряющаяся жидкость в качестве горючего;
  • расширение площади парообразования за счёт распыливания бензина и обдува топливных капель;
  • уменьшение давления в той среде, в которую попадает горючее;
  • нагревание бензина и воздуха;
  • введение эмульсионной жидкости с помощью распылителя.

Усовершенствованные карбюраторные двигатели

Увеличение открытия дроссельной заслонки приводит к возрастанию воздуха, который проходит через карбюратор. В результате он ускоряется и создаёт дополнительную тягу в диффузоре. Это выступает причиной повышения расхода бензина. При этом необходимое соответствие между увеличением количества воздуха и горючего не выполняется.

За счёт этого топливно-воздушная смесь, изготовленная при большом открывании заслонки, является обогащённой Т.к. режимы работы ДВС разные, то смесь, произведённая простым карбюратором, по составу не соответствует требуемой. Во время малых нагрузок тяга в диффузоре такая низкая, что приготовить топливно-воздушную смесь вообще невозможно.

Чтобы убрать указанный недостаток устройство системы питания карбюратора укомплектовывают дополнительными приборами. При их использовании топливно-воздушная смесь, приготовленная во время разных режимов, очень близка к требуемой.

Машины на карбюраторах работают в следующих режимах:

  1. Пуск мотора. В этот момент топливо плохо испаряется, поэтому необходимо использовать богатую смесь.
  2. Холостой ход и малые нагрузки.
  3. Частичные нагрузки.
  4. Полные нагрузки.
  5. Резкое открывание заслонки. В таком режиме не должно быть смеси с повышенным содержанием воздуха.

Разные режимы функционирования ДВС сопровождаются включением соответствующих систем и устройств:

  • прибор для пуска;
  • система холостого хода;
  • главный дозирующий прибор;
  • экономайзер;
  • ускоряющий насос.

Опишем подробно каждый:

  1. Прибор для пуска уменьшает количество воздуха, который двигается по карбюратору. Одновременно растёт тяга в диффузоре. В результате распылитель основной системы дозировки опустошается, т.к. содержащийся в нем бензин вытекает и создаётся топливно-воздушная смесь. После того как произошла первая вспышка, воздух движется по автоматическому клапану на приборе для пуска. При нагревании мотора пусковое устройство необходимо приоткрывать вручную. Для автоматизации процесса на некоторых ДВС используется автоматика.
  2. Система холостого хода производит смесь во время бездействия главной дозирующей системы. Она состоит из распылителя с двумя отверстиями, регулировочного винта, двух каналов, воздушного и топливного калиброванных отверстий.
  3. Главный дозирующий прибор от простого карбюратора отличает наличие колодца, воздушного калиброванного отверстия. Последний соединяет колодец с атмосферой.
  4. Экономайзер вступает в работу на полных нагрузках. В зависимости от привода он может быть двух видов: механический или пневматический. В состав первого входят клапан, калиброванное отверстие, толкатель и его подвижная стойка. Длина толкателя регулируется. При определённой длине включается экономайзер. Пневматический прибор запускается при определённой частоте вращения коленвала.
  5. Ускоряющий насос функционирует при особых условиях движения машины. Например, при обгоне, подъёме

Применение описанных устройств позволяет сделать работу карбюраторного ДВС более эффективной, повысив его мощность и снизить расход топлива.

Сбои в работе карбюратора

Опишем основные неисправности системы питания карбюраторного двигателя, и способы их устранения:

  1. Неисправности в топливном фильтре. При наличии сбоев в работе системы питания карбюраторного двигателя в первую очередь проверяют фильтр топлива. Для его осмотра надо будет открутить колпачок и извлечь фильтр. Далее потребуется промывание с помощью бензина. При обнаружении повреждения фильтра и подводящего патрубка требуется их заменить.
  2. В камере с поплавком мало бензина, либо его нет совсем. Одновременно с этим неполадки в сетчатом фильтре отсутствуют. Данный сбой в работе мог произойти вследствие, скопления грязи в игольчатом топливном клапане, связанном с крышкой поплавковой камеры. Грязь создала препятствия для поступления горючего. Для нормального функционирования карбюратора необходимо свободное движение клапана в гнезде и отсутствие зависаний шарика. Для удаления грязи в клапане достаточно его промыть и продуть.
  3. Сбился поплавок. О данной неполадке свидетельствует нестабильная работа мотора, наличие рывков, резкое увеличение расхода бензина, отклонения от нормы уровня горючего в камере с поплавком. Для настройки работы иглы в клапане необходимо, чтобы горючее находилось на нужном уровне. Вдобавок к этому требуется сделать небольшой сгиб специально предназначенного язычка и ограничителя хода для поплавка. Если отверстие в последнем небольшое и сейчас нет времени устранять неисправность, то на короткий период поплавок может поработать заклеенным.
  4. Трудности при пуске мотора, при этом горючего в камере достаточно. Необходимо проверить калиброванные отверстия и каналы карбюратора на наличие загрязнений. Потребуется частично разобрать карбюратор. Это сведётся к снятию крышки с камеры. Устранить грязь помогает промывка каналов и калиброванных отверстий с помощью бензина, продувание их насосом с использованием сжатого воздуха.
  5. Сложно завести ДВС после длительной стоянки. Причиной может служить износ диафрагмы, которая связана с пусковым прибором карбюратора. Если в данный момент нет возможности ликвидировать неполадку, то на короткий период можно предпринять следующие действия. Взять маленький кусочек проволоки из алюминия и один её конец согнуть в виде петли. Далее прикрепить проволоку туда, где карбюратор соединён с воздухоочистителем. При этом её следует так зафиксировать, чтобы гайка была над ней. Затем второй согнутый конец проволоки устанавливается в месте прижатия верхней части воздушного регулятора в первом баллоне. Благодаря этому образуется зазор размером 3 — 4 мм, разделяющий воздушный регулятор и стенку первого баллона. Наличие образованного зазора поможет запустить мотор. Но данный метод пригоден лишь на короткое время, после которого надо будет устранить причину неполадки.
  6. Сбои в работе двигателя. Например, он перестаёт функционировать после того, как водитель отпустил педаль газа. Такая неисправность может проявляться из-за загрязнения в системе холостого хода калиброванного отверстия, через которое проходит эмульсия. Для устранения неполадки потребуется извлечь калиброванное отверстие. Для этого надо будет освободить фильтр воздуха от корпуса. При большой загрязнённости калиброванного отверстия оно подлежит очистке с помощью заточенной деревянной палочки, смоченной ацетоном.
  7. Нарушена герметичность соединения впускной трубы с карбюратором. Обнаружить проблемный участок можно по следам сажи, по наличию тонкой плёнки горючего.
  8. Разрыв в соединениях выпускной трубы с фланцем, корпуса заслонки с впускной трубой. В результате в систему проникает воздух, увеличивая объем потребляемого бензина. При этом работа глушителя может сопровождаться сильными хлопками. Для обнаружения негерметичности можно применяют мыльную пенку. На участках разрыва она будет иметь отверстие.
  9. Плавают обороты двигателя на холостом ходу, и ДВС глохнет. О скачущих оборотах свидетельствует прыгающая стрелка тахометра. Причин может быть несколько. Нарушение регулировки состава горючей смеси, неполадки в электромагнитном клапане или в управляющем контуре, загрязнённые каналы и калиброванные отверстия в системе холостого хода, неисправный экономайзер на принудительном холостом ходу (трещина в мембране). Устранить указанные неполадки поможет замена неисправного механизма и восстановление электропроводки.

Для комфортной и безопасной езды необходимо регулярно проводить ТО и использовать качественный бензин. При обнаружении нарушений в работе карбюратора требуется как можно быстрее выявить причину и устранить неполадку.

Назначение и взаимодействие приборов, узлов и деталей системы питания — Система питания карбюраторного двигателя — Система питания — Автомобиль

21 июня 2011г.

В систему питания карбюраторного двигателя входят: топливный бак, топливопроводы, топливные фильтры, топливный насос, воздушный фильтр, карбюратор и впускной трубопровод. К системе питания относят также выпускной трубопровод двигателя и глушитель.


Схема системы питания карбюраторного двигателя

Схема системы питания карбюраторного двигателя:

1 — топливный насос; 2 — воздушный фильтр; 3 — карбюратор; 4 — кнопка управления воздушной заслонкой; 5 и 6 — кнопка и педаль управления дросселями; 7 — топливопроводы; 8 и 9 — указатель уровня топлива и его датчик; 10 — топливный бак; 11 — кран; 12 — фильтр-отстойник; 13 — глушитель; 14 — приемные трубы глушителя; 15 — выпускной трубопровод двигателя; 16 — выпускная труба глушителя.


Запас топлива для работы двигателя хранится в топливном баке 10, из которого топливо подается к карбюратору топливным насосом 1 по топливопроводам 7. Фильтр-отстойник 12 очищает топливо от механических примесей и отделяет случайно попавшую в него воду. Воздушный фильтр 2 очищает от пыли поступающий в карбюратор атмосферный воздух.

Карбюратор 3 приготовляет горючую смесь, которая по впускному трубопроводу поступает в цилиндры. Выпускной трубопровод 15 отводит из цилиндров отработавшие газы. Глушитель 13 уменьшает шум отработавших газов, выходящих в атмосферу. 


Схема устройства и работы простейшего карбюратора

Схема устройства и работы простейшего карбюратора:

1 — смесительная камера; 2 — диффузор; 3 — воздушный патрубок; 4 — распылитель; 5 — воздушное отверстие поплавковой камеры; 6 — поплавковая камера; 7 — игольчатый клапан; 8 — поплавок; 9 — жиклер; 10 — дроссель; 11 — впускной трубопровод двигателя; 12 — рычаг дросселя.


Принцип действия карбюратора

В корпусе простейшего карбюратора размещены поплавковая 6 и смесительная 1 камеры. Поплавок S, действующий на игольчатый клапан 7, поддерживает в поплавковой камере постоянный уровень топлива. Отверстие 5 сообщает поплавковую камеру с атмосферой.

В верхней части смесительной камеры расположен входной воздушный патрубок 3, в средней установлен диффузор 2, имеющий суженное проходное сечение (горловину), а в нижней части (выходном патрубке) — заслонка 10, называемая дросселем, укрепленная на валике, пропущенном через отверстия в стенках смесительной камеры. При помощи рычага 12 на наружном конце валика дросселя дроссель можно повернуть в требуемое положение. Выходной патрубок смесительной камеры соединен с впускным трубопроводом 11 двигателя посредством фланца.

Полость поплавковой камеры сообщена с распылителем 4, выведенным в горловину диффузора, жиклером 9, имеющим калиброванное отверстие. Верхний срез распылителя расположен выше уровня топлива в поплавковой камере.

Во время работы двигателя атмосферный воздух, поступающий в цилиндры при тактах впуска, проходит через смесительную камеру, в которой, как и в цилиндрах, образуется разрежение (равное разности давлений атмосферного и в смесительной камере). Известно, что при движении жидкости или газа по суженному трубопроводу их давление в суженном участке снижается, а скорость повышается. Поэтому наибольшее разрежение, а следовательно, и максимальная скорость потока воздуха создаются в горловине диффузора.

Вследствие разности давлений — атмосферного в поплавковой камере и пониженного в диффузоре — топливо вытекает из отверстия распылителя и распыливается потоком воздуха, движущегося через диффузор.

Процесс приготовления горючей смеси, начавшийся в карбюраторе, продолжается во впускном трубопроводе, а также в цилиндрах двигателя во время тактов впуска и сжатия.

Состав приготовляемой карбюратором горючей смеси зависит от величины проходного сечения калиброванного отверстия жиклера 9: чем оно больше, тем больше жиклер пропускает топлива к распылителю и богаче образующаяся смесь. Количество поступающей в цилиндры смеси регулируют дросселем 10.

Существенный недостаток описанного карбюратора — он не обеспечивает получения требуемого состава смеси при различных режимах работы двигателя: при пуске; на малых оборотах холостого хода; при неполных и полных нагрузках; при резком открытии дросселя.

Во время пуска двигателя в этом карбюраторе не образуется смесь, так как из-за медленного вращения коленчатого вала в смесительной камере не создается разрежения, достаточного для истечения топлива из распылителя.

На малых оборотах холостого хода такой карбюратор приготовляет слишком бедную смесь, вследствие того, что дроссель почти полностью закрыт и, хотя в цилиндрах образуется сильное разрежение, величина его в диффузоре недостаточна для получения требующейся для работы на этом режиме обогащенной смеси.

