Назначение системы питания карбюраторного двигателя – . , , —

Содержание

Система питания топливом бензинового (карбюраторного) двигателя

Система питания топливом бензинового двигателя ⭐ предназначена для размещения и очистки топлива, а также приготовления горючей смеси определенного состава и подачи ее в цилиндры в необходимом количестве в соответствии с режимом работы двигателя (за исключением двигателей с непосредственным впрыском, система питания которых обеспечивает поступление бензина в камеру сгорания в необходимом количестве и под достаточным давлением).

Бензин, как и дизельное топливо, является продуктом перегонки нефти и состоит из различных углеводородов. Число атомов углерода, входящих в молекулы бензина, составляет 5 — 12. В отличие от дизелей в бензиновых двигателях топливо не должно интенсивно окисляться в процессе сжатия, так как это может привести к детонации (взрыву), что отрицательно скажется на работоспособности, экономичности и мощности двигателя. Детонационная стойкость бензина оценивается октановым числом. Чем больше оно, тем выше детонационная стойкость топлива и допустимая степень сжатия. У современных бензинов октановое число составляет 72—98. Кроме антидетонационной стойкости бензин должен также обладать низкой коррозионной активностью, малой токсичностью и стабильностью.

Поиск (исходя из экологических соображений) альтернатив бензину как основному топливу для ДВС привел к созданию этанолового топлива, состоящего в основном из этилового спирта, который может быть получен из биомассы растительного происхождения. Различают чистый этанол (международное обозначение — Е100), содержащий исключительно этиловый спирт; и смесь этанола с бензином (чаще всего 85 % этанола с 15 % бензина; обозначение — Е85). По своим свойствам этаноловое топливо приближается к высокооктановому бензину и даже превосходит его по октановому числу (более 100) и теплотворной способности. Поэтому данный вид топлива может с успехом применяться вместо бензина. Единственный недостаток чистого этанола — его высокая коррозионная активность, требующая дополнительной защиты от коррозии топливной аппаратуры.

К агрегатам и узлам системы питания топливом бензинового двигателя предъявляются высокие требования, основные из которых:

  • герметичность
  • точность дозирования топлива
  • надежность
  • удобство в обслуживании

В настоящее время существуют два основных способа приготовления горючей смеси. Первый из них связан с использованием специального устройства — карбюратора, в котором воздух смешивается с бензином в определенной пропорции. В основу второго способа положен принудительный впрыск бензина во впускной коллектор двигателя через специальные форсунки (инжекторы). Такие двигатели часто называют инжекторными.

Независимо от способа приготовления горючей смеси ее основным показателем является соотношение между массой топлива и воздуха. Смесь при ее воспламенении должна сгорать очень быстро и полностью. Этого можно достичь лишь при хорошем смешении в определенной пропорции воздуха и паров бензина. Качество горючей смеси характеризуется коэффициентом избытка воздуха а, который представляет собой отношение действительной массы воздуха, приходящейся на 1 кг топлива в данной смеси, к теоретически необходимой, обеспечивающей полное сгорание 1 кг топлива. Если на 1 кг топлива приходится 14,8 кг воздуха, то такая смесь называется нормальной (а = 1). Если воздуха несколько больше (до 17,0 кг), смесь обедненная, и а = 1,10… 1,15. Когда воздуха больше 18 кг и а > 1,2, смесь называют бедной. Уменьшение доли воздуха в смеси (или увеличение доли топлива) называют ее обогащением. При а = 0,85… 0,90 смесь обогащенная, а при а < 0,85 — богатая.

Когда в цилиндры двигателя поступает смесь нормального состава, он работает устойчиво со средними показателями мощности и экономичности. При работе на обедненной смеси мощность двигателя несколько снижается, но заметно повышается его экономичность. На бедной смеси двигатель работает неустойчиво, его мощность падает, а удельный расход топлива возрастает, поэтому чрезмерное обеднение смеси нежелательно. При поступлении в цилиндры обогащенной смеси двигатель развивает наибольшую мощность, но и расход топлива также увеличивается. При работе на богатой смеси бензин сгорает неполностью, что приводит к снижению мощности двигателя, росту расхода топлива и появлению копоти в выпускном тракте.

Карбюраторные системы питания

Рассмотрим сначала карбюраторные системы питания, которые еще недавно были широко распространены. Они более просты и дешевы по сравнению с инжекторными, не требуют высококвалифицированного обслуживания в процессе эксплуатации и в ряде случаев более надежны.

Система питания топливом карбюраторного двигателя

включает в себя топливный бак 1, фильтры грубой 2 и тонкой 4 очистки топлива, топливоподкачивающий насос 3, карбюратор 5, впускной трубопровод 7 и топливопроводы. При работе двигателя топливо из бака 1 с помощью насоса 3 подается через фильтры 2 и 4 к карбюратору. Там оно в определенной пропорции смешивается с воздухом, поступающим из атмосферы через воздухоочиститель 6. Образовавшаяся в карбюраторе горючая смесь по впускному коллектору 7 попадает в цилиндры двигателя.

Топливные баки в силовых установках с карбюраторными двигателями аналогичны бакам систем питания дизелей. Отличием баков для бензина является лишь их лучшая герметичность, не позволяющая бензину вытечь даже при опрокидывании ТС. Для сообщения с атмосферой в крышке наливной горловины бака обычно устанавливают два клапана — впускной и выпускной. Первый из них обеспечивает поступление в бак воздуха по мере расходования топлива, а второй, нагруженный более сильной пружиной, предназначен для сообщения бака с атмосферой, когда давление в нем выше атмосферного (например, при высокой температуре окружающего воздуха).

Фильтры карбюраторных двигателей аналогичны фильтрам, применяемым в системах питания дизелей. На грузовых автомобилях устанавливаются пластинчато-щелевые и сетчатые фильтры. Для тонкой очистки используют картон и пористые керамические элементы. Кроме специальных фильтров в отдельных агрегатах системы имеются дополнительные фильтрующие сетки.

Топливоподкачивающий насос служит для принудительной подачи бензина из бака в поплавковую камеру карбюратора. На карбюраторных двигателях обычно применяют насос диафрагменного типа с приводом от эксцентрика распределительного вала.

В зависимости от режима работы двигателя карбюратор позволяет готовить смесь нормального состава (а = 1), а также обедненную и обогащенную смеси. При малых и средних нагрузках, когда не требуется развивать максимальную мощность, следует готовить в карбюраторе и подавать в цилиндры обедненную смесь. При больших нагрузках (продолжительность их действия, как правило, невелика) необходимо готовить обогащенную смесь.

Схема системы питания топливом карбюраторного двигателя

Рис. Схема системы питания топливом карбюраторного двигателя:
1 — топливный бак; 2 — фильтр трубой очистки топлива; 3 — топливоподкачивающий насос; 4 — фильтр тонкой очистки; 5 — карбюратор; 6 — воздухоочиститель; 7 — впускной коллектор

В общем случае в состав карбюратора входят главное дозирующее и пусковое устройства, системы холостого хода и принудительного холостого хода, экономайзер, ускорительный насос, балансировочное устройство и ограничитель максимальной частоты вращения коленчатого вала (у грузовых автомобилей). Карбюратор может содержать также эконостат и высотный корректор.

Главное дозирующее устройство функционирует на всех основных режимах работы двигателя при наличии разрежения в диффузоре смесительной камеры. Основными составными частями устройства являются смесительная камера с диффузором, дроссельная заслонка, поплавковая камера, топливный жиклер и трубки распылителя.

Пусковое устройство предназначено для обеспечения пуска холодного двигателя, когда частота вращения проворачиваемого стартером коленчатого вала невелика и разрежение в диффузоре мало. В этом случае для надежного пуска необходимо подать в цилиндры сильно обогащенную смесь. Наиболее распространенным пусковым устройством является воздушная заслонка, устанавливаемая в приемном патрубке карбюратора.

Система холостого хода служит для обеспечения работы двигателя без нагрузки с малой частотой вращения коленчатого вала.

Система принудительного холостого хода позволяет экономить топливо во время движения в режиме торможения двигателем, т. е. тогда, когда водитель при включенной передаче отпускает педаль акселератора, связанную с дроссельной заслонкой карбюратора.