По мере открытия дросселя и перехода от малых оборотов холостого хода к работе под нагрузкой простейший карбюратор обогащает смесь, потому что при увеличении разрежения в смесительной камере количество протекающего через жиклер топлива возрастает быстрее, чем количество проходящего через диффузор воздуха, в связи с различием физических свойств топлива и воздуха. В то же время при неполной нагрузке двигателя желательно, наоборот, некоторое обеднение смеси, и только при полной нагрузке требуется обогащенная смесь.

Во время резкого открытия дросселя смесь, приготовляемая простейшим карбюратором, обедняется, так как в момент открытия дросселя уменьшается разрежение во впускном трубопроводе, что вызывает конденсацию части паров топлива, которое оседает на стенках трубопровода и не попадает в цилиндры. Из-за этого простейший карбюратор не обеспечивает хорошей приемистости двигателя, т. е. способности быстро увеличивать число оборотов и мощность.

Чтобы получить на всех режимах работы двигателя горючую смесь требуемого состава, в карбюраторах, устанавливаемых на современных автомобильных двигателях, предусматривают пусковое устройство, систему холостого хода, главную дозирующую систему, ускорительный насос и экономайзер.

Пусковое устройство обеспечивает образование в карбюраторе богатой смеси, необходимой для легкого пуска холодного двигателя. Таким устройством является воздушная заслонка, располагаемая в воздушном патрубке.

Система холостого хода служит для получения обогащенной смеси, требуемой для устойчивой работы двигателя на малых оборотах холостого хода.

Главная дозирующая система приготовляет обедненную горючую смесь, обеспечивающую экономичную работу двигателя под нагрузкой. В главную дозирующую систему всегда входит устройство для компенсации (регулирования состава) смеси, необходимой для экономичной работы двигателя при изменяющихся нагрузке и частоте вращения коленчатого вала.

Ускорительный насос обогащает горючую смесь во время резкого открытия дросселя, что улучшает приемистость двигателя, а экономайзер — при полной нагрузке с целью получения от двигателя максимальной мощности.

В зависимости от направления потока воздуха, движущегося через смесительную камеру, различают карбюраторы с падающим, восходящим и горизонтальным потоками смеси, а по способу поддержания необходимого давления в поплавковой камере — балансированные и небалансированные карбюраторы.

Балансированными называются карбюраторы, у которых поплавковая камера сообщена не непосредственно с атмосферой, а со входным воздушным патрубком смесительной камеры, благодаря чему в них уравнивается давление воздуха и исключается влияние на состав смеси состояния воздушного фильтра карбюратора.

В небалансированных карбюраторах (поплавковая камера сообщена непосредственно с атмосферой) засорение воздушного фильтра приводит к обогащению смеси. Это объясняется тем, что при засорении сопротивление фильтра прохождению воздуха возрастает и разрежение в смесительной камере карбюратора, а следовательно, и разность давлений в поплавковой и смесительной камерах увеличиваются.

У балансированных карбюраторов в этом случае разрежение в смесительной камере также возрастает, но одновременно создается некоторое разрежение и в поплавковой камере, благодаря чему разность давлений в ней и смесительной камере остается прежней, и состав смеси не меняется.

В последнее время очень распространены двухкамерные карбюраторы, т. е. имеющие две смесительные камеры. В таких карбюраторах создаются лучшие условия образования горючей смеси на всех режимах и наполнения ею цилиндров двигателя, а также обеспечивается более равномерное распределение смеси по цилиндрам, что особо важно для двигателей с числом цилиндров более четырех и для всех V-образных двигателей.

«Автомобиль», под. ред. И.П.Плеханова

Устройство системы питания карбюраторного двигателя»

Система питания карбюраторного двигателя легкового автомобиля Автор: Ракова С. М.

Назначение системы питания

  • Система питания служит для хранения запаса топлива, очистки топлива и воздуха, приготовления горючей смеси, подачи ее в цилиндры двигателя и выпуска отработавших газов. В дизелях приготовление горючей смеси топ­лива с воздухом происходит внутри цилиндров за очень короткий промежуток времени. Для получения горючей смеси, способной быстро и полностью сгорать, необходимо, чтобы топливо было распылено на возможно более мелкие частицы и чтобы каждая из них имела вокруг себя достаточное для полного сгорания количество воздуха. Для этого топливо в цилиндр впрыскивается форсункой под давлением, в несколько раз превышающем давление воздуха при такте сжатия в камере сгорания.

Различные системы питания по способу приготовления горючей смеси

Устройство системы питания карбюраторного двигателя

  • Топливный бак
  • Топливный фильтр
  • Бензонасос (топливный насос)
  • Карбюратор
  • Воздушный фильтр

Схема расположения элементов системы питания карбюраторного двигателя

1 — заливная горловина с пробкой;

2 — топливный бак;

3 — датчик указателя уровня топлива с поплавком;

4 — топливозаборник с фильтром;

5 — топливопроводы;

6 — фильтр тонкой очистки топлива;

7 — топливный насос;

8 — поплавковая камера крабюратора с поплавком;

9 — воздушный фильтр;

10 — смесительная камера карабюратора;

11 — впускной клапан;

12 — впускной трубопровод;

13 — камера сгорания

Работа приборов системы питания карбюраторных двигателей

1. Топливный бак   (располагается в нижней, наиболее безопасной части автомобиля и служит для хранения топлива).  Топливный бак представляет собой емкость, где хранится топливо (бензин или дизельное топливо), которая крепится к кузову легкового автомобиля. Топливный бак автомобиля состоит из герметичного корпуса с заливной горловиной, которая закручивается запорной крышкой. На корпусе топливного бака имеется отверстие для введения датчиков контроля уровня топлива, с помощью которого водитель может контролировать уровень топлива в баке, располагается на щитке приборов. Первая ступень очистки бензина происходит при заливке его в топливный бак.

2. Топливный фильтр предназначен для тонкой очистки топлива, поступающего к топливному насосу.

Виды топливного фильтра:

  • Фильтр – отстойник предназначен для грубой первоначальной очистки бензина от механических примесей и воды 
  • Фильтр тонкой очистки топлива . Предназначен для очистки топлива от мельчайших механических примесей

3. Топливный насос – предназначен для принудительной подачи топлива из топливного бака в карбюратор.

а) всасывание топлива,

б) нагнетание топлива

1 — нагнетательный патрубок;

2 — стяжной болт;

3 — крышка;

4 — всасывающий патрубок;

5 — впускной клапан с пружиной;

6 — корпус;

7 — диафрагма насоса;

8 — рычаг ручной подкачки;

9 — тяга;

10 — рычаг механической подкачки;

11 — пружина;

12 — шток;

13 — эксцентрик;

14 — нагнетательный клапан с пружиной;

15 — фильтр для очистки топлива

4. Воздушный фильтр необходим для очистки воздуха от механических примесей (пыли), поступающего в цилиндры двигателя

1 – крышка;

2 — фильтрующий элемент;

3 — корпус;

4 — воздухозаборник

5. Карбюратор – предназначен для приготовления горючей смеси и подачи ее в цилиндры двигателя

1 — топливная трубка;

2 — поплавок с игольчатым клапаном;

3 — топливный жиклер;

4 — распылитель;

5 — корпус карабюратора;

6 — воздушная заслонка;

7 — диффузор;

8 — дроссельная заслонка

Принципиальная схема и приборы системы питания карбюраторного двигателя


Система питания карбюраторного двигателя предназначена для приготовления горючей смеси необходимого качества, подачи ее в цилиндры двигателя и удаления продуктов сгорания из цилиндров. Система питания должна обеспечить необходимую мощность и топливную экономичность двигателя, низкую токсичность отработанных газов.
Топливо из бака 1 (см. рис. 10.2) с помощью насоса 4, пройдя фильтрацию в отстойнике 3 и фильтре тонкой очистки 5, поступает в карбюратор 6, где смешивается с очищенным в фильтре 7 воздухом. Продукты сгорания отводятся через систему выпуска, состоящую из выпускных трубопроводов, глушителя 8 и выпускной трубы глушителя. В топливном баке 1 хранится запас предварительно очищенного топлива. Для контроля за расходом топлива система питания оборудована прибором измерения уровня топлива с указателем 2. Заливная горловина топливного бака, имеющая сетчатый фильтр, герметически закрывается пробкой. Для обеспечения нормальной подачи топлива в карбюратор и снижения его потерь от испарения в пробке бака установлены воздушный и паровой клапаны. При повышении давления в баке на 11…18 кПа больше атмосферного открывается выпускной клапан, а при возникновении разрежения в пределах 1,6…3,4 кПа открывается впускной клапан.

Фильтр-отстойник устанавливается между топливным баком и насосом и предназначается для предварительной, грубой очистки (фильтр грубой очистки) топлива от примесей и воды. Фильтрующий элемент состоит из набора тонких штампованных пластин.
Фильтр тонкой очистки обеспечивает тонкую фильтрацию топлива перед поступлением его в карбюратор с целью обеспечения безотказной работы смесеобразующих систем карбюратора, особенно калиброванных отверстий — жиклеров, сопряжений, клапанов. Фильтр тонкой очистки состоит из стакана-отстойника и фильтрующего элемента из латунной сетки или другого материала.
Топливный насос (рис. 10.3), устанавливаемый в системе питания автомобилей, применяемых на вывозке древесины, диафрагменный, герметизированный; имеет несколько впускных и выпускных клапанов и рычаг для ручной подкачки. Насос состоит из корпуса 12, головки 4 и крышки. В корпусе установлено коромысло 6 с возвратной пружиной 7 и рычаг 8 для ручной подкачки. Диафрагма 5 насоса с пружиной 11, закрепленная между корпусом 12 и головкой 4, связана толкателем 10 через тарелки с рычагом 6. Перемещение диафрагмы вниз под воздействием рычага 6 сопровождается поступлением топлива из бака через сетчатый фильтр 2 к впускным клапанам, а при перемещении ее вверх — топливо нагнетается через выпускной клапан 13 в полость головки и далее в фильтр тонкой очистки.

Изменение расхода топлива через карбюратор приводит к изменению противодавления топливному насосу, создаваемого запорным игольчатым клапаном. При малом расходе топлива через карбюратор запорный клапан закрыт, а усилия пружины 11 недостаточно для того, чтобы протолкнуть топливо, находящееся над мембраной, в карбюратор. При этом пружина 7 сжата, исполнитель 10 находится в нижнем положении и рычаг 6 под воздействием кулачка распределительного вала свободно перемещается до тех пор, пока пружина не преодолеет противодавления запорного клапана и он не откроется. Для ручной подкачки топлива в карбюратор имеется рычаг, воздействующий на толкатель 10 для перемещения мембраны.
Система выпуска состоит из газопровода и глушителя. С отработанными газами из карбюраторного двигателя в атмосферу выбрасываются токсичные вещества и картерные газы. Глушитель двигателей, устанавливаемых на современных лесотранспортных машинах, снижает шумовое загрязнение окружающей среды. В перспективе ожидается установка в глушителях (или вместо глушителя) устройства, нейтрализующего отдельные токсические компоненты и выполняющего роль глушителя. Такие устройства значительно снижают токсичность отработанных газов, но создают дополнительное сопротивление на выпуске, а следовательно, ведут к повышению расхода топлива. Применяются термические, каталитические, жидкостные и комбинированные нейтрализаторы.

Карбюраторные системы

Чтобы обеспечить работу двигателя при различных нагрузках и при разных оборотах двигателя, каждый карбюратор имеет шесть систем:

  1. Главный дозатор
  2. Холостой ход
  3. Разгон
  4. Контроль смеси
  5. Отсечка холостого хода
  6. Обогащение мощности или экономайзер

Каждая из этих систем выполняет определенную функцию. Он может действовать самостоятельно или с одним или несколькими другими.

Основная система дозирования подает топливо в двигатель на всех оборотах выше холостого хода.Топливо, выпускаемое этой системой, определяется падением давления в горловине Вентури.

Для холостого хода необходима отдельная система, поскольку основная система дозирования может работать нестабильно при очень низких оборотах двигателя. На малых оборотах дроссельная заслонка почти закрыта. В результате скорость воздуха, проходящего через трубку Вентури, мала, и давление незначительно падает. Следовательно, перепада давления недостаточно для работы основной системы дозирования, и топливо из этой системы не выгружается.Поэтому большинство карбюраторов имеют систему холостого хода для подачи топлива в двигатель на низких оборотах.

Система ускорения подает дополнительное топливо при резком увеличении мощности двигателя. Когда дроссельная заслонка открыта, воздушный поток через карбюратор увеличивается, чтобы получить больше мощности от двигателя. Затем основная дозирующая система увеличивает расход топлива. Однако во время внезапного ускорения увеличение воздушного потока происходит настолько быстро, что существует небольшая задержка по времени, прежде чем увеличение расхода топлива станет достаточным для обеспечения правильного соотношения компонентов смеси с новым воздушным потоком.За счет дополнительной подачи топлива в этот период система ускорения предотвращает временное отклонение смеси от нормы и обеспечивает плавное ускорение.

Система контроля смеси определяет соотношение топлива и воздуха в смеси. С помощью пульта управления из кабины, ручное управление смесью может выбирать соотношение смеси в соответствии с рабочими условиями. В дополнение к этим ручным настройкам многие карбюраторы имеют автоматические регуляторы смеси, так что соотношение топливо / воздух, когда оно выбрано, не изменяется при изменении плотности воздуха.Это необходимо, потому что, когда самолет набирает высоту и атмосферное давление уменьшается, происходит соответствующее уменьшение веса воздуха, проходящего через систему впуска. Однако объем остается постоянным. Поскольку именно объем воздушного потока определяет падение давления в горловине трубки Вентури, карбюратор стремится дозировать такое же количество топлива в этот разреженный воздух, что и в плотный воздух на уровне моря. Таким образом, естественная тенденция состоит в том, что смесь становится богаче по мере набора высоты самолетом.Автоматический контроль смеси предотвращает это, уменьшая скорость слива топлива, чтобы компенсировать уменьшение плотности воздуха.

Карбюратор имеет систему отключения холостого хода, чтобы можно было отключить подачу топлива для остановки двигателя. Эта система, входящая в состав ручного управления смесью, полностью останавливает выпуск топлива из карбюратора, когда рычаг управления смесью установлен в положение «отсечки холостого хода». Двигатель самолета останавливается путем отключения топлива, а не путем выключения зажигания.Если зажигание выключается, а карбюратор продолжает подавать топливо, свежая топливно-воздушная смесь продолжает проходить через систему впуска в цилиндры. Когда двигатель останавливается по инерции и если он слишком горячий, эта горючая смесь может воспламениться из-за локальных горячих точек в камерах сгорания. Это может привести к тому, что двигатель продолжит работу или откатится назад. Кроме того, смесь может пройти через цилиндры несгоревшей, но воспламениться в горячем выпускном коллекторе. Или двигатель явно останавливается, но горючая смесь остается во впускных каналах, цилиндрах и выхлопной системе.Это небезопасное состояние, поскольку двигатель может перевернуться после остановки и серьезно травмировать всех, кто находится рядом с гребным винтом. Когда двигатель останавливается с помощью системы отключения холостого хода, свечи зажигания продолжают воспламенять топливно-воздушную смесь до тех пор, пока не прекратится выход топлива из карбюратора. Уже одно это должно предотвратить остановку двигателя с горючей смесью в цилиндрах. Некоторые производители двигателей предлагают, чтобы непосредственно перед тем, как гребной винт перестал вращаться, дроссельная заслонка должна быть широко открыта, чтобы поршни могли перекачивать свежий воздух через систему впуска, цилиндры и систему выпуска в качестве дополнительной меры предосторожности против случайного опрокидывания.После полной остановки двигателя ключ зажигания переводится в положение «выключено».

Система энергетического обогащения автоматически увеличивает насыщенность смеси во время работы на большой мощности. Это делает возможным изменение соотношения топливо / воздух, необходимое для различных условий эксплуатации. Помните, что на крейсерских скоростях обедненная смесь желательна из соображений экономии, тогда как при высокой выходной мощности смесь должна быть богатой, чтобы получить максимальную мощность и помочь в охлаждении цилиндров двигателя.Система обогащения энергии автоматически вызывает необходимое изменение соотношения топливо / воздух. По сути, это клапан, который закрывается на крейсерских скоростях и открывается для подачи дополнительного топлива в смесь во время работы на большой мощности. Хотя она увеличивает расход топлива при высокой мощности, система обогащения энергии фактически является устройством для экономии топлива. Без этой системы необходимо было бы эксплуатировать двигатель на богатой смеси во всем диапазоне мощностей. Тогда смесь будет богаче, чем необходимо на крейсерской скорости, чтобы обеспечить безопасную работу на максимальной мощности.Систему обогащения мощности иногда называют экономайзером или компенсатором мощности.

Хотя различные системы обсуждались отдельно, карбюратор функционирует как единое целое. Тот факт, что одна система работает, не обязательно препятствует работе другой. В то же время, когда основная система дозирования выпускает топливо пропорционально воздушному потоку, система контроля смеси определяет, является ли полученная смесь богатой или бедной. Если дроссельная заслонка внезапно открывается широко, системы ускорения и обогащения мощности действуют, чтобы добавить топлива к тому, которое уже выгружается основной системой дозирования.

Бортовой механик рекомендует

Как карбюратор работает в топливной системе?

Карбюратор отвечает за смешивание бензина и воздуха в нужных количествах и подачу этой смеси в цилиндры. Хотя карбюраторы не используются в новых автомобилях, они обеспечивают топливом двигатели всех автомобилей, от легендарных гоночных автомобилей до роскошных автомобилей высшего класса. Они использовались в NASCAR до 2012 года, и многие энтузиасты классических автомобилей используют карбюраторные автомобили каждый день.При таком количестве стойких энтузиастов карбюраторы должны предложить что-то особенное для тех, кто любит автомобили.

Как работает карбюратор?

Карбюратор полагается на вакуум, создаваемый двигателем, чтобы втягивать воздух и топливо в цилиндры. Эта система использовалась так долго из-за ее простоты. Дроссель может открываться и закрываться, позволяя большему или меньшему количеству воздуха попадать в двигатель. Этот воздух проходит через узкое отверстие, называемое трубкой Вентури . Это создает разрежение, необходимое для работы двигателя.

Чтобы понять, как работает трубка Вентури, представьте себе реку, текущую нормально. Эта река движется с постоянной скоростью, и ее глубина одинакова на всем протяжении. Если в этой реке есть узкий участок, воде придется ускориться, чтобы такой же объем прошел на той же глубине. Как только река вернется к исходной ширине после узкого места, вода все равно будет пытаться сохранить ту же скорость. Это заставляет воду с более высокой скоростью на дальней стороне узкого места притягивать воду, приближающуюся к узкому горлышку, создавая вакуум.

Благодаря трубке Вентури внутри карбюратора создается достаточно вакуума, чтобы воздух, проходящий через него, равномерно втягивал газ из форсунки . Жиклер находится внутри трубки Вентури и представляет собой отверстие, через которое топливо из поплавковой камеры может смешиваться с воздухом перед тем, как попасть в цилиндры. Поплавковая камера вмещает небольшое количество топлива, например резервуар, и позволяет горючему легко течь к жиклеру по мере необходимости. Когда дроссельная заслонка открывается, в двигатель втягивается больше воздуха, принося с собой больше топлива, что заставляет двигатель создавать большую мощность.

Основная проблема этой конструкции заключается в том, что дроссельная заслонка должна быть открыта, чтобы двигатель мог получать топливо. Дроссельная заслонка закрыта на холостом ходу, поэтому жиклер холостого хода позволяет небольшому количеству топлива поступать в цилиндры, чтобы двигатель не глохнул. Другие мелкие проблемы включают выход избыточных паров топлива из поплавковой камеры (камер).

В топливной системе

Карбюраторы на протяжении многих лет производились в различных формах и размерах. Маленькие двигатели могут использовать только один карбюратор с одной форсункой для подачи топлива в двигатель, в то время как более крупные двигатели могут использовать до двенадцати форсунок, чтобы оставаться в движении.Трубка, содержащая трубку Вентури и жиклер, называется баррель , хотя этот термин обычно используется только в отношении многоствольных карбюраторов .

Многоствольные карбюраторы в прошлом были большим преимуществом для автомобилей, предлагая варианты конфигурации с 4 или 6 цилиндрами. Больше бочек означало, что в цилиндры могло поступать больше воздуха и топлива. В некоторых двигателях даже использовалось несколько карбюраторов.

Спортивные автомобили часто приходили с завода с одним карбюратором на цилиндр, к большому разочарованию их механиков.Все они должны были быть индивидуально настроены, и темпераментные (обычно итальянские) силовые установки были особенно чувствительны к любым недостаткам настройки. К тому же они довольно часто нуждались в настройке. Это большая причина, по которой впрыск топлива впервые был популяризирован в спортивных автомобилях.

Куда пропали все карбюраторы?

С 1980-х годов производители постепенно отказываются от карбюраторов в пользу впрыска топлива. Оба выполняют одну и ту же работу, но сложные современные двигатели просто эволюционировали по сравнению с карбюраторами, и на смену им пришел гораздо более точный (и программируемый) впрыск топлива.На это есть несколько причин:

  • Впрыск топлива может подавать топливо непосредственно в цилиндр, хотя иногда используется корпус дроссельной заслонки, позволяющий одной или двум форсункам подавать топливо в несколько цилиндров.

  • Холостой ход сложно с карбюратором, но очень просто с топливными форсунками. Это связано с тем, что система впрыска топлива может просто добавить небольшое количество топлива в двигатель, чтобы он продолжал работать, но у карбюратора дроссельная заслонка закрыта на холостом ходу. Жиклер холостого хода необходим для предотвращения остановки карбюраторного двигателя при закрытой дроссельной заслонке.

  • Впрыск топлива более точный и расходует меньше топлива. Благодаря этому также уменьшается количество паров газа при впрыске топлива, поэтому вероятность возгорания меньше.

Несмотря на то, что карбюраторы устарели, они вошли в историю автомобилестроения и работают чисто механически и грамотно. Работая с карбюраторными двигателями, энтузиасты могут получить практические знания о том, как воздух и топливо попадают в двигатель для воспламенения и поддерживают все в движении.

Авиационный карбюратор | AeroToolbox

Карбюратор является частью системы впуска двигателя и отвечает за объединение и смешивание воздуха и топлива. Затем эта смесь направляется в каждый цилиндр, где она воспламеняется как часть цикла четырехтактного двигателя.

Карбюратор по-прежнему является наиболее часто используемым устройством в легких самолетах для распыления и смешивания топлива и воздуха, необходимых для сгорания. Альтернатива — система впрыска топлива. В двигателях с впрыском топлива используется насос и система распределения топлива для впрыска топлива непосредственно в систему впуска через набор топливных форсунок.Впрыск топлива в значительной степени заменил карбюрацию в автомобильной промышленности, но не в двигателях легких поршневых самолетов.

Карбюратор

Карбюратор (или карбюратор) — это механическое устройство, которое использует принцип Вентури для распыления жидкого топлива и смешивания его с воздухом в правильном соотношении для оптимального сгорания. Затем эта смесь направляется во впускной коллектор двигателя, где она сжигается.

Физика Вентури

Вентури представляет собой простое устройство, в котором используются два физических принципа: сохранение массы и уравнение Бернулли для определения взаимосвязи между скоростью , давлением, и площадью через сужающуюся и расширяющуюся трубу, по которой проходит воздух.

Рисунок 1: Вентури — это устройство управления потоком

. Сохранение массы утверждает, что масса не может быть создана или разрушена, что означает, что масса в замкнутой системе должна оставаться постоянной. Это можно записать между любыми двумя точками трубки Вентури как:

$$
\ rho_ {1} A_ {1} V_ {1} = \ rho_ {2} A_ {2} V_ {2}
$$

Предполагая, что воздух несжимаем (это допустимое предположение при скоростях ниже 0,3 Маха), плотность воздуха через трубку Вентури остается постоянной, и поэтому член плотности может быть удален из обеих частей уравнения.

$$
A_ {1} V_ {1} = A_ {2} V_ {2}
$$

Таким образом, скорость в горловине трубки Вентури зависит от соотношения площадей. Поскольку \ (A_ {1}> A_ {2} \), это означает, что скорость в горловине трубки Вентури больше, чем на входе.

$$
V_ {2} = \ frac {A_ {1}} {A_ {2}}
$$

Уравнение Бернулли справедливо для потока несжимаемой жидкости между любыми двумя точками трубки Вентури и позволяет связать разницу давлений между входом и горловиной с результирующей разностью скоростей.Уравнение неразрывности показывает нам, что \ (V_ {2}> V_ {1} \), и теперь мы можем изменить уравнение Бернулли и показать, что давление в горловине падает с увеличением скорости на горловине.

Рисунок 2: Давление снижается и скорость увеличивается в горловине Вентури

Выводы, которые можно сделать на основании анализа Вентури, следующие:

  • Скорость в горловине увеличивается относительно входа.
  • Давление в горловине уменьшается относительно входа.

Карбюратор использует это увеличение скорости и соответствующее падение давления в горловине Вентури для всасывания топлива в воздушный поток, где оно смешивается с всасываемым воздухом.