Экономайзер предназначен для автоматического обогащения смеси при работе двигателя с полной нагрузкой. В некоторых типах карбюраторов кроме экономайзера для обогащения смеси используют эконостат. Это устройство подает дополнительное количество топлива из поплавковой камеры в смесительную только при значительном разрежении в верхней части диффузора, что возможно лишь при полном открытии дроссельной заслонки.

Ускорительный насос обеспечивает принудительный впрыск в смесительную камеру дополнительных порций топлива при резком открытии дроссельной заслонки. Это улучшает приемистость двигателя и соответственно ТС. Если бы ускорительного насоса в карбюраторе не было, то при резком открытии заслонки, когда расход воздуха быстро растет, из-за инерционности топлива смесь в первый момент сильно обеднялась бы.

Балансировочное устройство служит для обеспечения стабильности работы карбюратора. Оно представляет собой трубку, соединяющую приемный патрубок карбюратора с воздушной полостью герметизированной (не сообщающейся с атмосферой) поплавковой камеры.

Ограничитель максимальной частоты вращения коленчатого вала двигателя устанавливается на карбюраторах грузовых автомобилей. Наиболее широко распространен ограничитель пневмоцентробежного типа.

Инжекторные топливные системы

Инжекторные топливные системы в настоящее время применяются гораздо чаще карбюраторных, особенно на бензиновых двигателях легковых автомобилей. Впрыск бензина во впускной коллектор инжекторного двигателя осуществляется с помощью специальных электромагнитных форсунок (инжекторов), установленных в головку блока цилиндров и управляемых по сигналу от электронного блока. При этом исключается необходимость в карбюраторе, так как горючая смесь образуется непосредственно во впускном коллекторе.

Различают одно- и многоточечные системы впрыска. В первом случае для подачи топлива используется только одна форсунка (с ее помощью готовится рабочая смесь для всех цилиндров двигателя). Во втором случае число форсунок соответствует числу цилиндров двигателя. Форсунки устанавливают в непосредственной близости от впускных клапанов. Топливо впрыскивают в мелко распыленной виде на наружные поверхности головок клапанов. Атмосферный воздух, увлекаемый в цилиндры вследствие разрежения в них во время впуска, смывает частицы топлива с головок клапанов и способствует их испарению. Таким образом, непосредственно у каждого цилиндра готовится топливовоздушная смесь.

В двигателе с многоточечным впрыском при подаче электропитания к электрическому топливному насосу 7 через замок 6 зажигания бензин из топливного бака 8 через фильтр 5 подается в топливную рампу 1 (рампу инжекторов), общую для всех электромагнитных форсунок. Давление в этой рампе регулируется с помощью регулятора 3, который в зависимости от разрежения во впускном патрубке 4 двигателя направляет часть топлива из рампы обратно в бак. Понятно, что все форсунки находятся под одним и тем же давлением, равным давлению топлива в рампе.

Когда требуется подать (впрыснуть) топливо, в обмотку электромагнита форсунки 2 от электронного блока системы впрыска в течение строго определенного промежутка времени подается электрический ток. Сердечник электромагнита, связанный с иглой форсунки, при этом втягивается, открывая путь топливу во впускной коллектор. Продолжительность подачи электрического тока, т. е. продолжительность впрыска топлива, регулируется электронным блоком. Программа электронного блока на каждом режиме работы двигателя обеспечивает оптимальную подачу топлива в цилиндры.

Схема системы питания топливом бензинового двигателя с многоточечным впрыском

 

Рис. Схема системы питания топливом бензинового двигателя с многоточечным впрыском:
1 — топливная рампа; 2 — форсунки; 3 — регулятор давления; 4 — впускной патрубок двигателя; 5 — фильтр; 6 — замок зажигания; 7 — топливный насос; 8 — топливный бак

Для того чтобы идентифицировать режим работы двигателя и в соответствии с ним рассчитать продолжительность впрыска, в электронный блок подаются сигналы от различных датчиков. Они измеряют и преобразуют в электрические импульсы значения следующих параметров работы двигателя:

  • угол поворота дроссельной заслонки
  • степень разрежения во впускном коллекторе
  • частота вращения коленчатого вала
  • температура всасываемого воздуха и охлаждающей жидкости
  • концентрация кислорода в отработавших газах
  • атмосферное давление
  • напряжение аккумуляторной батареи
  • и др.

Двигатели с впрыском бензина во впускной коллектор имеют ряд неоспоримых преимуществ перед карбюраторными двигателями:

  • топливо распределяется по цилиндрам более равномерно, что повышает экономичность двигателя и уменьшает его вибрацию, вследствие отсутствия карбюратора снижается сопротивление впускной системы и улучшается наполнение цилиндров
  • появляется возможность несколько повысить степень сжатия рабочей смеси, так как ее состав в цилиндрах более однородный
  • достигается оптимальная коррекция состава смеси при переходе с одного режима на другой
  • обеспечивается лучшая приемистость двигателя
  • в отработавших газах содержится меньше вредных веществ

Вместе с тем системы питания с впрыском бензина во впускной коллектор имеют ряд недостатков. Они сложны и поэтому относительно дорогостоящи. Обслуживание таких систем требует специальных диагностических приборов и приспособлений.

Наиболее перспективной системой питания топливом бензиновых двигателей в настоящее время считается довольно сложная система с непосредственным впрыском бензина в камеру сгорания, позволяющая двигателю длительное время работать на сильно обедненной смеси, что повышает его экономичность и экологические показатели. В то же время из-за существования ряда проблем системы непосредственного впрыска пока не получили широкого распространения.

Видео: Система питания двигателя. Инжектор

ustroistvo-avtomobilya.ru

Система питания карбюраторных двигателей.


Система питания карбюраторного двигателя




Система питания карбюраторного бензинового двигателя с искровым зажиганием служит для хранения топлива, его очистки от механических примесей, приготовления горючей смеси, а также для подачи горючей смеси в цилиндры двигателя и отвода из них отработавших газов. Кроме того, в функции системы питания входит очистка воздуха, используемого для приготовления горючей смеси.

Горючая смесь состоит из топлива и воздуха, соединенных в определенной пропорции и тщательно перемешанных друг с другом. При сгорании горючей смеси в цилиндрах двигателя выделяется тепловая энергия, преобразуемая затем в механическую энергию.

Система питания карбюраторного двигателя (Рис. 1) состоит из топливного бака 6, топливного насоса 7, воздушного фильтра 1, карбюратора 4, топливопроводов 5, впускного 2 и выпускного 3 трубопроводов, приемной трубы 8 глушителей и собственно глушителей 9 и 10.

Основным топливом, используемым для работы карбюраторных двигателей с принудительным воспламенением, является бензин – жидкий продукт переработки нефти, горючая смесь лёгких углеводородов.

***



Схема работы карбюраторной системы питания

Топливо (бензин) из бака подается насосом 7 по топливопроводам 5 в карбюратор 4. Через воздушный фильтр 1 в карбюратор поступает воздух. Приготовленная в карбюраторе из топлива и воздуха горючая смесь подается в цилиндры двигателя по впускному трубопроводу 2. Отработавшие газы отводятся из цилиндров двигателя в окружающую среду через выпускной трубопровод 3, приемную трубу 8 глушителей, основной 10 и дополнительный 9 глушители.

В системе питания бензиновых двигателей автомобилей обязательными элементами являются фильтры очистки топлива (у двигателей грузовых автомобилей - фильтры грубой и тонкой очистки), а также воздушный фильтр.

Топливо из бака через фильтры насосом подается к карбюратору, где смешивается в определенной пропорции с воздухом, поступающим через воздухоочиститель. Полученная горючая смесь из-за разрежения в цилиндрах двигателя с большой скоростью перемещается по впускному трубопроводу, при этом дополнительно перемешиваясь, и попадает в цилиндры двигателя, где и сгорает посредством искрового воспламенения от электрической свечи.

За счет давления образовавшихся при сгорании горючей смеси газов, воздействующих на детали и узлы кривошипно-шатунного механизма, осуществляется работа двигателя.

***

Автомобильный бензин



k-a-t.ru

Система питания

Система питания двигателя служит для приготовления горючей смеси из паров топлива и воздуха в определенных пропорциях, подачи ее в цилиндры двигателя и отвода из них отработавших газов. За подачу топлива в цилиндры в современных автомобилях отвечает система впрыска топлива, основными элементами, которой являются форсунки.