Устройство и работа карбюратора

Наиболее распространенным типом карбюратора на легких самолетах является поплавковый карбюратор , названный в честь поплавка, используемого в топливной камере для регулирования уровня топлива. Схема типичного поплавкового карбюратора показана ниже.

Рисунок 3: Схема поплавкового карбюратора
Поплавковая камера

Карбюратор разделен на две отдельные области: топливная камера и камера Вентури .Топливо поступает в топливную камеру через топливную систему, где уровень в камере регулируется поплавком. Этот поплавок работает так же, как поплавок в обычном унитазе. Плавучая часть поплавка всегда будет плавать на поверхности жидкого топлива. Поплавок соединен с системой тяг, которая заканчивается игольчатым клапаном. Когда уровень топлива в поплавковой камере повышается или понижается, поплавок перемещается вместе с уровнем топлива, открывая или закрывая клапан. Это регулирует общее количество топлива, присутствующего в камере, и поддерживает почти постоянный уровень топлива во время работы двигателя.Поплавок предназначен для поддержания уровня топлива в камере ниже уровня топливного сопла. Уровень топлива должен оставаться ниже форсунки, чтобы гарантировать отсутствие утечек топлива из карбюратора, когда двигатель не работает.

Напорный патрубок

Проходы между поплавковой камерой и секцией Вентури карбюратора обеспечивают проход для жидкого топлива, которое будет всасываться из камеры в выпускное сопло, поскольку всасываемый воздух ускоряется действием Вентури.Камера вентилируется и поэтому всегда остается при атмосферном давлении окружающей среды. Скорость воздуха, поступающего во входное отверстие трубки Вентури, увеличивается с соответствующим падением давления в горловине трубки Вентури. Напорный патрубок расположен в горловине, где давление минимально. Это устанавливает градиент давления между поплавковой камерой (атмосферное давление) и выпускным соплом (давление ниже атмосферного), в результате чего топливо всасывается из камеры через дозирующую струю в поток Вентури на выпускном сопле.

Дозирующая форсунка

Дозирующий жиклер представляет собой отверстие (резьбовой клапан с отверстием в середине), диаметр которого определяет максимальный расход топлива из поплавковой камеры в нагнетательный патрубок. Работа двигателя с полностью открытой дроссельной заслонкой без дозирующего жиклера приведет к слишком большому расходу топлива, который двигатель не сможет эффективно потреблять. Диафрагма ограничивает это до максимального желаемого расхода топлива.

Увеличение скорости в горловине Вентури в сочетании с геометрией диффузора приводит к мгновенному распылению топлива (разбиению жидкости на капли).Затем распыленное топливо смешивается с поступающим воздухом, направляется через впускной коллектор двигателя и попадает в камеры сгорания, где оно воспламеняется.

Выпуск воздуха

Перепад давления между поплавковой камерой и горловиной Вентури называется дозирующим усилием . Дозирующая сила увеличивается при открытии дроссельной заслонки из-за увеличения массового расхода (скорости воздушного потока) через трубку Вентури. При более низких настройках дроссельной заслонки дозирующее усилие уменьшается, и может не хватить топлива в двигатель.Это требует включения воздуховыпускного патрубка в сопло диффузора, чтобы способствовать испарению топлива и обеспечивать более равномерный выпуск топлива во всем диапазоне настроек дроссельной заслонки.

Рис. 4: Выбранный воздух поступает в диффузор карбюратора для облегчения распыления топлива

Отводимый воздух втягивает воздух из области карбюратора, где давление воздуха равно или близко к атмосферному, и смешивает его с топливом, всасываемым в диффузор. действием трубки Вентури.Добавление воздуха в сопло диффузора снижает плотность топлива и разрушает поверхностное натяжение молекул жидкого топлива. Это снижает вероятность прилипания топлива к краю форсунки и увеличивает вероятность его смешивания с воздухом и испарения, особенно при более низких настройках дроссельной заслонки.

Дроссельная заслонка двигателя

Объем топливовоздушной смеси, поступающей во впускной коллектор, и соотношение воздуха и топлива в этой смеси регулируются дроссельной заслонкой и рычагами управления смесью соответственно.

Рисунок 5: Рычаг дроссельной заслонки и смеси для легкого самолета

Рычаги управления дроссельной заслонкой и смесью расположены в кабине и позволяют пилоту напрямую управлять выходной мощностью (дроссель) и соотношением воздух-топливо (смесь).

Рычаг дроссельной заслонки управляет дроссельной заслонкой, расположенной в части Вентури карбюратора. При открытии дроссельной заслонки открывается клапан, что позволяет большему количеству воздушно-топливной смеси попасть в камеры сгорания двигателя. В самолете с воздушным винтом фиксированного шага открытие дроссельной заслонки приводит к увеличению частоты вращения винта и соответствующему увеличению тяги.Если скорость гребного винта регулируется (гребной винт с постоянной скоростью), то открытие дроссельной заслонки приведет к увеличению давления в коллекторе, в то время как скорость гребного винта останется прежней.

Закрытие дроссельной заслонки приводит к закрытию дроссельной заслонки, которая ограничивает объем воздушно-топливной смеси, которую получает двигатель. Когда дроссельная заслонка находится в полностью закрытом (холостом) положении, расход через трубку Вентури может быть настолько низким, что двигатель не может работать на холостом ходу без вмешательства. Низкий расход воздуха через трубку Вентури ограничивает падение давления в горловине, что, в свою очередь, ограничивает всасывание топлива из поплавковой камеры в выпускное сопло.

Холостой ход

В карбюратор встроен канал холостого хода, позволяющий двигателю работать на холостом ходу. Это канал, который обходит трубку Вентури и обеспечивает путь для потока топлива непосредственно из поплавковой камеры на сторону низкого давления дроссельной заслонки. Закрытие дроссельной заслонки создает область высокого давления на стороне Вентури клапана. Давление на стороне двигателя дроссельной заслонки ниже из-за всасывающего действия поршней. Это низкое давление всасывает топливо через байпас холостого хода в двигатель.Канал для отбираемого воздуха встроен в систему холостого хода, чтобы позволить воздуху и топливу распыляться и смешиваться перед входом во впускной коллектор двигателя.

Когда дроссельная заслонка открыта, перепад давления в диффузорном сопле снова становится достаточно большим, чтобы всасывать топливо через главный диффузор. Это восстанавливает нормальную работу карбюратора, и топливо не проходит через систему холостого хода.

Рисунок 6: Канал холостого хода в карбюраторе

Mixture Control

Соотношение топлива и воздуха, поступающего в коллектор двигателя, называется смесью и регулируется рычагом в кабине.Рычаги смесителя почти всегда окрашены в красный цвет и обычно располагаются справа от рычага дроссельной заслонки.

Перемещение рычага подачи смеси вперед позволяет большему количеству топлива поступать в выпускное сопло Вентури карбюратора, увеличивая соотношение топлива и воздуха. Это называется , обогащая смесь . Оттягивание рычага подачи смеси назад позволяет меньшему количеству топлива поступать в трубку Вентури, уменьшая или на обедняя смесь на . Вытягивание рычага подачи смеси назад до упора (или вытягивание рычага подачи смеси плунжерного типа) приводит к ситуации, когда топливо не выходит в трубку Вентури.Когда топливо не поступает в двигатель, зажигание больше невозможно, двигатель останавливается, и смесь считается на , отключение холостого хода .

Рисунок 7: Рычаг смеси регулирует соотношение топливовоздушной смеси

Системы управления смесью

Рычаг смешивания в кабине соединен с карбюратором и регулирует количество топлива, которое может пройти через дозирующий жиклер. В легких самолетах используются две системы управления смесью карбюраторов: игольчатый контроль и контроль обратного всасывания.

Тип иглы

Регулировка смеси игольчатого типа состоит из игольчатого клапана, расположенного на дозирующем жиклере, который соединен с рычагом подачи смеси в кабине. По мере того как смесь обогащается (рычаг перемещается вперед), игольчатый клапан перемещается от отверстия дозирующего жиклера, позволяя большему количеству топлива проходить через сопло диффузора. И наоборот, обеднение смеси заставляет игольчатый клапан более плотно прилегать к соплу жиклера, что уменьшает поток топлива в трубку Вентури.Если рычаг подачи смеси закрыт для отключения холостого хода (ICO), клапан полностью входит в отверстие, перекрывая подачу топлива в двигатель.

Рисунок 8: Регулятор смеси игольчатого типа
Регулятор обратного всасывания

Управление обратным всасыванием — еще один широко используемый метод управления скоростью потока топлива в трубку Вентури. Управление потоком достигается путем изменения разности давлений между трубкой Вентури и поплавковой камерой с помощью регулирующего клапана и линии обратного всасывания, которая соединяет поплавковую камеру с трубкой Вентури.

Когда рычаг смеси находится в положении полного обогащения, клапан соединяет поплавковую камеру с линией, открытой в атмосферу. Это обеспечивает максимальный перепад давления между камерой и трубкой Вентури и приводит к наибольшему потоку топлива в диффузор.

По мере того, как регулятор смеси постепенно понижается, клапан на атмосферу закрывается, и давление в поплавковой камере падает в результате втягивания воздуха через канал между камерой и трубкой Вентури. Падение давления в камере приводит к меньшему перепаду давления между камерой и трубкой Вентури, что ограничивает расход топлива, тем самым обедняя смесь.

Когда рычаг подачи смеси полностью переведен в положение отключения холостого хода, регулирующий клапан полностью закрывается от атмосферы и, скорее, открывается в канал отключения холостого хода, который соединяет поплавковую камеру со стороной низкого давления двигателя. . Это вызывает падение давления в камере больше, чем перепад давления в трубке Вентури, эффективно герметизируя топливо в камере и сокращая подачу в двигатель.

Рисунок 9: Схема системы контроля смеси на обратном всасывании
Система ускорения

Быстрое открытие дроссельной заслонки от более низкой мощности до высокой приводит к быстрому попаданию большого объема воздуха в трубку Вентури при открытии дроссельной заслонки.Система распределения топлива в карбюраторе реагирует на изменение положения дроссельной заслонки медленнее, чем воздух, поступающий через впускной патрубок, в результате чего кратковременно падает соотношение топлива и воздуха. Это временно снижает уровень смеси и может привести к медленной реакции двигателя на изменение положения дроссельной заслонки или даже к «заиканию» из-за нехватки топлива в смеси. Один из способов преодоления этого — использование небольшого поршневого насоса в карбюраторе, который впрыскивает дополнительное топливо в трубку Вентури. Это временно обогащает смесь до тех пор, пока дозирующая система не сможет ее догнать.

Экономайзер

Экономайзер представляет собой игольчатый клапан, который открывается при более высоких настройках мощности, позволяя дополнительному топливу обходить основную дозирующую струю и напрямую попадать в нагнетательную форсунку. Это приводит к обогащению смеси, что необходимо при высоких настройках мощности для охлаждения цилиндров и предотвращения детонации.

Влияние высоты на параметры смеси

Соотношения смесей указаны в терминах отношения массы топлива к массе воздуха , а не по объему.Энергия, выделяемая при воспламенении оптимальной смеси топлива и воздуха, называется теплотворной способностью топлива и обычно определяется как функция массы топлива.

Удельная энергия топлива — это количество энергии, выделяемое топливом на единицу массы топлива. Это предполагает, что топливо идеально сгорает на воздухе, и после сгорания топлива не остается. Типичные значения удельной энергии Avgas 100LL, Jet-A и Jet-A1 показаны в таблице ниже.

Топливо Удельная энергия (МДж / кг)
Avgas 100LL 43.5
Джет-А 43,0
Jet-A1 42,8

Указанные выше значения удельной энергии будут достигнуты только в том случае, если топливно-воздушная смесь, поступающая в камеру сгорания, такова, что после сгорания не останется несгоревшего топлива. Это могло бы происходить при оптимальном соотношении компонентов смеси.

Это соотношение было определено тестом и составляет около 1:15. То есть 1 часть топлива на 15 частей воздуха (по массе).

Воздух становится менее плотным при повышении температуры и на больших высотах.Это напрямую влияет на массу воздуха, поступающего во впускное отверстие двигателя. Поэтому, чтобы поддерживать оптимальное соотношение смеси, пилот должен постепенно обеднять смесь по мере набора высоты и обогащать смесь по мере снижения самолета, чтобы компенсировать изменяющуюся массу воздуха, поступающего в двигатель.

Лучшая сила

Лучшая комбинация мощности — это просто настройка смеси, которая позволяет двигателю развивать максимальную мощность. Настройки этой смеси находятся где-то между 1:11.5 и 1:15.

Лучший экономичный

Настройка оптимальной экономичной смеси максимизирует соотношение производимой мощности и сжигаемого топлива.

$$
\ frac {Мощность \ Производства} {Топливо \ Потребление} = Максимум
$$

Это происходит при настройке смеси от 1: 15,5 до 1:18. Эти настройки смеси более бедны, чем лучшие настройки мощности (меньше топлива на массу воздуха), и поэтому не дают такой большой мощности, как более богатые лучшие настройки мощности; однако это компенсируется улучшенным расходом топлива.

Обогащение смеси

Оптимальная настройка смеси может быть достигнута с помощью датчика температуры выхлопных газов (EGT) в кабине. Температура, при которой выхлопные газы выходят из двигателя, является хорошим показателем эффективности сгорания. Более богатые смеси производят более низкие температуры выхлопных газов, поскольку несгоревшее топливо способствует охлаждению двигателя.

По мере того, как смесь обедняется, температура выхлопных газов повышается до максимума, прежде чем станет заметным ее падение.Пик EGT (соответствующий наиболее эффективной точке) всегда наблюдается при одном и том же соотношении топливо-воздух (настройка смеси), но будет происходить в другом положении рычага смешивания, поскольку плотность воздуха изменяется в зависимости от температуры и высоты.

Метод установки оптимальной смеси включает обеднение смеси до тех пор, пока EGT не достигнет максимального значения, а затем небольшое обогащение для снижения температуры в соответствии с руководством по летной эксплуатации. Обратитесь к руководству по летной эксплуатации вашего самолета для получения конкретных подробностей о том, как именно обеднять смесь для достижения наилучших настроек мощности или лучших экономичных настроек.

Загрязнение свечей зажигания

Работа двигателя на слишком богатой смеси может привести к чрезмерному отложению нагара на запальной стороне свечей зажигания. Это нарушает нормальную работу свечи зажигания, перенаправляя высокое напряжение в сторону от наконечника, что может привести к прерывистому или отсутствию зажигания свечи зажигания. Это называется засорением свечей зажигания и проявляется в грубой работе двигателя и падении напряжения на магнето, превышающем максимальное значение, указанное изготовителем во время разгона.

Если есть подозрение на загрязнение свечи зажигания во время разгона двигателя, то одним из возможных решений является обеднение смеси для увеличения EGT и работа двигателя на высоких оборотах в течение короткого периода времени. Это приводит к выжиганию остаточного нагара со свечей, в результате чего двигатель работает более плавно. Затем можно повторить пусковое испытание, чтобы проверить улучшение падения оборотов между магнето. Обратитесь к руководству по летной эксплуатации вашего самолета для получения инструкций по конкретному самолету и продолжайте полет только в том случае, если падение магнето находится в пределах спецификации производителя.

Обледенение карбюратора

Одним из самых больших недостатков использования карбюратора является склонность льда к скоплению в части трубки Вентури. Любое скопление льда ограничит поток смеси к двигателю, что может привести к потере мощности двигателя и, в крайних случаях, к отказу двигателя.

Ледяная формация

Сужение трубки Вентури вызывает увеличение скорости и соответствующее падение давления в горловине. Это падение давления также приводит к падению температуры в горловине в соответствии с законом идеального газа.

$$
PV = nRT
$$

Где:
\ (P: \) Давление
\ (V: \) Объем
\ (n: \) Количество вещества
\ (R: \) Постоянная идеального газа
\ (T: \) Температура

Обледенение при испарении топлива

Сопло диффузора конструктивно расположено на горловине. Здесь распыленное жидкое топливо попадает в воздушный поток и мгновенно испаряется. Энергия требуется для изменения состояния топлива с жидкого на газообразное. Это ничем не отличается от того, как чайнику требуется энергия в виде нагревательного элемента для кипячения воды, и это называется скрытой теплотой испарения .Энергия, необходимая для испарения топлива, извлекается из воздуха, проходящего через горловину, что имеет эффект , снижая температуру в горле еще .

Комбинация падения температуры из-за геометрии трубки Вентури и падения из-за скрытой теплоты, необходимой для испарения топлива, довольно легко может привести к ситуации, когда температура в горловине упадет ниже точки замерзания . В этом случае любая влага в воздухе, поступающем в трубку Вентури, может замерзнуть и прилипнуть к боковой стороне трубки Вентури.

Этот тип обледенения называется обледенением при испарении топлива и может иметь место при температуре окружающей среды до 100 ° F (38 ° C) при правильных условиях влажности. Обледенение наиболее вероятно при температуре ниже 70 ° F (21 ° C) и относительной влажности выше 80%.

Приведенная ниже диаграмма вероятности обледенения показывает, что обледенение карбюратора может происходить в очень широком диапазоне температур и влажности и всегда должно быть в центре внимания пилота, особенно на критических этапах полета, таких как взлет и посадка.Обледенение карбюратора можно уменьшить за счет использования подогрева карбюратора, который будет более подробно обсужден ниже.

Рисунок 10: Диаграмма вероятности обледенения карбюратора
Обледенение дроссельной заслонки

Обледенение дроссельной заслонки — еще одна форма обледенения, которая проявляется из-за конструкции карбюратора. Здесь лед образуется на задней стороне дроссельной заслонки, обычно, когда дроссельная заслонка находится в частично закрытом положении. За дроссельной заслонкой образуется область низкого давления из-за возникающего в результате воздушного потока, что приводит к резкому падению давления на клапане.Падение давления снижает температуру до точки ниже точки замерзания, и любая влага в воздухе замерзает и оседает на клапане.

Обледенение дроссельной заслонки ограничивает прохождение воздуха к двигателю почти так же, как и обледенение от испарения, за исключением того, что для заметной потери мощности требуется лишь небольшой объем льда. Это связано с и без того относительно ограниченным проходом, который диктуется низкой настройкой дроссельной заслонки.

Рисунок 11: Обледенение карбюратора может происходить в горловине или на дроссельной заслонке
Ударное обледенение

Это третий тип обледенения, которое может возникнуть на карбюраторе или вокруг него.В холодные дни, когда температура поверхности опускается ниже нуля, на металлических деталях может накапливаться ударный лед. Обычно ударный лед проявляется при полете по снегу, мокрому снегу или ледяному дождю; в тех же условиях, когда высок риск обледенения конструкции планера.

Выявление и профилактика

Обледенение карбюратора ограничивает выходную мощность двигателя и, таким образом, проявляется в виде потери об / мин, об / мин для самолета с винтом фиксированного шага и потери давления в коллекторе для самолета с винтом с постоянной скоростью.Неровная работа двигателя — еще один явный признак того, что обледенение может быть проблемой.

Нагрев карбюратора

Обледенение карбюратора предотвращается или удаляется за счет использования тепла карбюратора . Это система защиты от обледенения, которая направляет горячий воздух в трубку Вентури, чтобы температура карбюратора не замерзла. Его можно использовать для таяния льда, который уже накопился, но лучше всего использовать его заранее в качестве профилактической меры.

Нагрев карбюратора передается через рычаг в кабине.При активации горячий воздух, поступающий в трубку Вентури, будет иметь более низкую плотность, чем окружающий воздух. Поэтому первоначальное применение приведет к падению оборотов двигателя (или падению давления в коллекторе) и обогащению смеси из-за введения менее плотного воздуха. Если он используется для удаления льда, который уже образовался, нагрев карбюратора сначала приведет к падению оборотов двигателя, прежде чем он снова начнет расти, поскольку лед тает и нормальная работа карбюратора восстанавливается.Во время нанесения смеси может потребоваться обеднение, чтобы восстановить полную мощность.

Атмосферные условия следует контролировать на протяжении всего полета и использовать полный обогрев карбюратора, если есть подозрение на обледенение. Нагреватель должен оставаться включенным даже после того, как лед растает, и выключать его только тогда, когда пилот уверен, что окружающая среда больше не способствует обледенению. Нагрев карбюратора следует использовать только в полностью включенном положении, а не при частичных настройках, так как это может привести к переходу температуры карбюратора в диапазон температур обледенения.Некоторые самолеты оснащены датчиком температуры карбюратора, который может быть полезен для предотвращения и диагностики обледенения карбюратора.

На этом мы подошли к концу этого руководства по карбюратору. Благодарим вас за чтение и не забудьте поделиться этим ресурсом со своими друзьями, коллегами или однокурсниками-пилотами, если вы сочли его полезным.

Вам понравился этот пост? Почему бы не продолжить чтение этой серии статей о поршневых двигателях самолетов и их системах?

Карбюратор

— обзор | Темы ScienceDirect

B.Повышенная мощность и экономичность за счет топлива

Ранние формы бензина были выбраны в основном из-за их летучести, свойства, которое имело жизненно важное значение для первых поверхностных карбюраторов и оставалось важным для пусковых целей даже с распылительными карбюраторами, которые стали почти универсальными. на рубеже веков. Следствием первоначального сосредоточения внимания на летучести стало то, что «хороший» бензин оценивался по его относительной плотности и, как правило, состоял из легких парафиновых молекул и имел, используя современную терминологию, октановое число около 45.Двигатели, которые так хорошо использовались на протяжении всей Первой мировой войны, более или менее постоянно страдали от детонации, а также имели ограниченную степень сжатия около 4: 1.

Было известно, что увеличение степени сжатия даст большие улучшения как в мощности, так и в экономии, но общепринятая теория заключалась в том, что детонация была связана с преждевременным воспламенением из-за горячих точек в камере сгорания. Таким образом, ортодоксальная конструкция камеры сгорания сконцентрирована на достижении надлежащего охлаждения и хорошей формы, чтобы избежать горячих точек и уменьшить преждевременное воспламенение, принимая при этом низкую степень сжатия.

Гарри Рикардо удалось получить индикаторную диаграмму детонационного двигателя в 1913 году с помощью оптического индикатора, подаренного ему его старым наставником профессором Хопкинсоном. Диаграмма показала, что «детонации» предшествовало нормальное воспламенение, инициированное искрой, и оно не было связано с преждевременным зажиганием. Рикардо также заметил, что использование «тяжелого» топлива, такого как бензол, не только дает замечательную устойчивость к детонации, но и позволяет ему увеличить степень сжатия с 4: 1 до более чем 5: 1, давая прирост мощности более чем на 20%. выход.Он также понял из обсуждений с химиками-органиками, что бензол, будучи ароматическим веществом с молекулой, образующей кольцо, будет более стабильным и, следовательно, устойчивым к детонации, чем парафиновые молекулы с прямой цепью.

К 1918 году широкое использование двигателей с боковой заслонкой и низкой степенью сжатия улучшило их конструкцию до такой степени, что основным требованием уже была не просто способность работать с разумной надежностью, а необходимость получения лучшей удельной мощности и расход топлива.

Потребность в большей мощности и экономичности подчеркивалась низкой скоростью по пересеченной местности ранних танков и их дальностью действия (менее 60 миль), даже когда они могли преодолевать бездорожье. Во время встречи для обсуждения этого требования Рикардо показал, что использование бензола может привести к реальному улучшению.

Эта встреча, которая не вызвала никакой реакции со стороны военных властей, привела к тому, что Shell использовала бензин с Борнео для смешивания с другими бензинами и повышения устойчивости к детонации.Бензин Борнео был топливом высокой плотности, содержащим большую долю ароматических углеводородов. Эта же встреча привела к образованию Имперского комитета по моторному топливу, который в 1920 году предоставил Рикардо контракт на исследование того, какие свойства имеют важное значение для топлива для двигателей с искровым зажиганием.

Отчет Комитету был опубликован в 1923 году, и в нем указывалось на важность детонационной стойкости топлива и безрассудство полагаться на относительную плотность как на меру качества топлива.

В том же исследовании были определены понятия «наивысшая полезная степень сжатия (HUCR)» и масштаб детонации. Наивысшая полезная степень сжатия или точка, в которой детонация стала слышимой при определенных условиях температуры и давления, позволила количественно оценить топливо на предмет его устойчивости к детонации. Масштаб детонации был получен путем определения HUCR ряда эталонных топлив, состоящих из смесей гептана и толуола. Чистый толуол имел «толуольное число» 100 (100% толуола), а чистый гептан имел толуольное число 0 (0% толуола).Именно эта работа привела непосредственно к современной концепции октанового числа с использованием изооктана вместо толуола и, конечно же, путем перехода от двигателя с переменной степенью сжатия Рикардо, E35, к двигателю CFR (совместное исследование топлива).

Карбюратор — обзор | Темы ScienceDirect

Для реалистичной оценки различных концепций смесеобразования в рабочем цилиндре двухтактного двигателя представлены две крайние модели.