Устройство системы питания

В систему питания карбюраторного двигателя входят: топлив­ный бак, фильтр-отстойник, топливопроводы, топливный насос, фильтр тонкой очистки топлива, карбюратор, воздухоочиститель, впускной трубо­провод, выпускной трубопровод, приемные трубы, глушитель, приборы контроля уровня топлива.

Работа система питания

При работе двигателя топливный насос засасывает топливо из топлив­ного бака и через фильтры подает в поплавковую камеру карбюратора. При такте впуска в цилиндре двигателя создается разрежение и воздух, пройдя через воздухоочиститель, поступает в карбюратор, где смешивается с парами топлива и в виде горючей смеси подается в цилиндр, и там, сме­шиваясь с остатками отработавших газов, образуется рабочая смесь. После совершения рабочего хода, отработавшие газы выталкиваются поршнем в выпускной трубопровод и по приемным трубам через глушитель в окру­жающую среду.

Устройство системы питания

Системы питания и выпуска отработавших газов двигателя автомобиля:

1 — канал подвода воздуха к воздушному фильтру; 2 — воздушный фильтр; 3 — карбюратор; 4 — рукоятка ручного управления воздушной заслонкой; 5 — рукоятка ручного управления дроссельны­ми заслонками; 6 — педаль управления дроссельными заслонками; 7 — топливо проводы; 8 — фильтр-отстойник; 9 — глушитель; 10 — приемные трубы; 11 — выпускной трубопровод; 12 — фильтр тонкой очистки топлива; 13 — топливный насос; 14 — указатель уровня топлива; 15 — датчик указателя уровня топлива; 16 — топливный бак; 17— крышка горловины топливного бака; 18 — кран; 19 - выпускная труба глушителя.

Топливо. В качестве топлива в карбюраторных двигателях обычно ис­пользуют бензин, который получают в результате переработки нефти.

Требования, предъявляемые к бензинам:

• быстрое образование топливовоздушной смеси;

• скорость сгорания не более 40 м/с;

• минимальное коррозирующее воздействие на детали двигателя;

• минимальное отложение смолистых веществ в элементах системы питания;

• минимальное вредное воздействие на организм человека и окружаю­щую среду;

• способность длительное время сохранять свои свойства.

Автомобильные бензины в зависимости от количества легко испаряющихся фракций подразделяют на летние и зимние.

 Для автомобильных карбюраторных двигателей выпускают бензины А-76, АИ-92, АИ-98 и др. Буква «А» обозначает, что бензин автомобильный, цифра — наименьшее октановое число, характеризующее детонационную стойкость бензина. Наибольшей детонационной стойкостью обладает изооктан, (его стой­кость принимают за 100), наименьшей -  н-гептан (его стойкость равна 0). Октановое число, характеризующее детонационную стойкость бензи­на, — процентное содержание изооктана в такой смеси с н-гептаном, ко­торая по детонационной стойкости равноценна испытуемому топливу. Например, исследуемое топливо детонирует так же, как смесь 76 % изо­октана и 24 % н-гептана. Октановое число данного топлива равно 76. Октановое число определяется двумя методами: моторным и исследова­тельским. При определении октанового числа вторым методом в марки­ровке бензина добавляется буква «И». Октановое число определяет до­пустимую степень сжатия.

 

 

Устройство системы питаниякарбюратор

Топливный бак. На автомобиле устанавливают один или несколько топливных баков. Объем топливного бака должен обеспечивать 400—600 км пробега автомобиля без заправки. Топливный бак  состоит из двух сварных половинок, выполненных штамповкой из освинцованной стали. Внутри бака имеются перегородки, придающие жесткость конструкции и препятствующие образованию волн в топливе. В верхней части бака приварена наливная горловина, которая закрывается пробкой. Иногда для удобства заправки бака топливом используют выдвижную горловину с сетчатым фильтром. На верхней стенке бака крепится датчик указателя уровня топлива и топливо заборная трубка с сетчатым фильтром. В днище бака имеется резьбовое отверстие для слива отстоя и удаления механических примесей, которое закрыто пробкой. Наливную горловину бака закрывают плотно пробкой, в корпусе которой имеется два клапана — паровой и воздушный. Паровой клапан при повышении давления в баке открывается и выводит пар в окружающую среду. Воздушный клапан открывается, когда идет расход топлива и создается разрежение.

 

Топливные фильтры. Для очистки топлива от механических примесей применяют фильтры грубой и тонкой очистки. Фильтр-отстойник грубой очистки отделяет топливо от воды и крупных механических примесей. Фильтр-отстойник  состоит из корпуса, отстойника и фильтрующего элемента, который собран из пластин толщиной 0,14 мм. На пластинах имеются отверстия и выступы высотой 0,05 мм. Пакет пластин установлен на стержень и пружиной поджимается к корпусу. В собранном состоянии между пластинами имеются щели, через которые проходит топливо. Крупные механические примеси и вода собираются на дне отстойника и через отверстие пробки в днище периодически удаляются.

Топливный бак и его устройство

Топливный бак (а) и работа выпускного (б) и впускного (в) клапанов: 1— фильтр-отстойник; 2 — кронштейн крепления бака; 3 — хомут крепления бака; 4 — датчик указателя уровня топлива в баке; 5 — топливный бак; 6 — кран; 7 — пробка бака; 8 — горловина; 9 — облицовка пробки; 10 — резиновая прокладка; П — корпус пробки; 12 — выпускной клапан; 13 — пружина выпускного клапана; 14 — впускной клапан; 15 — рычаг пробки бака; 16 -пружина впускного клапана.

Ремонт бензобака

Фильтр-отстойник: 1 — топливо провод к топливному насосу; 2 — прокладка корпуса; 3 — корпус-крышка; 4 — топливо провод от топливного бака; 5 — прокладка фильтрующего элемента; 6 — фильтрующий элемент; 7— стойка; 8 — отстойник; 9— сливная пробка; 10 — стержень фильтрующего элемента; 11 — пружина; 12 — пластина фильтрующего элемента; 13 — отверстие в пластине для прохода очищенного топлива; 14 — выступы на пластине; 15 — отверстие в пластине для стоек; 16 — заглушка; 17 — болт крепления корпуса-крышки.

Ремонт бензобака

Фильтры тонкой очистки топлива с фильтрующими элементами: a — сетчатый; б — керамический; 1— корпус; 2— входное отверстие; 3— прокладка; 4— фильтрующий элемент; 5— съемный стакан-отстойник; 6 — пружина; 7— винт креплении стакана; 8— канал для отвода топлива.

Фильтр тонкой очистки. Для очистки топлива от мелких механических примесей применяют фильтры тонкой очистки , которые состоят из корпуса, стакана-отстойника и фильтрующего сетчатого или керамического элемента. Керамический фильтрующий элемент — пористый материал, обеспечивающий лабиринтное движение топлива. Фильтр удерживается скобой и винтом.
Топливо проводы соединяют приборы топливной системы и изготовляются из медных, латунных и стальных трубок.

Топливный насос системы питания

Топливный насос служит для подачи топлива через фильтры из бака в поплавковую камеру карбюратора. Применяют насосы диафрагменного типа с приводом от эксцентрика распределительного вала. Насос  состоит из корпуса, в котором крепится привод — двуплечий рычаг с пружиной, головки, где размещены впускные и нагнетательные клапаны с пружинами, и крышки. Между корпусом и головкой зажаты края диафрагмы. Шток диафрагмы к рычагу привода крепится шарнирно, что позволяет диафрагме работать с переменным ходом.
Когда двуплечий рычаг (коромысло) опускает диафрагму вниз, в полости над диафрагмой создается разрежение, за счет чего открывается впускной клапан и наддиафрагменная полость заполняется топливом. При сбегании рычага (толкателя) с эксцентрика диафрагма поднимается вверх под действием возвратной пружины. Над диафрагмой давление топлива повышается, впускной клапан закрывается, открывается нагнетательный клапан и топливо поступает через фильтр тонкой очистки в поплавковую камеру карбюратора. При смене фильтров поплавковую камеру заполняют топливом с помощью устройства для ручной подкачки. В случае выхода диафрагмы из строя (трещина, прорыв и т. п.) топливо поступает в нижнюю часть корпуса и вытекает через контрольное отверстие.

Воздушный фильтр служит для очистки воздуха, поступающего в карбюратор, от пыли. Пыль содержит мельчайшие кристаллы кварца, который, оседая на смазанных поверхностях деталей, вызывает их изнашивание.