12.3.2 Образование смеси после продувки

Преимущество образования смеси после продувки путем прямого впрыска топлива в рабочий цилиндр состоит в том, что топливо не включается в потери при продувке (при соответствующем угле впрыска).Однако, поскольку для образования смеси отводится очень короткое время, возникают газодинамические проблемы, вызывающие тенденцию к неполной смеси или недостаточному качеству смеси, что сказывается на сгорании и составе выхлопных газов.

Можно ясно увидеть, почему методы прямого впрыска для двухтактных двигателей поляризованы вокруг двух концепций, а именно:

Формирование частичной смеси из рабочего цилиндра с желаемым количеством топлива, но со значительно уменьшенной долей воздуха и подачей смеси в цилиндр после продувки.В этом устройстве время, отведенное для образования смеси, увеличивается в дополнительном пространстве, где термодинамические условия позволяют получить хорошее перемешивание.

Образование смеси в рабочем цилиндре после продувки прямым впрыском топлива. Для этого метода требуются такие системы впрыска, которые могут обеспечить чрезвычайно короткое время впрыска во всех диапазонах скоростей и достаточное распыление топлива. Такие запросы практически достижимы, если закон впрыска не зависит от частоты вращения двигателя.

Способы расслоения заряда и впрыска жидкого топлива описаны ниже.

12.3.3 Формирование частичной смеси

В этом методе очень богатая смесь готовится из рабочего цилиндра, в то время как процесс продувки осуществляется большей частью свежего воздуха. Эта деталь сначала вводится в цилиндр. Этот метод обеспечивает хорошее распыление топлива в диапазоне от 4 до 12 мкм м SMD (средний диаметр по Заутеру). Предварительная смесь может быть перенесена в рабочий цилиндр после продувки через канал, время открытия которого можно регулировать механически или электронно.Такая концепция была успешно применена в пятидесятых годах компанией Puch / Германия. Простейшим конкретным решением является установка карбюратора для обогащенной смеси, в то время как смесь формируется в небольшом дополнительном цилиндре и затем закачивается в рабочий цилиндр через канал с поршневым управлением, как показано на рисунке 12.4. Несмотря на свою простоту, этот метод приводит к интересным результатам, как показано на рисунке.

При таком расположении воздушно-топливное соотношение составляет от 0,48 до 1,18, а предварительная смесь, которая должна быть перенесена в рабочий цилиндр после продувки, имеет давление 0.3–0,6 МПа. Объемное соотношение обычно составляет 1: 3, а сокращение выбросов bsfc и углеводородов составляет около 30 процентов.

Несмотря на многообещающие результаты при высоких оборотах двигателя и крутящем моменте, Рисунок 12.5 показывает другую тенденцию в режиме низких оборотов двигателя и крутящего момента. Причина связана с тем, что два компонента предварительной смеси (жидкость и газ) имеют разное поведение текучести при поступлении в рабочий цилиндр.

Рис. 12.5. Двигатель MZ с впрыском премикса производства Цвиккауского университета.

12.3.4 Прямой впрыск жидкого топлива

Эта концепция может показаться более простой и многообещающей, чем образование предварительной смеси, как это обычно применяется в дизельных двигателях. Проблема состоит в том, что обычные системы впрыска, подобные тем, что используются в дизельных двигателях, не могут быть применены в их нынешнем виде к системам впрыска топлива в двухтактных двигателях SI, имеющих широкий диапазон скоростей, из-за сильной зависимости закона впрыска от скорости двигателя. На Рисунке 12.6 показаны зависящие от времени и угловые скорости закачки.

Рис. 12.6. Зависящая от времени и угловая скорость впрыска механического впрыскивающего насоса с плунжером с кулачковым приводом.

В дизельных двигателях скорость впрыска в зависимости от угла является обычным способом определения поведения топливных насосов. В такой интерпретации скорость впрыска уменьшается, а время впрыска увеличивается с частотой вращения двигателя, как показано на рисунке. Для высокоскоростных двухтактных двигателей временная диаграмма показывает, что скорость впрыска выше для высокой скорости, а это означает, что скорость топлива при низких оборотах двигателя очень мала.Следовательно, распыление топлива будет плохим только в том диапазоне скоростей, где также снижается энергия свежего воздуха. Кроме того, сильное изменение скорости распыления в зависимости от частоты вращения двигателя означает различную длину проникновения струи в камеру сгорания, что является проблемой для двигателей SI с их фиксированным положением свечи зажигания. Сильное изменение глубины проникновения в зависимости от частоты вращения двигателя является причиной того, что насосы высокого давления, которые могут обеспечить хорошее распыление топлива на низкой скорости, также трудно адаптировать к двигателям SI.Недавние испытания адаптированных плунжерных насосов для двухтактных двигателей SI показали значения bsfc от 400 до 500 г / кВтч и выбросы углеводородов от 68 до 135 г / кВтч в диапазоне скоростей 3000-7500 об / мин, которые все еще не удовлетворяют требованиям будущего. требования.

Вроде бы вполне логичное следствие, что для неизменной длины распыления и распыления топлива во всем диапазоне оборотов двигателя давление в системе впрыска должно быть постоянным на достаточно высоком уровне. Постоянное давление топлива в диапазоне от 6 до 7 МПа, что приводит к размеру капли топлива 5–25 мкм м SMD, может быть обеспечено с помощью различных общих методов.Запрошенная синхронизация форсунки, которая также не зависит от скорости двигателя, но с оптимизированным началом впрыска в каждой точке крутящего момента / скорости, возможна при использовании механических или магнитных устройств. Последний вариант более предпочтителен, поскольку позволяет осуществлять точное электронное управление.

Проблема таких систем, аналогичных современной системе Common Rail в дизельном двигателе, заключается в относительно высокой потребляемой мощности самой системы впрыска, гарантирующей, что уровень высокого давления также должен поддерживаться во время между впрысками.Это означает низкий энергетический КПД, что недопустимо для небольших двухтактных двигателей. Учитывая, например, скорость 3000 об / мин и обычную продолжительность впрыска 0,3 мс, постоянное давление от 6 до 7 МПа будет использоваться только в течение 1,5% времени цикла! Следовательно, для постоянного распыления и длины распыления во всем диапазоне оборотов двигателя максимальное давление топлива, независимо от оборотов двигателя, должно создаваться только в течение периода, охватывающего больше или меньше времени впрыска, чтобы поддерживать высокую энергетическую эффективность.Это означает модуляцию волны давления, которая может осуществляться, например, на основе эффекта гидравлического удара.

Такое решение могло показаться намного более сложным, чем простой и дешевый карбюратор. Двухтактный двигатель должен выжить в относительно простых машинах, таких как скутеры или лодки. Оправдано ли разрабатывать концепции, теории и, наконец, системы такой сложности в этой структуре? Почему бы нам не попытаться улучшить систему очистки? В таблице 12.3 представлены выбросы выхлопных газов и расход топлива двухтактных двигателей с улучшенной системой продувки и устройством для образования смеси после продувки.

Таблица 12.3. Выбросы загрязняющих веществ и bsfc двухтактных двигателей SI с улучшенной продувкой и прямым впрыском топливовоздушной смеси

HC [г / кВтч] NO x [г / кВтч] CO [г / кВтч] bsfc [г / кВтч]
5–20 8–17 10–20 260–300

При сравнении значений в таблицах 12.1 и 12.3 причина становится понятным текущие усилия относительно образования смеси.В этом контексте есть надежда на выживание двухтактного двигателя.

Как настроить силовой клапан в карбюраторе Holley

Даже название «силовой клапан» звучит впечатляюще. В каждом четырехцилиндровом карбюраторе Holley есть гидрораспределитель, и мы собираемся показать вам, как он может улучшить отклик дроссельной заслонки и даже потенциально сэкономить немного топлива для парней, которые планируют проехать много миль по шоссе и улицам.

Давайте начнем с того, что убедимся, что все знают, почему существует схема силового клапана и как она работает.В каждом двух- и четырехцилиндровом карбюраторе Holley силовой клапан расположен в основном в первичном дозирующем блоке, хотя есть модели, которые имеют силовой клапан во вторичном дозирующем блоке. Назначение силового клапана — улучшить управляемость при частичном открытии дроссельной заслонки, соотношение воздух-топливо и расход топлива.

Силовой клапан Holley представляет собой простую диафрагму с коническим седлом клапана, который открыт со стороны корпуса карбюратора для разрежения во впускном коллекторе. При высоком вакууме в коллекторе при частичном открытии дроссельной заслонки это низкое давление «тянет» за клапан, удерживая его закрытым.Когда дроссельная заслонка открывается и нагрузка увеличивается, вакуум в коллекторе падает. В калиброванной точке пружина внутри силового клапана преодолеет низкий вакуум в коллекторе и откроет клапан.

Когда силовой клапан открывается, он направляет топливо из поплавковой чаши в основной колодец в дозирующем блоке. Главный колодец — это контур, который направляет топливо в первичные ускорители в трубке Вентури карбюратора. Этот контур обогащения энергии полностью отделен от топлива, подаваемого главными форсунками, и используется для пополнения количества топлива, подаваемого первичными форсунками.

Это может вызвать вопрос, зачем нужна дополнительная цепь. Почему бы просто не увеличить размер жиклера и не исключить этот контур? Это отличный вопрос, и дизайнеры карбюраторов Holley предлагают столь же элегантный ответ. Даже на гоночном двигателе бывают случаи, когда двигатель будет работать с небольшим дросселем, например, проезжая через боксы во время дрэг-рейсинга. Цепь силового клапана подает довольно значительное количество дополнительного топлива при почти полностью открытой дроссельной заслонке (WOT).За счет уменьшения первичного впрыска при частичном открытии дроссельной заслонки двигатель работает с более обедненным соотношением воздух-топливо, что предотвращает засорение пробок и промывку стенок цилиндра избытком топлива, что может привести к повреждению поршневых колец.

Это особенно важно для уличных двигателей, поскольку эти двигатели более 80 процентов времени работают при небольшом открытии дроссельной заслонки. Как правило, схема силового клапана вводит примерно 6-8 размеров форсунок дополнительного топлива. Это уменьшает размер первичной струи на ту же величину.Например, в механической вторичной обмотке на 750 кубических футов в минуту (номер детали 0-4779-10) используется первичный жиклер 71 в сочетании с силовым клапаном. Вторичная сторона не использует силовой клапан, но оснащена задним жиклером 80, который на 9 ступеней больше. Увеличение вторичного впрыска компенсирует отсутствие вторичного силового клапана с равным количеством топлива, подаваемым как с первичной, так и с вторичной сторон карбюратора на WOT.

Все силовые клапаны Holley имеют штамповку сбоку или, как в данном случае, металлическую арматуру ближе к центру.Вы можете увидеть цифры «8» и «5», что соответствует 8,5-дюймовому силовому клапану ртутного столба. Марки сверху — это коды даты. Диапазон стандартных клапанов Holley составляет от 2,5 до 10,5 дюймов ртутного столба.

Каждый силовой клапан рассчитан на открытие при заданном уровне вакуума в коллекторе, и Holley предлагает широкий диапазон этих значений открытия. Вакуум во впускном коллекторе для карбюраторных двигателей обычно выражается в дюймах ртутного столба, или «Hg. Например, наиболее часто используемый силовой клапан Holley имеет номинальное давление 6,5 дюймов ртутного столба, что означает, что клапан откроется, когда вакуум в коллекторе упадет до 6.5 “Hg или ниже. Вакуум на холостом ходу на уличных двигателях может составлять от 9,0 дюймов рт. Стандартные двигатели обычно плавно работают на холостом ходу от 14 до 16 дюймов рт.

Итак, теперь, когда мы знаем, как работает схема силового клапана, давайте посмотрим, как мы можем использовать эту информацию, чтобы настроить конкретную комбинацию двигателей для улицы. Также важно отметить, что стандартная настройка карбюратора Holley для типичного двигателя для умеренных уличных условий часто очень близка.Типичный вакуумный вторичный агрегат Holley 3310-9 750 на малоблочном автомобиле Chevy 355ci с мягким кулачком, хорошими головками, впуском и коллектором, вероятно, будет очень близок к тому, что нужно двигателю. Но, заявив об этом, хот-роддеры — заядлые тюнеры и могут захотеть посмотреть, смогут ли они сделать свой двигатель еще лучше.

Мы можем начать с некоторых основных рекомендаций по настройке. Для уличного автомобиля с автоматической коробкой передач используйте вакуумметр для измерения вакуума на холостом ходу полностью прогретого двигателя на холостом ходу на передаче.Давайте установим этот вакуум на холостом ходу на 13 ° C. Если разделить вакуум на холостом ходу пополам, получится мощность 6,5 дюймов ртутного столба, которая станет отличной отправной точкой для настройки.