Требования, предъявляемые к фильтрам:


• эффективность очистки воздуха от пыли;
• малое гидравлическое сопротивление;
• достаточная пылеемкость:
• надежность;
• удобство в обслуживании;
• технологичность конструкции.


По способу очистки воздуха фильтры делятся на инерционно-масляные и сухие.
Инерционно-масляный фильтр состоит из корпуса с масляной ванной, крышки, воздухозаборника и фильтрующего элемента из синтетического материала.
При работе двигателя воздух, проходя через кольцевую щель внутри корпуса и, соприкасаясь с поверхностью масла, резко изменяет направление движения. Вследствие этого крупные частицы пыли, находящиеся в воздухе, прилипают к поверхности масла. Далее воздух проходит через фильтрующий элемент, очищается от мелких частиц пыли и поступает в карбюратор. Таким образом, воздух проходит двухступенчатую очистку. При засорении фильтр промывают.
Воздушный фильтр сухого типа состоит из корпуса, крышки, воздухозаборника и фильтрующего элемента из пористого картона. При необходимости фильтрующий элемент меняют.

www.autoezda.com

1)Составные части системы питания карбюраторного двигателя.

Практическое занятие №6

Изучение устройства конструкции работы приборов и узлов система питания карбюраторного двигателя и его технического обслуживания .

Цель работы :

  1. Закрепить знания по устройству система питания карбюраторных двигателей;

  2. Изучить конструкцию приборов системы питания;

  3. Освоить методику выявления неисправности системы питания;

Обеспечение роботы :

Макет двигателя ЗНЗ 53 приборы системы питания экспонаты макеты , инструменты , справочная и техническая литература .

Задания :

  1. Изучить схему системы питания карбюраторного двигателя автомобиля газ-53 , её принцип работы . Схема .

  2. Произвести разборку и сборку топливного насоса автомобиля ваз 0107 с закреплением знаний по устройству и принцип его работы . Схема .

  3. По экспонату и литературе изучите конструкцию карбюратора к 88а произвести его техническую разборку с определением топливных данных жиклёров . Схема .

  4. Изучить режим работы карбюратора к 88а в режиме холостого хода .

  5. Перечислить признаки приготовления карбюратора объеденённой или обогащённой смеси. Признаки , причины , способ устранения .

  6. Ознакомиться с порядком проверки и регулировки уровня топлива в поплавковой камере карбюратора автомобиля ВАЗ . Схема .

В систему питания карбюраторного двигателя входят агрегаты , необходимые для хранения , очистки и подачи топлива , очистки воздуха и приготовления горючей смеси , а также выпуска отработанных газов.

К сиситеме питания относиться : топливный бак , топливный (бензиновый) насос , воздушный фильтр . карбюратор.

При работе двигателя топливный насос отбирает топливо из бака и нагнетает его в карбюратор. Туда же при таких впусках в целиндрах двигателя поступает воздух , проходящий придворительно через воздушный фильтр. Карбюратор смешивает воздух и топливо в определённом соотношении , приготавливая горючую смесь, которая поступает по впускной трубе 2 в цилиндры и там сгорает. После сгорание горючей смеси отработавшие газы выходят из цилиндров через впускной трубопровод 4 (коллектор) и систему выпуска в атмосферу.

Прекращение подачи топлива. Основными причинами являются :

  1. засорение фильтров;

  2. повреждение клапанов или диафрагмы топливного насоса;

  3. замерзание воды в топливопроводах.

2)Разборка и сборка топливного насоса.

Разборка установочного фланца и топливо- подкачивающего насоса. Расконтрить и отвернуть стяжной болт, снять специальным съемником шлицевую втулку с конуса кулачкового валика. Отвернуть четыре гайки крепления установочного фланца к насосу и снять фланец. Снять перепускную трубку. Отвернуть две гайки и осторожно снять со шпилек топливо подкачивающий насос.

Разборка насосной секции. Перед разборкой кулачковый вал установить так, чтобы шпоночный паз был расположен против метки на корпусе (направлен вверх). Снять боковую крышку. Удалить пусковую пружину. Расконтрить и отвернуть гайку крепления втулки привода дозатора и вынуть из корпуса втулку вместе с рычагом. Вынуть сухарик. Кулачковый вал повернуть на 105° по часовой стрелке (210° по лимбу). Насосную секцию зафиксировать чекой.

Отвернуть гайку крепления кронштейна шестерни, вывести кронштейн с промежуточной шестерней из зацепления и вынуть из корпуса, одновременно вращая кулачковый вал. Повернуть кулачковый вал в такое положение, чтобы отсечное отверстие плунжера вышло из дозатора, и в это отверстие вставить чеку. Отвернуть гайки крепления насосной секции. Удалить чеку. Вынуть насосную секцию из корпуса насоса.

Разборка регулятора.

Снять заднюю крышку с корректором. Разшплинтовать ось серьги пружины регулятора. Вынуть ось из вильчатого рычага. Отвернуть и снять верхнюю крышку регулятора. Из корпуса специальным съемником вынуть вал регулятора в сборе.

Разборка толкателей.

Расконтрить и отвернуть стопорный винт. Вынуть толкатель.

Разборка кулачкового вала.

Отвернуть винты крепления крышек. Снять крышки. Вынуть кулачковый вал и эксцентриковый валик. Разъединить валики.

Разборка узла насосной секции.

Сжав пружину, вынуть из отсечного отверстия чеку и привести пружину в свободное состояние. Снять нижнюю тарелку. Снять пружину, верхнюю тарелку, зубчатую втулку. Вынуть плунжер и дозатор. Снять уплотнительное кольцо. Специальным торцовым ключом отвернуть стяжную гайку. Отсоединить головку от плунжерной втулки и вынуть штифты. Отвернуть штуцер высокого давления. Вынуть упор с пружиной, нагнетательный клапан, обратный клапан и пружину. Специальным съемником вынуть седло клапана с прокладкой.

Принцип раборы.

При вращении кулачкового вала кулачок набегает на ролик толкателя и заставляет плунжер двигаться вверх (ход нагнетания). Плунжер от валика регулятора и через промежуточную шестерню и зубчатую втулку получает вращательное движение, распределяя топливо по цилиндрам.

Под действием возвратной пружины 6 плунжер движется вниз (ход всасывания). За один оборот кулачкового вала плунжер совершает два рабочих цикла. При ходе плунжера вниз топливо из полости всасывания по каналу Д во втулке поступает в над плунжерное пространство. При ходе плунжера вверх топливо частично вытесняется обратно во всасывающую полость до момента перекрытия всасывающего отверстия Д во втулке торцом плунжера.

Начало перекрытия отверстия Д является геометрическим началом подачи топлива в цилиндр двигателя через распределительные каналы В в плунжере, втулке и в головке и через нагнетательные клапаны, топливо проводы и форсунки. Продолжительность и количество подачи топлива определяется моментом выхода отсечного отверстия плунжера из дозатора. После этого происходит разгрузка топливо провода высокого давления через жиклер нагнетательного клапана и обратный клапан .

Нагнетательные пластинчатые клапаны двойного действия обеспечивают одинаковую разгрузку всех топливо проводов высокого давления и равномерную подачу топлива в цилиндры. Изменение количества подаваемого топлива производится осевым перемещением дозатора по плунжеру, что осуществляется регулятором через систему рычагов.

Регулятор приводится от кулачкового вала через конические шестерни и демпферную пружину , уменьшающую неравномерность вращения регулятора. В случае, если пружина выходит из строя, ступица начинает работать с жестким упором на штифт. Для запуска двигателя рычаг управления поворачивается до упора в винт регулировки максимальных оборотов холостого хода. При этом рычаг управления растягивает пружину регулятора и упором рычага корректора сжимает пружину корректора.

Топливный насос: 1 – нагнетательный патрубок; 2 – фильтр; 3 –корпус; 4 – всасывающий патрубок; 5 – крышка; 6 –всасывающий клапан; 7 –тяга; 8 – рычаг ручной подкачки; 9 – пружина; 10 – эксцентрик; 11 –балансир; 12 – рычаг механической подкачки; 13 – нижняя крышка; 14 –внутренняя дистанционная прокладка; 15 – наружная дистанционная прокладка; 16 – нагнетательный клапан

studfile.net

Система питания карбюраторного двигателя: характеристика, устройство

Долгое время для изготовления и доставки горючей смеси в цилиндры ДВС, для выведения отработанных газов применялась система питания карбюраторного двигателя. Она выполняет следующие задачи:

  • смешивает воздух и горючее в нужном соотношении;
  • готовит однородную смесь;
  • транспортирует её к цилиндрам;
  • выводит из ДВС отработанные газы.

Производство топливно-воздушной смеси называется карбюрацией. Общее устройство карбюраторного мотора состоит из следующих функциональных узлов:

  1. Приборы, в которых хранится бензин и измеряется его объем.
  2. Топливные фильтры.
  3. Устройства для доставки горючего.
  4. Фильтры воздуха.
  5. Приборы для изготовления топливно-воздушной смеси.
  6. Устройства, которые подают её в цилиндры.
  7. Приборы для выведения отработавших газов и снижения шума при их выходе.

Как работает простейший карбюратор

В функционировании системы питания карбюратора можно выделить следующие этапы:

  1. Горючее из бака откачивается насосом и течёт по трубопроводу, попадая в карбюратор. При этом уровень топлива в бензобаке контролируется указателем, в электрической цепи которого присутствует датчик.
  2. Бензин очищается с помощью фильтра-отстойника и фильтра тонкой очистки.
  3. Воздух попадает в карбюратор после воздушного фильтра.
  4. Изготовленная топливно-воздушная смесь из карбюратора поступает в цилиндры через впускной трубопровод. В нем она нагревается.
  5. Отработанные газы выводятся из двигателя системой выпуска. В неё входит трубопровод, труба и глушитель, снижающий уровень шума при выпуске газов.

Образование топливной струи

Из бензобака горючее поступает в поплавковую камеру. Топливо в ней всегда находится на постоянном уровне. Для этого используются поплавок и топливный клапан. Когда бак наполняется горючим до предельного уровня, то поплавком игла прижимается к седлу. Таким образом, поступление бензина останавливается.

Когда уровень горючего снижается, поплавок начинает опускаться. В результате открывается доступ бензина в камеру. Возрастания расхода бензина вызывает снижение его уровня. Это приводит к увеличению проходного сечения для горючего. Зазор для бензина образовывается между иглой и седлом. К поплавковой камере присоединена труба.

Даже при максимальной наполненности бензин в ней находится ниже, чем края выходного отверстия распылителя. Благодаря этому горючее не вытекает, когда ДВС не работает.

Воздух в карбюратор поступает по главному воздушному каналу. Посередине его сечение уменьшается. За счёт этого создаётся диффузор. Он ускоряет поток воздуха, улучшает испарение бензина и смесеобразования, увеличивает тягу в распылителе. Самая узкая часть диффузора соединена с концом распылителя. За счёт дроссельной заслонки регулируется количество топливно-воздушной смеси, которая поступает в цилиндры.

Заслонка соединена с педалью. При нажатии на неё она меняет своё положение. Чем больше заслонка открывается, тем больший объем топливно-воздушной смеси попадает в цилиндры. В результате растёт мощность, которую вырабатывает мотор. Так регулируется объем горючей смеси, которая поступает в цилиндры.

Распад топливной струи

Из жиклёра горючее поднимается в распылитель, при этом расходуется энергия. Когда разница между скоростями бензина и воздуха достигает 4-6 м/c, топливная струя распадается. Капли в размере достигают 20-120 мкм, оптимальным значением, считается 50 мкм.

Чем больше температура горючего, тем мельче капли. Это объясняется более низким коэффициентом поверхностного натяжения, возрастанием разницы между скоростями бензина и воздуха.

За счет чего движется бензин

Воздушный поток движется в 25 раз быстрее, чем бензин. Карбюратор работает по такому же принципу, что и пульверизатор. Между камерой с поплавком и диффузором имеется перепад давлений. Это приводит к тому, что бензин покидает поплавковую камеру, двигаясь по топливному калиброванному отверстию и распылителю к диффузору.

Затем горючее оказывается в главном воздушном канале. На сегодняшний день давление, при котором начинается транспортировка бензина, составляет 100 Па. Если же значение меньше, то по карбюратору двигается лишь воздушный поток.

Скорость воздушного потока, проходящего через диффузор, растёт. По этой причине давление в распылительной области снижается. Когда мотор не работает, разность давлений между камерой с поплавком и распылительной областью отсутствует.

Во время запуска мотора при всасывании в цилиндре возникает тяга. Т.к. распылительная область сообщается с цилиндром с помощью впускного трубопровода и главноговоздушного калиброванного отверстия, то тяга из цилиндра достигает распылительной зоны.

После этого появляется перепад давлений между камерой с поплавком и диффузором, что приводит к движению бензина из камеры в распылитель. Затем в главном воздушном канале горючее образует смесь с воздухом и движется к цилиндрам.

Движение воздуха и топливно-воздушной смеси

Ускорению воздуха при движении по диффузору способствует образованию тяги в распылительной области. Уменьшение размеров диффузора возможно лишь до определённого значения. В противном случае настанет момент, когда уменьшение диффузора приведёт к увеличению сопротивления для движения воздушного потока.

В результате упадёт мощность двигателя, потому что цилиндры станут меньше наполняться. Часть трубки, которая соединяет горловину диффузора с осью дроссельной заслонки, называется «смесительная камера».

При образовании топливно-воздушной смеси участвует не весь бензин. Это происходит по причине того, что часть бензина не испаряется и не перемешивается с воздушным потоком. Незадействованные капли горючего двигаются вместе с воздухом. Встречая на своём пути стенки смесительной камеры и выпускного трубопровода, остатки топлива откладываются на них.

При этом образуется плёнка, медленно движущаяся. Для её испарения производится нагрев впускного трубопровода во время работы ДВС. Существуют 2 вида подогрева:

  • с помощью жидкости, для этого используют систему охлаждения двигателя;
  • за счёт тепла выхлопных газов.

Виды карбюраторов

Топливно-воздушная смесь окончательно образовывается во впускном трубопроводе ДВС. Воздушный поток в смесеобразовательном приборе может двигаться в разных направлениях. Поэтому карбюраторы бывают нескольких видов:

  1. Устройства, в которых поток смеси падает, т.е. течёт сверху вниз. Они отличаются большой мощностью, экономичностью, удобным для ремонта расположением на моторе.
  2. Приборы, в которых поток смеси восходящий, т.е. она двигается снизу вверх. Это устаревшие конструкции.

Как улучшить образование топливно-воздушной смеси

Сложность изготовления топливно-воздушной смеси заключается в том, что данный процесс осуществляется очень быстро. Воздух и смесь проходят через впускной тракт мотора со скоростью 30 — 100 м/c, а время образования смеси не превышает 20 мс. Факторы, которые улучшают смесеобразование и испарение бензина:

  • легкоиспаряющаяся жидкость в качестве горючего;
  • расширение площади парообразования за счёт распыливания бензина и обдува топливных капель;
  • уменьшение давления в той среде, в которую попадает горючее;
  • нагревание бензина и воздуха;
  • введение эмульсионной жидкости с помощью распылителя.

Усовершенствованные карбюраторные двигатели

Увеличение открытия дроссельной заслонки приводит к возрастанию воздуха, который проходит через карбюратор. В результате он ускоряется и создаёт дополнительную тягу в диффузоре. Это выступает причиной повышения расхода бензина. При этом необходимое соответствие между увеличением количества воздуха и горючего не выполняется.

За счёт этого топливно-воздушная смесь, изготовленная при большом открывании заслонки, является обогащённой Т.к. режимы работы ДВС разные, то смесь, произведённая простым карбюратором, по составу не соответствует требуемой. Во время малых нагрузок тяга в диффузоре такая низкая, что приготовить топливно-воздушную смесь вообще невозможно.

Чтобы убрать указанный недостаток устройство системы питания карбюратора укомплектовывают дополнительными приборами. При их использовании топливно-воздушная смесь, приготовленная во время разных режимов, очень близка к требуемой.

Машины на карбюраторах работают в следующих режимах:

  1. Пуск мотора. В этот момент топливо плохо испаряется, поэтому необходимо использовать богатую смесь.
  2. Холостой ход и малые нагрузки.
  3. Частичные нагрузки.
  4. Полные нагрузки.
  5. Резкое открывание заслонки. В таком режиме не должно быть смеси с повышенным содержанием воздуха.

Разные режимы функционирования ДВС сопровождаются включением соответствующих систем и устройств:

  • прибор для пуска;
  • система холостого хода;
  • главный дозирующий прибор;
  • экономайзер;
  • ускоряющий насос.

Опишем подробно каждый:

  1. Прибор для пуска уменьшает количество воздуха, который двигается по карбюратору. Одновременно растёт тяга в диффузоре. В результате распылитель основной системы дозировки опустошается, т.к. содержащийся в нем бензин вытекает и создаётся топливно-воздушная смесь. После того как произошла первая вспышка, воздух движется по автоматическому клапану на приборе для пуска. При нагревании мотора пусковое устройство необходимо приоткрывать вручную. Для автоматизации процесса на некоторых ДВС используется автоматика.
  2. Система холостого хода производит смесь во время бездействия главной дозирующей системы. Она состоит из распылителя с двумя отверстиями, регулировочного винта, двух каналов, воздушного и топливного калиброванных отверстий.
  3. Главный дозирующий прибор от простого карбюратора отличает наличие колодца, воздушного калиброванного отверстия. Последний соединяет колодец с атмосферой.
  4. Экономайзер вступает в работу на полных нагрузках. В зависимости от привода он может быть двух видов: механический или пневматический. В состав первого входят клапан, калиброванное отверстие, толкатель и его подвижная стойка. Длина толкателя регулируется. При определённой длине включается экономайзер. Пневматический прибор запускается при определённой частоте вращения коленвала.
  5. Ускоряющий насос функционирует при особых условиях движения машины. Например, при обгоне, подъёме

Применение описанных устройств позволяет сделать работу карбюраторного ДВС более эффективной, повысив его мощность и снизить расход топлива.

Сбои в работе карбюратора

Опишем основные неисправности системы питания карбюраторного двигателя, и способы их устранения:

  1. Неисправности в топливном фильтре. При наличии сбоев в работе системы питания карбюраторного двигателя в первую очередь проверяют фильтр топлива. Для его осмотра надо будет открутить колпачок и извлечь фильтр. Далее потребуется промывание с помощью бензина. При обнаружении повреждения фильтра и подводящего патрубка требуется их заменить.
  2. В камере с поплавком мало бензина, либо его нет совсем. Одновременно с этим неполадки в сетчатом фильтре отсутствуют. Данный сбой в работе мог произойти вследствие, скопления грязи в игольчатом топливном клапане, связанном с крышкой поплавковой камеры. Грязь создала препятствия для поступления горючего. Для нормального функционирования карбюратора необходимо свободное движение клапана в гнезде и отсутствие зависаний шарика. Для удаления грязи в клапане достаточно его промыть и продуть.
  3. Сбился поплавок. О данной неполадке свидетельствует нестабильная работа мотора, наличие рывков, резкое увеличение расхода бензина, отклонения от нормы уровня горючего в камере с поплавком. Для настройки работы иглы в клапане необходимо, чтобы горючее находилось на нужном уровне. Вдобавок к этому требуется сделать небольшой сгиб специально предназначенного язычка и ограничителя хода для поплавка. Если отверстие в последнем небольшое и сейчас нет времени устранять неисправность, то на короткий период поплавок может поработать заклеенным.
  4. Трудности при пуске мотора, при этом горючего в камере достаточно. Необходимо проверить калиброванные отверстия и каналы карбюратора на наличие загрязнений. Потребуется частично разобрать карбюратор. Это сведётся к снятию крышки с камеры. Устранить грязь помогает промывка каналов и калиброванных отверстий с помощью бензина, продувание их насосом с использованием сжатого воздуха.
  5. Сложно завести ДВС после длительной стоянки. Причиной может служить износ диафрагмы, которая связана с пусковым прибором карбюратора. Если в данный момент нет возможности ликвидировать неполадку, то на короткий период можно предпринять следующие действия. Взять маленький кусочек проволоки из алюминия и один её конец согнуть в виде петли. Далее прикрепить проволоку туда, где карбюратор соединён с воздухоочистителем. При этом её следует так зафиксировать, чтобы гайка была над ней. Затем второй согнутый конец проволоки устанавливается в месте прижатия верхней части воздушного регулятора в первом баллоне. Благодаря этому образуется зазор размером 3 — 4 мм, разделяющий воздушный регулятор и стенку первого баллона. Наличие образованного зазора поможет запустить мотор. Но данный метод пригоден лишь на короткое время, после которого надо будет устранить причину неполадки.
  6. Сбои в работе двигателя. Например, он перестаёт функционировать после того, как водитель отпустил педаль газа. Такая неисправность может проявляться из-за загрязнения в системе холостого хода калиброванного отверстия, через которое проходит эмульсия. Для устранения неполадки потребуется извлечь калиброванное отверстие. Для этого надо будет освободить фильтр воздуха от корпуса. При большой загрязнённости калиброванного отверстия оно подлежит очистке с помощью заточенной деревянной палочки, смоченной ацетоном.
  7. Нарушена герметичность соединения впускной трубы с карбюратором. Обнаружить проблемный участок можно по следам сажи, по наличию тонкой плёнки горючего.
  8. Разрыв в соединениях выпускной трубы с фланцем, корпуса заслонки с впускной трубой. В результате в систему проникает воздух, увеличивая объем потребляемого бензина. При этом работа глушителя может сопровождаться сильными хлопками. Для обнаружения негерметичности можно применяют мыльную пенку. На участках разрыва она будет иметь отверстие.
  9. Плавают обороты двигателя на холостом ходу, и ДВС глохнет. О скачущих оборотах свидетельствует прыгающая стрелка тахометра. Причин может быть несколько. Нарушение регулировки состава горючей смеси, неполадки в электромагнитном клапане или в управляющем контуре, загрязнённые каналы и калиброванные отверстия в системе холостого хода, неисправный экономайзер на принудительном холостом ходу (трещина в мембране). Устранить указанные неполадки поможет замена неисправного механизма и восстановление электропроводки.

Для комфортной и безопасной езды необходимо регулярно проводить ТО и использовать качественный бензин. При обнаружении нарушений в работе карбюратора требуется как можно быстрее выявить причину и устранить неполадку.

avtodvigateli.com

Карбюраторный двигатель: устройство, принцип работы, характеристики

Карбюраторный двигатель — это отдельный вид двигателя внутреннего сгорания (ДВС) с наружным формированием смеси. В карбюраторном двигателе внутреннего сгорания горючая смесь по коллектору проходит в цилиндры двигателя и вырабатывается в карбюраторе.

Карбюратор — конструкция в системе питания двигателей внутреннего сгорания, которая служит для перемешивания бензина с воздухом, образовывает горючую смесь и корректирует ее потребление. На сегодняшний день карбюраторные системы заменяются инжекторными.

Смесь представляет собой пары бензина смешанные с воздухом. Когда она проходит в цилиндры двигателя происходит перемешивание с отработанными газами и образование рабочей смеси, которая в конкретный момент поджигается системой зажигания. Поджигание смеси производится благодаря тому, что бензин поступает в газообразном виде и имеется достаточное количество воздуха для горения.

Карбюраторные двигатели подразделяются на четырехтактные и двухтактные. Рабочий цикл четырехтактного карбюраторного двигателя складывается из четырех тактов, они состоят из четырех полуоборотов коленчатого вала; двухтактные же состоят из двух полуоборотов коленчатого вала. Двухтактные двигатели наиболее легкие и получили свое применение в мотоциклах, мотокультиваторах, бензопилах и в других аппаратах.

Двигатели этого типа делятся на два подтипа:

  • Атмосферные, где рабочая смесь проходит благодаря разреживанию в цилиндре при вбирающем движении поршня;
  • Двигатели с наддувом. В них запуск горючей смеси в цилиндр осуществляется под воздействием давления, которое производится компрессором для расширения мощности двигателя. В различные времена использовались спирт, газ, керосин, бензин, но наиболее используемыми остались бензиновые и газовые двигатели.

Устройство карбюраторного двигателя

Общее устройство наиболее простого карбюратора заключает в себе поплавковую камеру с поплавком, жиклёр с распылителем, диффузор и дроссельную заслонку.

Если рассмотреть строение двигателя Л-12/4, то в блоке имеется четыре цилиндра. Вращение коленвала происходит на трех подшипниках. Центральный подшипник прикреплен к валу втулкой. На передней части вала прикрепляется маховик, который приводит в действие детали механизма и скапливает кинетическую энергию, она нужна для движения коленвала в период подготовительных тактов.

Смазка деталей происходит благодаря разбрызгиванию, шестеренчатый насос помогает началу движения распредвала и подает масло, которое разбрызгивается черпаками, происходит зажигание. Радиатор оснащен вентилятором, который служит для охлаждения воды.

На картере установлен сапун, который снижает давление благодаря выпуску газов.

Также имеется глушитель, который уменьшает шум от выхода отработанных газов. Количество оборотов коленчатого вала в автоматическом режиме устанавливает регулятор.

У двигателей ГАЗ-МК верхний отдел картера сделан из чугуна вместе с устройством цилиндров, которые охвачены водяной рубашкой и перекрыты головкой из чугуна, где и расположены камеры сгорания. Также имеются разъемы для свечей зажигания.

Водяная рубашка подсоединена к системе охлаждения. Низ двигателя затянут стальным поддоном, который выполняет функцию емкости для масла. Также там закреплен масляный насос, который приводит в движение распредвал.

Вращение коленчатого вала происходит также на трех подшипниках. Их вкладыши заполнены баббитом, где имеются смазочные канавки.

Чугунные крышки подшипников прикрепляются к блоку двумя болтами.

Передний сальник коленвала сделан из двух частей и представляет сердечник, который окружен платиной асбеста. Поршни сделаны из алюминия и скреплены шатуном полым стальным пальцем. Маховик прикреплен к коленвалу. Распредвал вращается на трех подшипниках и приводится в движение двумя шестернями.

Клапаны двигателя находятся справа. Система питания включает в себя бензобак, бензопроводы, отстойник, карбюратор и воздушный фильтр.

Бензобак находится выше карбюратора, поэтому топливо поступает самотеком.

Уровень масла в картере определяется специальным щупом. Охлаждение двигателя водяное. Радиатор размещен с задней стороны двигателя, водяной насос — с передней стороны. Вода, которая двигается по трубкам радиатора, остывает при помощи воздушного потока от вентилятора.

Принцип работы карбюраторного двигателя

Принцип действия карбюраторного двигателя относительно простой и складывается из четырех тактов, которые совпадают с движением вверх и вниз в последовательности один за одним:

  • Первый такт — впуск; клапан впуска отворяется и в цилиндр доставляется новая смесь от системы питания.
  • Второй такт — сжатие; поршень сдавливает горючую смесь в камере сгорания. Все клапаны прикрыты.
  • Третий такт — расширение; происходит возгорание сдавленной горючей смеси от свечи зажигания. Смесь сжигается достаточно быстро при неизменном объеме, который соответствует объему самой камеры сжатия. Это основная характерность работы карбюраторного двигателя. При перегорании формируются газы, которые двигают поршень книзу и передают движение коленвалу.
  • Четвертый такт — впрыск; коленвал вращается и выбрасывает из цилиндра отработанные газы через приоткрытый клапан выпуска.

На этом один рабочий цикл карбюраторного двигателя заканчивается.

При первом такте клапан впуска уже в открытом виде при подходе поршня и благодаря высокой скорости движения поршня рабочая смесь продвигается к цилиндру и еще какое-то время при поднятии поршня во втором такте.

Искра поджигает рабочую смесь до того, как в цилиндре образуется высокое давление. В четвертом такте клапан выпускает отработанные испарения, чем очищает цилиндр еще до подхода поршня. Однако выход газов не прекращается даже после подхода поршня. Затем происходит запуск новой порции рабочей смеси, которая опять проходит в цилиндр.

Отсюда следует, что в работе между первым и четвертым тактом единовременно открываются клапаны впуска и выпуска, то есть происходит перекрытие клапанов. За момент перекрытия цилиндр очищается и в нем происходит разрежение, которое помогает выгоднее заполнить цилиндр горючей смесью при первом такте.

В таком двигателе происходит наружное образование рабочей смеси с ее сжатием и вынужденным поджиганием. На сегодняшний день как топливо чаще используется бензин, но они могут отлично выполнять свою работу и на газу.

Также популярны дизельные двигатели, где поджигание происходит от сжатия, их принцип работы зависит от нагревания газа при сжатии. Когда сжатие повышается, температура также поднимается. В это время в камеру сгорания через форсунку происходит впрыск топлива, которое поджигается и от полученных газов поршень передвигается. Сгорание топлива происходит после начала движения поршня.

Выше указан принцип работы одноцилиндрового двигателя, но он не способен создать условия непрерывного вращения с одинаковой скоростью. Расширенные газы оказывают действие на коленвал для его 1/4 части оборота, оставшиеся ¾ оборота движения поршня происходят по инерции.

Для ликвидации такой недоработки двигатели делают многоцилиндровыми, что способствует наиболее равномерному вращению и неизменному крутящему моменту.

Характеристики карбюраторного двигателя

Работа двигателя определяется его мощностью, действенным давлением, крутящим моментом, скоростью и частотой вращения коленчатого вала и потребление топлива.

Мощность карбюраторного двигателя, а также его крутящий момент подчиняются скорости вращения коленвала и высоты давления.

Скоростная характеристика карбюраторного двигателя устанавливается наивысшей мощностью, которую реально получить от давления при разной частоте вращения коленвала.

При небольшой скорости движения коленчатого вала давление в цилиндрах невысокое и мощность двигателя, соответственно, тоже небольшая. При ускорении вращения коленвала и давление поднимается, так как горючая смесь сгорает быстрее.

Потребление топлива увеличивается при небольшой частоте вращения коленчатого вала, так как процесс сгорания проходит медленнее, теплоотдача большая, а при увеличении частоты вращения механические и тепловые затраты увеличиваются.

Скоростная характеристика дизельного двигателя определяется при недвижимой рейке топливного насоса, который дает высокую подачу топлива на конкретном режиме скорости и бездымной эксплуатации.

При заведенном двигателе автомобиля количество вращений коленвала меняется. Если беспричинно увеличивается потребление топлива, то происходит это благодаря ухудшению рабочего процесса двигателя.

Управление карбюратором

Как правило, действиями карбюратора руководит водитель автомобиля. На отдельных моделях карбюраторов применялись вспомогательные системы, которые немного автоматизировали управление карбюратором.

Для того чтобы управлять дроссельной заслонкой наиболее часто пользуются педалью газа, которая обуславливает ее подвижность при содействии системы тяг либо тросового привода. Тяга, как правило, лучше, однако механизм привода куда сложнее и сдерживает способность механизма по компоновке подкапотной площади. Привод тягами был популярен до 1970 года, потом стали чаще использоваться тросики из металла.

На старых машинах чаще предполагалась двойная система привода дроссельной заслонки карбюратора: вручную рычагом либо от ноги, при помощи педали. Если надавливать на педаль, то рычаг не двигается, а если перемещать рычаг, то педаль опускается.

Последующее открытие дросселя можно совершать педалью. Когда педаль опускается — дроссель остается в таком же положении, в котором зафиксировался при управлении рукой. К примеру, на «Волге» ГАЗ-21 на панели приборов был размещен рычаг для управления рукой, при его движении можно достичь постоянного функционирования холодного двигателя без действия воздушной заслонки либо применять «постоянный газ». На грузовиках «постоянный газ» применялся для облегчения передвижения задним ходом.

Воздушная заслонка может быть оснащена механическим либо автоматическим приводом. Если привод механический, то водитель закрывает ее при участии рычага. Автоматический привод очень популярен в других странах, а в России не «прижился» из-за своей ненадежности и недолгим сроком службы.

Регулировки карбюратора

Карбюратор — устройство, которое имеет наименьшее количество регулировок, но нуждается в хорошо отлаженной системе. Неорганизованная эксплуатация карбюратора сильно действует на функциональность двигателя в целом. При плохой регулировке карбюратора снижается экономичность двигателя и повышается токсичность отработанного газа.

Подходящие виды регулирования карбюратора:

  • «Винт количества» — функционирование на холостом ходу;
  • «Винт качества» — насыщенность рабочей смеси (как результат, повышение токсичности выхлопных газов) на холостом ходу.

В период использования нужно прослеживать дееспособность нижеуказанных узлов:

  1. Действие клапана и схема холостого хода.
  2. Работа насоса (запаздывание действия, объем и время впрыска бензина).
  3. Размеренность работы, беспрепятственное движение, возврат пружиной и нужная степень открытия дроссельной заслонки.
  4. Действие холодного запуска (закрывание воздушной и степень открывания дроссельной и воздушной заслонок)
  5. Деятельность поплавковой конструкции (необходимое количество топлива в поплавковой камере, непроницаемость клапана).
  6. Пропускная возможность жиклеров.

На работоспособность карбюратора воздействуют:

  • Система регулирования карбюратора.
  • Установка пропуска воздуха (воздушный фильтр, обогрев воздуха).
  • Система подачи топлива (бензонасос, фильтры, заборники).
  • Трубка для слива излишков бензина.
  • Непроницаемость впускного канала, который расположен за карбюратором.
  • Нарушение клапанного устройства.
  • Качество топлива.

avtodvigateli.com

Обслуживание системы питания карбюраторного двигателя

Обслуживание системы питания карбюраторного двигателя

Ежедневно проверять систему питания с целью проверки ее герметичности и при необходимости заправить автомобиль топливом.

– Первое и второе технические обслуживания (ТО-1, ТО-2).

– Проверить крепление приборов, действие привода заслонок карбюратора,

– Проверить работу двигателя на малых оборотах холостого хода,

– Проверить уровень топлива в поплавковой камере карбюратора,

– Очистить топливные и воздушные фильтры,

– Промыть топливный бак, топливный насос, топливопроводы, карбюратор, проверить действие топливного насоса (2 раза в год)

Заправка топлива в бак осуществляется на заправочных станциях из топливораздаточных колонок. Иногда приходится заправлять в полевых условиях из цистерн или бочек, для этого используют чистую воронку с установленной в нее частой металлической сеткой и чистую заправочную посуду.

Проверка герметичности системы питания . Проверка заключается в визуальном осмотре всех топливопроводов, приборов и соединений системы питания. Негерметичные соединения обнаруживают по следам копоти, увлажненности топливом, а также пятнам топлива под автомобилем. Такие неисправности устраняют путем замены уплотнительных прокладок на новые или затягиванием неплотных соединений.

Проверка привода управления заслонками карбюратора . В случае заедания педали управления дросселями и кнопки ручного управления дросселями и воздушной заслонкой необходимо смазать сочленения и другие трущиеся детали привода.

Если воздушная заслонка или дроссели открываются или закрываются не полностью, регулируют длину троса соответствующего привода. Для этого, в рычаге воздушной заслонки или рычаге дросселей, ослабляют винт крепления троса, полностью выдвигают кнопку троса, а затем вытягивают ее на 3 мм, поворачивают рычаг до упора в сторону открытия воздушной заслонки или в сторону закрытия дросселей и снова затягивают винт крепления троса в рычаге.

Регулировка карбюратора на малые обороты холостого хода . Во время эксплуатации автомобиля регулируют частоту вращения коленчатого вала на холостом ходу. Необходимость в такой регулировке возникает когда прогретый двигатель работает с повышенным числом оборотов или же глохнет при отпускании педали управления дросселями. Регулировку осуществляет водитель дна прогретом двигателе при полностью открытой воздушной заслонке.

Перед регулировкой необходимо проверить исправность свечей зажигания, правильность установки момента зажигания, прогреть двигатель до температуры охлаждающей жидкости не ниже 80 градусов по Цельсию.

Регулировка происходит в следующем порядке:

Если двигатель при отпускании педали управления дросселями глохнет, следует ввернуть упорный винт 1 рычага валика дросселей, если продолжает работать на повышенных оборотах – вывернуть упорный винт 1, до получения устойчивых оборотов двигателя.

Рис. Регулировка карбюратора на малые обороты холостого хода двигателя.

А – однокамерного или двухкамерного с последовательным открытием дросселей, б – двухкамерного с одновременным (параллельным) открытием дросселей, 1 – винты упора дросселей, 2 – винты регулировки состава смеси.

У однокамерных карбюраторов, а также у двухкамерных карбюраторов с последовательным открытием дросселей первичной и вторичной смесительных камер сначала ввертывают до отказа винт 2, а затем постепенно вывертывают его, подбирая такое положение, при котором двигатель развивает наибольшее число оборотов, что соответствует идеальному составу горючей смеси для данного положения дросселя. Чтобы снизить число оборотов коленчатого вала вывертывают винт 1, и если требуется еще раз регулируют винтом 2.

У двухкамерных карбюраторов с параллельным открытием дросселей состав смеси на малых оборотах холостого хода регулируют сначала в одной, а затем в другой смесительной камере, пользуясь отдельными для каждой камеры винтами.

Проверка и регулировка уровня топлива в поплавковой камере . Уровень топлива должен располагаться: у карбюраторов и вблизи риски на краю застекленного смотрового окна в стенке поплавковой камере, у карбюратора около нижней кромки контрольного отверстия в стенке поплавковой камеры, из которого для проверки уровня вывертывают пробку контрольного отверстия в стенке поплавковой камеры.

Очистка топливных фильтров . Из фильтра – отстойника грузовых автомобилей следует сливать отстой при каждом первом техническом обслуживании, для чего вывертывают пробку 9 в нижней части стакана 11.

Рис. Топливный фильтр – отстойник.

1 – корпус, 2,5, 8,12 – прокладки, 3 – болт, 4 и 13 – входной и выходной штуцеры, 6 – стержень, 7 – фильтрующий элемент, 9 – пробка отверстия для слива отстоя, 10 – пружина, 11 – стакан.

Во время второго технического обслуживания снимают стакан с фильтрующим элементом, промывают их неэтилированным бензином и обдувают сжатым воздухом, после чего собирают фильтр. Так же очищают при втором техническом обслуживании фильтр тонкой очистки топлива.

Рис. Фильтры тонкой очистки топлива а – с сетчатым фильтрующим элементом, б – с керамическим фильтрующим элементом. 1 – барашковые гайки. 2 – прижимистые втулки, 3 – скобы, 4 – пружины, 5 – стаканы, 6 – фильтрующие элементы, 7 – прокладки, 8 – корпуса.

Сильно загрязненный керамический фильтрующий элемент заменяют новым.

Одновременно при втором техническом обслуживании промывают и обдувают сжатым воздухом сетчатый фильтр карбюратора и сливают отстой из его поплавковой камеры. Для снятия фильтра надо вывернуть пробку в крышке поплавковой камеры около входного штуцера ,а для выпуска отстоя – вывернуть пробку в стенке поплавковой камеры.

Промывка и заправка воздушных фильтров. Чтобы промыть воздушный фильтр, его при каждой очистке разбирают. У инерционно – масляного фильтра промывают корпус и фильтрующий элемент в ванне с неэтилированным бензином или керосином и обдувают сжатым воздухом. Фильтрующий элемент опускают в ванну с чистым малом, вынимают и дают стечь излишкам масла. В корпус фильтра заливают чистое масло для двигателя до метки на корпусе, после чего собирают фильтр.

Корпус фильтра с сухим фильтрующим элементом протирают сухой фланелькой, а вынутый фильтрующий элемент несколько раз встряхивают, слегка ударяя по нему снизу рукой, а затем устанавливают в корпус. Если элемент сильно загрязнен, заменяют его на новый.

Бензонасос. Бензонасос предназначен для нагнетания топлива в систему впрыска. Когда бензонасос выключен, обратный клапан предотвращает обратный ход топлива в бензобак. При отключенном бензонасосе давление в системе от 1, 3 до 2, 7 Атм. Рис. Бензонасос.

При работающей системе регулятор давления поддерживает давление около 2, 14 Атм. В случае отсутствия вакуума, который подается к регулятору давления, последнее возрастает до 2, 9 Атм.

С реле бензонасоса, через балластный резистор к бензонасосу поступает напряжение питания. Балластный резистор нужен для ограничения шума работающего бензонасоса. Если напряжение питания падает, снижается производительность бензонасоса и уменьшается уровень шума. Если наблюдается обратная картина – увеличение шума при работе бензонасоса, значит, что бензонасос приходит в негодность.

Балластный резистор находится под капотом автомобиля, около бачка с охлаждающей жидкостью.

Есть два режима, при которых напряжение питания поступает на бензонасос в обход балластного резистора – запуска и полностью открытого дросселя. В режиме запуска с реле стартера, а в режиме полностью открытого дросселя с реле кислородного датчика. Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Поделитесь на страничке

Следующая глава >

tech.wikireading.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о