Это откроет силовой клапан, когда вакуум в коллекторе достигнет 6,5 “Hg или ниже. Некоторые тюнеры предпочитают открывать силовой клапан немного раньше, чтобы предотвратить работу двигателя на обедненной смеси при более тяжелом частичном открытии дроссельной заслонки, что может вызвать проблемы с детонацией. В этом случае тюнер может поднять силовой клапан ближе к 8,5 или, возможно, 9,0 “рт.

Можно найти множество дискуссий о силовом клапане, который открывается или не открывается на холостом ходу.Идея наличия силового клапана, открытого на холостом ходу, заключается в том, что цепи холостого хода и обогащения мощности разделены, и, следовательно, никакого эффекта не будет. В то время как холостая и основная цепи разделены, чрезмерно богатая основная цепь на холостом ходу будет влиять на качество холостого хода. На холостом ходу силовой клапан должен оставаться закрытым.

Этот городской миф, вероятно, сохранился из-за проблем со старыми карбюраторами Holley, которые иногда страдали из-за повреждения силового клапана. Если диафрагма силового клапана выходит из строя или протекает, топливо может попасть во впускной коллектор через опорную плиту карбюратора.

Трудно увидеть, но в этом канале есть небольшой контрольный шар (стрелка), который направляет вакуум в коллекторе в полость силового клапана в дозирующем блоке. Этот обратный клапан предотвращает повреждение силового клапана в случае обратного зажигания двигателя. Это стандарт для всех карбюраторов Holley, выпущенных начиная с 1992 года.

Карбюраторы Holley

, выпущенные до 1992 года, могут быть легко преобразованы в запорный шар с гидрораспределителем для защиты от повреждений при обратной вспышке. В комплект Holley входят сверло, контрольный шар, крошечная коническая пружина и запрессованная шайба для удержания сборки.Контрольный шар помещается в вакуумный канал коллектора в дроссельной заслонке.

Компания Holley решила эту проблему, начиная с 1992 года, установив контрольный шар для предотвращения обратного зажигания во все свои карбюраторы. Это предотвращает повреждение силового клапана в случае обратного зажигания двигателя. Ранний карбюратор Holley также легко дооснастить комплектом контрольных шаров Power Valve Check Ball. Мы делали это преобразование несколько раз. Это очень легко сделать, и на выполнение уходит, возможно, полчаса.

Возвращаясь к настройке силового клапана, предположим, что мы установили на борту измеритель воздушно-топливного отношения Холли, чтобы помочь нам измерить результаты сгорания.Широкополосный датчик кислорода может быть очень полезен при настройке. Предположим, что наш двигатель работает в устойчивом крейсерском режиме по ровной поверхности на шоссе при соотношении воздух-топливо примерно 13,1: 1 при показании вакуума в двигателе 14 дюймов ртутного столба.

Мы бы предпочли, чтобы этот двигатель работал немного экономнее при частичном открытии дроссельной заслонки. Некоторые энтузиасты опасаются, что обедненный двигатель нагреется, но при небольшой нагрузке это не так. Теоретически предположим, что размер нашего основного жиклера равен 72. Если мы решим перейти на более компактный жиклер 69.Для целей обсуждения предположим, что это улучшает нашу крейсерскую AFR с неполным газом с 13,1: 1 до 13,6: 1. Это означает более компактный AFR, и кажется, что двигатель работает нормально, поэтому мы внесем это постоянное изменение.

Однако это также привело к сокращению общего количества топлива, подаваемого в двигатель. Предположим, что теперь наш WOT AFR изменился с 12,6: 1 на более компактный 13,0: 1, что, вероятно, является незначительным. Мы могли бы просто добавить жиклеры трех размеров на вторичную сторону карбюратора. Однако это нарушает баланс топлива, подаваемого в двигатель в продольном направлении, и потенциально может способствовать работе передних цилиндров на обедненной смеси.Вы, наверное, догадались, что есть простой способ решить эту проблему.

В схеме силового клапана используется специальный ограничитель, который определяет количество подаваемого топлива при открытии силового клапана. Холли называет это ограничителем цепи силового клапана (PVCR). Под силовым клапаном расположены два таких ограничителя. Размер PVCR варьируется в зависимости от требований к дозированию карбюратора. Например, карбюратор Holley Avenger на 670 кубических футов в минуту использует 0,042-дюймовый PVCR, в то время как больший карбюратор на 750 л.с. будет иметь размер ближе к 0.050 дюймов.

Давайте воспользуемся Holley 750 HP, чтобы увидеть, как мы можем изменить размер PVCR. Для этого потребуется простая математика. Поверьте, это не сложно. Первое, что нам нужно знать, — это размер сверла основных форсунок. В случае с нашим примером 750, 72 жиклер использует диаметр 0,079 дюйма (см. Диаграмму жиклера). Мы можем вычислить площадь этого отверстия по формуле π x радиус x радиус (Pi r в квадрате). Если мы вычтем диаметр струи 69 из струи 72, это даст нам площадь, которая нам нужна для увеличения PVCR.

Мы избавим вас от математических расчетов, но смена жиклера привела к увеличению площади жиклера на 25 процентов. Итак, мы умножили площадь 0,052-дюймового PVCR и затем обнаружили, что диаметр PVCR 0,058 дюйма (на 0,006 дюйма больше) увеличит проходное сечение примерно на столько же, сколько мы уменьшили размер струи.

Для этого потребуется небольшое сверло определенного размера. Но есть и другие способы сделать это. Некоторые карбюраторы Holley, такие как Ultra HP, поставляются с резьбовыми отверстиями для выпуска воздуха вместо фиксированных ограничителей для PVCR.Quick Fuel Technology также продает дозирующий блок из алюминиевых заготовок с ввинчиваемыми выпускными отверстиями размером 6-32, которые значительно упрощают эти изменения. Холли также продает эти прокачки в наборе или по 4 штуки.

Мы признаем, что это может показаться большим трудом для очень небольшого изменения, но давайте копнем немного глубже. Мы все время слышим о том, что EFI намного лучше карбюратора, потому что EFI может управлять соотношением воздух-топливо при частичном открытии дроссельной заслонки на гораздо более жестком уровне, чем карбюратор. Хотя мгновенная обратная связь EFI действительно дает преимущества, сеанс настройки силового клапана, который мы только что обрисовали между основными главными жиклерами и PVCR, — это именно то, как вы сужаете этот запас между EFI и хорошо подготовленным уличным карбюратором.Существует множество возможных уравнений для настройки AFR, которые основаны на весе автомобиля, двигателе, передаче и других факторах, которые будут иметь значение, но для общего понимания используйте следующие диапазоны в качестве хорошей отправной точки для настройки вашей настройки:

  • Круиз: 14,7: 1 — 15,5: 1
  • Холостой ход: 13,5 — 15,0
  • Stoich: 14,7: 1
  • Широко открытая дроссельная заслонка: 11,5: 1 — 13,3: 1

Преимущество для знающего тюнера карбюратора заключается в том, что он может выполнить эти модификации на доступном карбюраторе и очень близко к той же производительности при частичном открытии дроссельной заслонки, что и лучшая система EFI.Чем больше вы знаете о том, как работает схема повышения мощности, тем лучше вы станете тюнером.

После снятия топливного бака и дозирующего блока можно легко заменить силовой клапан с помощью 1-дюймового торцевого гаечного ключа, чтобы ослабить и отвинтить клапан от дозирующего блока.

При установке силового клапана в дозирующий блок нам нравится устанавливать прокладку на силовой клапан, переворачивать дозирующий блок и навинчивать клапан на место. Это обеспечивает правильное центрирование прокладки на силовом клапане.

Эта полость в корпусе основного карбюратора загерметизирована с задней стороны силового клапана. Единственное отверстие — небольшое отверстие в нижней части полости, которое соединяется с вакуумом в коллекторе. Большая полость обеспечивает сбалансированный вакуумный сигнал для силового клапана.

В этом маленьком коническом седле за пружиной (стрелка) топливо поступает в силовой клапан из поплавковой камеры. Он выходит через окна и затем попадает в зону, где находится ПВЦР.

Когда силовой клапан снят, вы можете увидеть два небольших отверстия снаружи резьбового отверстия.Эти два отверстия представляют собой PVCR (ограничения канала силового клапана). Мы измерили их с помощью тисков диаметром 0,052 дюйма.

Карбюсы Holley с более новыми характеристиками, такие как этот Ultra HP, поставляются с ввинчиваемым PVCR, что делает замену этих ограничителей очень простой. Также возможно модернизировать имеющуюся Holley с помощью алюминиевого дозирующего блока с технологией Quick Fuel Technology с такими же ввинчиваемыми спускными отверстиями.

Большинство вторичных измерительных блоков не имеют положения для силового клапана, так как вторичные узлы редко или никогда не открываются при малых нагрузках или крейсерском режиме.

Что такое карбюратор? Что означает процесс карбюрации?

Карбюратор — это устройство, которое смешивает определенное количество топлива с определенным количеством воздуха для быстрого и полного сгорания, которое генерирует импульс, подаваемый на поршень двигателя в начале рабочего такта. Смесь создается в строгих условиях и при соблюдении точных пропорций. Весь этот процесс известен как процесс карбюрации .

Карбюратор питается от системы подачи бензина, в которую атмосферный воздух всасывается за счет разрежения, создаваемого движением поршня вниз во время такта впуска.Топливо, приводимое в движение воздушным потоком, разделяется на мелкие капли, которые затем распыляются при ударе о воздух, который способствует испарению топлива, тем самым подготавливая образование гомогенной смеси.

Условия процесса карбюрации

Для правильного выполнения процесса карбюрации он должен соответствовать следующим условиям:

  • Смесь нужного количества топлива с нужным количеством воздуха для быстрого и тщательного сгорания; Соотношение количества топлива и воздуха в смеси называется отношением количества топлива к воздуху.
  • Топливо и воздух должны смешиваться в одном физическом состоянии (газообразном). Следовательно, если топливо жидкое, его необходимо превратить в газ: этот процесс называется испарением .
  • Так как молекулы кислорода должны окружать каждую молекулу топлива, чтобы гореть; смесь должна быть идеально однородной .
  • Соотношение топливо / воздух должно быть адаптировано для всех оборотов двигателя без внешнего воздействия, адаптировано автоматически .
  • Карбюраторная смесь должна быть равномерно распределена по всем цилиндрам.

Испарение бензина

Для смешивания топлива и воздуха они должны находиться в одном физическом состоянии: в газообразном состоянии. Если топливо жидкое, его нужно заменить на газ; это преобразование называется испарение .

Следующие факторы участвуют в испарении бензина:

  • Контактная поверхность «воздух / бензин» . Поверхность контакта воздух / бензин должна быть как можно большей; для этого бензин подается с высокой скоростью через очень маленькое отверстие и сталкивается с воздушным потоком, в котором он распыляется на мелкие капли «распыления».”
  • Давление . При заданной температуре жидкость испаряется быстрее при низком давлении «вакуум».
  • Температура . При заданном давлении испарению способствует нагревание жидкостей; при температуре кипения испарение является особенно быстрым «повторным нагревом».
  • Подвод тепла . Испарение поглощает тепло; повторный нагрев необходим для поддержания температуры.

Как было сказано выше, давление должно быть низким; это создает решающий вакуум в карбюраторе.Чем больше объем, создаваемый поршнями двигателя, и чем меньше площадь поперечного сечения канала для всасывания воздуха, тем больше разрежение. При значительном понижении давления начинается испарение.

Вентури помещают в карбюратор для увеличения скорости воздушного потока и облегчения испарения.

Вторая функция карбюратора — снизить давление и, таким образом, обеспечить распыление и распыление бензина через калиброванный порт, называемый жиклером.

Функциональные и конструктивные элементы карбюратора

Карбюратор разработан для обеспечения смешивания воздуха и бензина в условиях, позволяющих обеспечить правильную карбюрацию на всех оборотах двигателя.В дополнение к карбюрации карбюратор обеспечивает регулировку, что означает согласование мощности, развиваемой двигателем, с требуемой мощностью.

Базовый карбюратор, разделенный на три узла:

  • Бак постоянного уровня.
  • Самолет.
  • Карбюраторная камера.

1: Впуск воздуха — 2: Цилиндр — 3: Жиклер — 4: Вентури — 5: Смесь воздуха и бензина в цилиндры — 6: Дроссельный клапан, управляемый ускорителем — 7: Бак постоянного уровня — 8: Поплавок — 9: Впуск бензина — 10: Игла

Карбюратор Бак постоянного уровня

Резервуар, называемый резервуаром постоянного уровня, обеспечивается игольчатым клапаном, приводимым в действие поплавком.Бензин подается из бака самотеком или через насос низкого давления.

Когда бензин в баке достигает необходимого уровня, поднимающийся поплавок приводит в действие иглу, закрывающую впускное отверстие.

Как только топливо израсходовано, игла открывается до тех пор, пока не будет достигнут требуемый уровень в баке. Вентиляционное отверстие в баке позволяет сливать бензин под действием атмосферного давления.

Карбюратор Жиклер

Жиклер питается от бака постоянного уровня.Он снабжен калиброванным портом; на выходе из этого порта струя бензина распыляется в воздушном потоке; это проходное отверстие расположено на несколько миллиметров выше уровня резервуара.

Камера карбюратора

В камеру карбюрации входят:

  • Вентури: Вентури спроектировано для уменьшения давления циркулирующего воздуха в камере карбюратора до падения на уровне струи. Это создает область вакуума, который пропорционален скорости воздушного потока.Самый сильный вакуум регистрируется немного ниже по потоку от самой узкой точки, на расстоянии, которое соответствует одной трети диаметра трубки Вентури. Трубка Вентури имеет особый профиль, причем угол на входе больше, чем на выходе.
  • Газовый дроссельный клапан: Запорный или дроссельный клапан расположен после камеры карбюрации; он предназначен для регулирования мощности двигателя путем ограничения количества газа, разрешенного путем изменения площади поперечного сечения потока газа.
  • Участок трубы: Участок трубы, проходящий между форсункой и впускным клапаном.

Типы карбюраторов

По положению цилиндра карбюратора и направлению потока газа можно выделить три типа карбюраторов:

  • Карбюратор Updraft для восходящего потока.
  • Карбюратор с поперечной тягой для горизонтального потока.
  • Карбюратор с нисходящим потоком для нисходящего потока.

Работа карбюратора

Бензин подается в бак постоянного уровня самотеком или с помощью насоса. По мере того, как бензин сливается в бак, плавучесть под поплавком увеличивается. Когда он равен весу поплавка, последний находится в равновесии и плавает: бензин продолжает течь. Уровень увеличивается, и поплавок поднимается, пока игла не коснется своего седла. Бензин продолжает поступать в бак из-за давления «напора» или «напора» насоса.”

По мере повышения уровня бензина в баке давление под поплавком увеличивается до тех пор, пока не превысит давление бензина на входе. В этот момент игла, которая прилегает к своему гнезду, закрывает впускное отверстие для бензина. Когда форсунка питает карбюратор, уровень бензина в баке снижается, поплавок опускается, позволяя бензину снова течь в бак, пока не будет достигнут требуемый уровень, а впускное отверстие для бензина не закроется.

Газовый дроссельный клапан приводится в действие для уменьшения или увеличения мощности, развиваемой двигателем.Давление перед этим клапаном остается равным атмосферному давлению, когда воздушная заслонка закрыта. Чем больше заслонка заслонки препятствует прохождению газа, тем ниже по потоку давление; запирающее действие этого устройства вызывает потерю напора в потоке газа.

Следовательно, всасываемые газы допускаются под различным давлением и, следовательно, с различной массой. Контроль количественный. Мощность изменяется, воздействуя на индекс наполнения, а затем на давление сжатия.

При остановке двигателя

Впускной трубопровод и бак находятся под атмосферным давлением; бензин подается до тех пор, пока игла не закроет входное отверстие.Как и в баке, уровень в жиклере постоянный.

При работающем двигателе

Фиксация газового дроссельного клапана в среднем положении создает воздушный поток во впускной трубе. Подача газа в один цилиндр периодическая: в четырехтактном двигателе она происходит за один такт из четырех.

Питание нескольких цилиндров от одного карбюратора; следовательно, по всей общей части камеры сгорания поток газа во время работы существенно не меняется.

Автоматический карбюратор

Автоматический карбюратор — это карбюратор, обеспечивающий постоянное соотношение смеси, когда двигатель работает на экономичных оборотах, и изменяющееся соотношение для обогащения смеси, когда необходимо увеличить мощность двигателя.

Соотношение компонентов смеси можно изменять, воздействуя на расход воздуха или расход бензина. Поскольку расход бензина увеличивается быстрее, чем расход воздуха, можно:

  • Уменьшите расход бензина.
  • Увеличьте скорость воздушного потока.

Три метода коррекции изменения соотношения воздух / бензиновая смесь:

  1. Методы регулировки воздуха; «Воздействуя на воздух (необходимо увеличить расход воздуха)».

Метод регулировки воздуха также называется принципом вторичного воздуха. Больше не используется. Дополнительное количество воздуха с регулируемым вакуумом подается для корректировки избыточного обогащения смеси. Он управляется утяжеленным клапаном, который открывается, когда вакуум достигает определенного значения, когда смесь воздуха / бензина содержит слишком много бензина.

  1. Методы регулировки бензина; «Воздействуя на бензин (необходимо уменьшить расход бензина)».

Этот результат достигается за счет комбинации следующих устройств:

  • Жиклер затопленный.
  • Отводная струя и эмульсионная трубка.
  • Добавление жиклера компенсатора.

Заливная форсунка

Поскольку расход воздуха и бензина изменяется в зависимости от вакуума, главный контур карбюратора должен быть снабжен автоматическим дозирующим устройством, включающим залитый жиклер.

Последний играет важную роль при работе двигателя на малых оборотах. Жиклер располагается ниже уровня поплавковой камеры карбюратора (на практике — внизу поплавковой камеры). Под действием вакуума, который суммируется с разницей уровней, он подает бензин. Когда скорость увеличивается, вакуум увеличивается, и влияние разницы уровней становится незначительным.

Отводная струя и эмульсионная трубка

Поскольку расход воздуха и бензина изменяется в зависимости от вакуума, главный контур карбюратора должен быть оборудован автоматическим дозирующим устройством, включая систему отводного жиклера и эмульсионную трубку.

Система с отводной струей предназначена для уменьшения вакуума, влияющего на струю, когда вакуум средний или большой, для уменьшения расхода бензина. При небольшом вакууме струя работает по принципу затопленной струи: смесь богатая.

Созданная эмульсия увеличивает площадь поперечного сечения воздушного канала в системе с отклоняемой струей по сравнению с вакуумом. Таким образом, расход бензина можно контролировать по отношению к расходу воздуха, чтобы соответствовать кривой идеального соотношения.

Добавление жиклера компенсатора.

В базовом карбюраторе расход бензина увеличивается быстрее, чем расход воздуха. Таким образом, можно связать струю, называемую компенсирующей струей, с основной струей. Его расход корректирует обогащающий эффект основного карбюратора. Таким образом можно получить адекватное передаточное число на всех скоростях.

Скорость струи должна ослаблять соотношение воздух / бензиновая смесь при увеличении скорости.

Для этого расход струи компенсатора должен изменяться в направлении, противоположном направлению основной струи.

  1. Комбинированные методы; «Действуя на бензин и воздух».

Солекс Карбюратор

Многие типы карбюраторов Solex; характеризуются возможностью регулировки таких компонентов, как главный жиклер или рабочий жиклер, система отклоняемых жиклеров (переменная), вентиляция и контур холостого хода.

Карбюраторы

Solex работают по принципу залитой отводной струйной системы с многоступенчатой ​​эмульсией. По мере увеличения вакуума:

  • Бензин на уровне эмульсионной трубки поступает в камеру карбюрации в виде богатой смеси.
  • Уровень снижается, открывая самые высокие отверстия эмульсионной трубки.
  • Смесь постепенно ослабевает, и поперечное сечение воздушного канала в отводной системе увеличивается.

Когда все отверстия открыты, действие системы отвода струи максимально, а богатство смеси поддерживается на уровне, близком к соотношению воздух / бензин, что обеспечивает наивысшую эффективность.

Карбюратор Stromberg

В карбюраторах Stromberg дозирование смеси обеспечивается на различных скоростях через:

  • Главный жиклер затоплен.
  • Перфорированная эмульсионная трубка.
  • Калиброванное отверстие для отвода воздуха.

Холостой ход обеспечивается дополнительным воздушным жиклером. Регулировка осуществляется винтом, действующим на воздушную струю. Поршневой насос с механическим управлением обеспечивает всасывание.Этот насос позволяет карбюратору работать на двух скоростях: очень высокой или экономичной.

Это устройство позволяет двигателю развивать дополнительную мощность на высоких оборотах за счет обогащения смеси, получаемой за счет одновременной подачи двух струй.

Карбюратор Weber

Чтобы преодолеть проблемы, с которыми сталкиваются все более мощные двигатели (несовместимость работы на высоких и низких оборотах), двухцилиндровые карбюраторы заменяют обычные карбюраторы.Они бывают двух типов: карбюраторы с одновременным открытием дросселей и карбюраторы с шахматным открытием дросселей.

Карбюраторы с одновременным открытием дросселей

Карбюраторы с одновременным открытием дросселей можно сравнить с отдельными карбюраторами, работающими одновременно и идентичным образом. Преимущество этой системы — лучшее заполнение цилиндров, лучшее распределение смеси и, следовательно, улучшенные подборщики и более высокие скорости.

Отсутствие гибкости карбюратора этого типа является недостатком, которого нет у карбюратора другого типа.

Карбюраторы с шахматным открытием дросселей

Карбюраторы с шахматным открытием дросселей включают:

  • Главный ствол, характеристики которого позволяют двигателю работать на низких экономичных оборотах.
  • Вторичный ствол открывается только тогда, когда акселератор находится в определенном положении и позволяет двигателю развивать максимальную мощность.

Ряд рычагов открывают этот газовый дроссель.

(Ступенчатое открытие дросселей)

Зенит Карбюратор

Изменения в соотношении компонентов смеси можно скорректировать, воздействуя на поток бензина. Это осуществляется с помощью автоматического дозатора, снабженного компенсирующим жиклером и встроенного в главный контур.

Регулирующими элементами являются главный жиклер, холостой жиклер, сопло и компенсационный жиклер, который погружен в воду и, следовательно, не подвергается действию вакуума, преобладающего внутри трубки Вентури.Поскольку скорость потока одинакова на всех оборотах двигателя, насыщенность смеси изменяется обратно пропорционально скорости.

Карбюратор постоянного вакуума

Чтобы приблизиться к кривой идеального соотношения воздух / топливо, частичный вакуум может поддерживаться постоянным путем изменения степени открытия дроссельной заслонки или площади горловины Вентури. Таким образом, используется карбюратор с постоянным вакуумом или с регулируемым жиклером.

При постоянном расходе скорость воздушного потока обратно пропорциональна площади воздушного канала.

Необходимо увеличивать площадь прохода для воздуха пропорционально расходу газообразной жидкости для постоянной скорости потока. Получаемый частичный вакуум остается постоянным при любой скорости.

Золотниковый клапан или скользящий поршень движется перпендикулярно потоку газа. Его движение напрямую контролируется вакуумом в горловине Вентури и достигается за счет пружины и диафрагмы.

Карбюратор и впрыск топлива

Карбюраторы имеют следующие недостатки:

  • Кривая идеального соотношения топливо (бензин) / воздух не соблюдается точно.
  • Когда молекулы воздуха и бензина проходят через коллекторы для смешивания, они расширяются, снижая объемный КПД карбюратора.
  • Испарение из-за падения давления на дроссельной заслонке вызывает замерзание карбюратора.
  • При низкой температуре часть газа конденсируется по бокам коллектора. Следовательно, требуется гораздо более богатая смесь.
  • Неравномерная однородность смеси увеличивает расход топлива и уровень загрязнения.
  • При наличии только одного карбюратора неравномерное распределение смеси между различными цилиндрами.

В системе впрыска воздух попадает в двигатель через впускной коллектор с большим поперечным сечением. Механический или электрический насос нагнетает топливо, и точное количество топлива подается в коллектор с помощью форсунок на каждом цилиндре.

Система впрыска топлива принесла много улучшений, таких как:

  • Топливно-воздушная смесь создается с учетом большего числа параметров, таких как нагрузка двигателя, температура воды, воздуха и т. Д.
  • Карбюраторная смесь очень однородная и плотная.В основном это связано с системой распыления топлива, уменьшенным временем контакта между воздухом и распыляемым топливом и более низкими температурами нагрева.
  • Горение на любой скорости улучшается за счет более точного соотношения смеси воздух / топливо.
  • Повышение объемного КПД приводит к увеличению крутящего момента и мощности.
  • Снижение расхода топлива и уровня загрязнения.
  • Гибкость двигателя улучшена за счет равномерного сгорания в различных цилиндрах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *