Первый двс: Двигатель внутреннего сгорания — Википедия – Двигатель — Википедия

Содержание

Эволюция двигателя внутреннего сгорания

Как развивался ДВС: основные даты

Эволюция двигателя внутреннего сгорания 

Люди производят автомобили уже более века, и почти под каждым капотом стоит двигатель внутреннего сгорания. В течение последних 100 лет принцип его работы оставался неизменным: кислород и топливо поступают в цилиндры мотора, где происходит взрыв (воспламенение), в результате чего внутри силового агрегата образовывается сила, которая и двигает автомобиль вперед. Но с момента первого появления двигателя внутреннего сгорания (ДВС) каждый год инженеры оттачивают его, чтобы сделать быстрее, надежнее, экономичнее, эффективнее.

 

Благодаря этому сегодня все современные автомобили стали мощнее и экономичнее. Некоторые обычные автомобили сегодня имеют такую мощность, которая еще недавно была только в мощных дорогих суперкарах. Но без огромных прорывов в конструкции ДВС мы бы сегодня до сих пор владели маломощными прожорливыми автомобилями, на которых не уедешь далеко от заправки. К счастью, время от времени подобные прорывные технологии уже не раз открывали новый этап в развитии двигателей внутреннего сгорания. Мы решили вспомнить самые важные даты в эволюции развития ДВС. Вот они. 

 

1955 год: впрыск топлива

Эволюция двигателя внутреннего сгорания 

До появления системы впрыска процесс попадания топлива в камеру сгорания двигателя был неточным и плохо регулируемым, поскольку топливно-воздушная смесь подавалась с помощью карбюратора, который постоянно нуждался в очистке и периодической сложной механической регулировке. К сожалению, на эффективность работы карбюраторов влияли погодные условия, температура, давление воздуха в атмосфере и даже на какой высоте над уровнем моря находится автомобиль. С появлением же электронного впрыска топлива (инжектора) процесс подачи топлива стал более контролируемым. Также с появлением инжектора владельцы автомобилей избавились от необходимости вручную контролировать процесс прогрева двигателя, регулируя дроссельную заслонку с помощью "подсоса". Для тех, кто не знает, что такое подсос:

 

Подсос – это ручка управления пусковым устройством карбюратора, с помощью которой на карбюраторных машинах было необходимо регулировать обогащение топлива кислородом. Так, если вы запускаете холодный двигатель, то на карбюраторных машинах необходимо открыть "подсос", обогатив топливо кислородом больше, чем необходимо на прогретом моторе. По мере прогревания двигателя нужно постепенно закрывать ручку регулировки пускового устройства карбюратора, возвращая обогащение топлива кислородом к нормальным значениям.

 

Смотрите также: Вот что на самом деле означает 'степень сжатия', и почему это имеет значение

 

Сегодня подобная технология, естественно, выглядит допотопно. Но еще совсем недавно большинство автомобилей в мире оснащались карбюраторными системами подачи топлива. И это несмотря на то, что технология впрыска топлива с помощью инжектора пришла в мир в 1955 году, когда инжектор впервые был применен на автомобиле (ранее эта система подачи топлива использовалась в самолетах).

Эволюция двигателя внутреннего сгорания

В этом году было проведено испытание инжектора на спорткаре Mercedes-Benz 300SLR, который смог проехать, не сломавшись, почти 1600 км. Это расстояние автомобиль преодолел за 10 часов 7 минут и 48 секунд. Испытание проходило в рамках очередной автогонки "Тысяча миль". Эта машина установила мировой рекорд.

 

Кстати, Mercedes-Benz 300SLR стал не только самым первым серийным автомобилем с инжекторным впрыском топлива, разработанным компанией Bosch, но и самым быстрым автомобилем в мире в те годы. 

 

Два года спустя компания Chevrolet представила спорткар Corvette с впрыском топлива (система Rochester Ramjet). В итоге этот автомобиль стал быстрее первооткрывателя Mercedes-Benz 300SLR.

 

Но, несмотря на успех Chevrolet Corvette с уникальной системой впрыска топлива Rochester Ramjet, именно электронные инжекторные системы Bosch (с электронным управлением) начали свое наступление по миру. В результате за короткое время впрыск топлива, разработанный компанией Bosch, начал появляться на многих европейских автомобилях. В 1980-е годы электронные системы впрыска топлива (инжектор) охватили весь мир. 

 

1962 год: турбонаддув

Эволюция двигателя внутреннего сгорания 

Турбокомпрессор является одним из самых драгоценных камней в двигателях внутреннего сгорания. Дело в том, что турбина, которая подает больше воздуха в цилиндры двигателя, когда-то позволяла

12-цилиндровым истребителям во время Второй мировой войны взлетать выше, лететь быстрее, дальше и меньше расходовать дорогое топливо.

 

В итоге, как и многие технологии, система турбин из авиатехники пришла в автопромышленность. Так, в 1962 году в мире были представлены первые серийные автомобили с турбокомпрессором. Ими стали BMW 2002, или Saab 99.

Эволюция двигателя внутреннего сгорания 

После чего компания General Motors попыталась развить дальше эту технологию турбирования двигателей внутреннего сгорания на легковых автомобилях. Так, на автомобиле Oldsmobile Jetfire появилась технология «Turbo Rocket Fluid», которая помимо турбины использовала резервуар с газом и дистиллированную воду для увеличения мощности двигателя. Это была настоящая фантастика. Но затем компания GM отказалась от этой сложной и дорогой, а также опасной технологии. Все дело в том, что уже к концу 1970-х годов такие компании, как MW, Saab и Porsche, заняв первые места во многих мировых автогонках, доказали ценность турбин в автоспорте. Сегодня же турбины пришли на обычные автомобили и в ближайшем будущем отправят обычные атмосферные моторы на пенсию. 

 

1964 год: роторный двигатель

Эволюция двигателя внутреннего сгорания 

Единственным двигателем, который по-настоящему смог сломать форму обычного двигателя внутреннего сгорания, стал роторный чудо-мотор инженера Феликса Ванкеля. Форма его ДВС ничего общего не имела с привычным нам двигателем. Роторный мотор представляет собой треугольник внутри овала, вращающийся с дьявольской силой. По своей конструкции роторный двигатель легче, менее сложный и более крутой, чем обычный двигатель внутреннего сгорания с поршнями и клапанами.

 

Первыми роторные двигатели на серийных авто начали использовать компания Mazda и ныне уже не существующий немецкий автопроизводитель NSU.

 

Самым же первым серийным автомобилем с роторным двигателем Ванкеля стал NSU Spider, который начал выпускаться в 1964 году.

 

Затем компания Mazda наладила производство своих автомобилей, оснащенных роторным мотором. Но в 2012 году она отказалась от использования роторных двигателей. Последней с роторным мотором стала модель RX-8. 

 

Но недавно, в 2015 году, Mazda на Токийском автосалоне представила концепт-кар RX-Vision-2016, который использует роторный мотор. В итоге в мире начали появляться слухи, что японцы планируют в ближайшие годы возродить роторные автомобили. Предполагается, что в настоящий момент специализированная группа инженеров Mazda где-то в Хиросиме сидит за закрытыми дверями и создает новое поколение роторных моторов, которые должны стать основными двигателями во всех будущих новых моделях Mazda, открыв новую эру возрождения компании. 

 

1981 год: технология дезактивации цилиндров двигателя

Эволюция двигателя внутреннего сгорания

Идея проста. Чем меньше цилиндров работает в двигателе, тем меньше расход топлива. Естественно, что двигатель V8 намного прожорливее, чем четырехцилиндровый. Также известно, что при эксплуатации автомобиля большую часть времени люди используют машину в городе. Логично, что если автомобиль оснащен 8- или 6-цилиндровыми моторами, то при поездках в городе все цилиндры в двигателе в принципе не нужны. Но как можно просто превратить 8-цилиндровый мотор в четырехцилиндровый, когда вам не требуется задействовать для мощности все цилиндры? На этот вопрос в 1981 году решила ответить компания Cadillac, которая представила двигатель с системой дезактивации цилиндров 8-6-4. Этот мотор использовал электромагнитные управляемые соленоиды для закрытия клапанов на двух или четырех цилиндрах двигателя.

 

Эта технология должна была повысить эффективность двигателя, например, при движении по шоссе. Но последующая ненадежность и неуклюжесть этого мотора с системой дезактивации цилиндров напугала всех автопроизводителей, которые в течение 20 лет боялись использовать эту систему в своих моторах. 

 

Но теперь эта система снова начинает завоевывать автомир. Сегодня уже несколько автопроизводителей используют эту систему на своих серийных автомобилях. Причем технология зарекомендовала себя очень и очень хорошо. Самое интересное, что эта система продолжает развиваться. Например, уже скоро эта технология может появиться на четырехцилиндровых и даже на трехцилиндровых моторах. Это фантастика!

 

2012 год: двигатель с высокой степенью сжатия – воспламенение бензина от сжатия

Эволюция двигателя внутреннего сгорания 

Наука не стоит на месте. Если бы наука не развивалась, то сегодня мы бы до сих пор жили в Средневековье и верили в колдунов, гадалок и что земля плоская (хотя сегодня все равно есть немало людей, которые верят в подобную чушь).

 

Не стоит на месте наука и в автопромышленности. Так, в 2012 году в мире появилась очередная прорывная технология, которая, возможно, совсем скоро перевернет весь автомир.

 

Речь идет о двигателях с высокой степенью сжатия.

 

Мы знаем, что чем меньше сжимать воздух и топливо внутри двигателя внутреннего сгорания, тем меньше мы получим энергии в тот момент, когда топливная смесь воспламеняется (взрывается). Поэтому автопроизводители всегда старались делать двигатели с немаленькой степенью сжатия.

 

Но есть проблема: чем выше степень сжатия, тем больше риска самовоспламенения топливной смеси.

Поэтому, как правило, ДВС имеют определенные рамки в степени сжатия, которая на протяжении всей истории автопромышленности была неизменяемой. Да, каждый двигатель имеет свою степень сжатия. Но она не меняется. 

 

В 1970-х годах в мире был распространен неэтилированный бензин, который при сгорании дает огромное количество смога. Чтобы как-то справиться с ужасной экологичностью, автопроизводители начали использовать V8 моторы с низким коэффициентом сжатия. Это позволило снизить риск самовоспламенения топлива низкого качества в двигателях, а также повысить их надежность. Дело в том, что при самовоспламенении топлива двигатель может получить непоправимый урон. 

 

Смотрите также: По каким принципам работает двигатель Инфинити с изменяемой степенью сжатия, подробная информация

 

Но затем при массовом появлении электронного впрыска автопроизводители с помощью компьютера стали применять различные настройки, автоматически регулирующие качество топливной смеси, что позволило существенно улучшить экономичность двигателей и снизить уровень вредных веществ в выхлопе. Но главное, что удалось сделать с помощью компьютерных настроек и регулировки топливной смеси, – это снизить до минимума риск самовоспламенения топлива. В итоге со временем стало невыгодно использовать большие мощные моторы с низкой степенью сжатия.  Так автопромышленность ввела новую моду – уменьшение количества цилиндров. Чтобы сохранить мощность в моторах, автопроизводители стали использовать турбины. Но главное – благодаря электронике, которая управляет качеством топливной смеси, автопроизводители снова могут создавать моторы с большой степенью сжатия, не опасаясь самовоспламенения топлива. 

 

Эволюция двигателя внутреннего сгорания

Но в 2012 году компания Mazda удивила весь мир, представив фантастический мотор SKYACTIV-G, который имеет невероятно высокий коэффициент сжатия для серийного двигателя. Степень сжатия этого мотора составляет 14:1. Это позволяет мотору извлекать энергию почти из каждой капли бензина без образования смога. 

 

Следующим шагом для Mazda стал новый мотор SKYACTIV-X, который использует контролируемое зажигание (система SPCCI). Благодаря этой системе появилась возможность воспламенять бензин практически за счет одного только сжатия. То есть как в дизельных моторах. Также в двигателях SKYACTIV-X есть возможность воспламенять топливо обычным образом. Причем электроника автоматически выбирает, как выгоднее воспламенять бензин в камере сгорания. Все зависит от потребностей водителя и условий движения.

 

Например, если вам нужна сила (крутящий момент), то двигатель SKYACTIV-X  будет воспламенять топливо от силы сжатия (почти как дизель). Если вам нужна мощность, то мотор с высокой степенью сжатия будет воспламенять топливо обычным образом. Причем реально для придания мощности будет использована последняя капля бензина.

 

Даже спустя столетие и даже с появлением альтернативных видов топлива, а также с появлением электрокаров двигатели внутреннего сгорания остаются главными силовыми агрегатами в автопромышленности. И несмотря на то что многие эксперты считают, что ДВС изжил себя и в скором времени должен исчезнуть из автомира, нам кажется, что двигатель внутреннего сгорания еще не развился до конца. Также мы считаем, что мир в ближайшие 100 лет все равно не будет готов полностью отказаться от ДВС, работающих на бензине.

 

И кто его знает, что нам подготовят автомобильные компании в ближайшем будущем. Ведь их инженеры не зря получают бутерброды с черной икрой. Вполне возможно, что уже скоро очередной автопроизводитель удивит нас какой-нибудь новой технологией в ДВС.

 

Так что рано сбрасывать со счетов традиционные моторы. Может быть, электрокары – это временное явление? Скорее всего, это более вероятно.

Дельтообразный двигатель внутреннего сгорания — Википедия

Дельтообразный двигатель (Napier Deltic) — это британский двигатель со встречным движением поршней, бесклапанный, двухтактный дизельный двигатель, использовавшийся в морском деле и в локомотивах. Разработан и производился компанией Napier & Son.

Цилиндры были разделены на три блока, расположенных в форме треугольника. Блоки формировали стороны с картерами, расположенными в каждой из вершин треугольника.

Термин «дельтообразный» происходит от названия греческой буквы дельта.

История дельтообразного двигателя начинается в 1943 году, когда Британское Адмиралтейство создало комиссию по разработке высокомощного дизельного двигателя малого веса для торпедных катеров.[1] До этого времени на британском флоте такие катера приводились в движение бензиновыми двигателями. Но топливо для бензиновых двигателей легковоспламеняемо, что делает военные суда более уязвимыми перед вражеским огнём. Это давало преимущество немецким E-boat судам, приводившимся в движение дизельными двигателями.

До сих пор дизельные двигатели имели низкое отношение мощности двигателя к его массе и невысокую скорость. До Второй мировой войны компания Нэптер работала над разработкой авиационного двигателя, известного как Culverin после лицензирования Junkers Jumo 204. Двигатель Culverin был двухтактным двигателем со встречным движением поршней. Вместо цилиндров, имеющих каждый по одному поршню, и закрытых с одной стороны цилиндрической головкой, основанные на Jumo двигатели использовали вытянутые цилиндры, содержащие два поршня, двигавшихся в противоположных направлениях относительно центра. Это отбрасывает необходимость использовать тяжёлые цилиндрические головки, так как противоположный поршень выполняет их роль. Недостатком, вытекающим из такой конструкции, является необходимость разделения коленчатых валов и расположения их с каждой из сторон двигателя. Необходимо также использовать механические передачи, чтобы передать мощность от разделённых коленчатых валов на единый вал. Основное достоинство данной конструкции состоит в том, что она делает двигатель достаточно «плоским», что даёт возможность «утапливать» их в крыльях больших самолётов.

Анимированное изображение дельтообразного двигателя
Замечание: нижние левые впускные и выпускные порты показаны некорректно как перевёрнутые

Адмиралтейству требовались намного более мощные двигатели, и ему было известно о разработках «Юнкерс» по двигателям с несколькими коленчатыми валами треугольной и «бриллиантовой» (diamond-form, ромбической) схем. В Адмиралтействе посчитали целесообразным взять в качестве отправной точки разработки Юнкерса для создания более мощных двигателей. Результатом был треугольник, в котором цилиндры формируют стороны, оканчивающиеся тремя коленчатыми валами — по одному в каждой вершине. Коленчатые валы соединялись с шестернями, вращение которых происходило со сдвигом по фазе на соответствующие углы, и эти шестерни передавали мощность на единый выходной вал. В таком варианте имелось шесть шатунов, приводящих в движение три коленчатых вала. Различные варианты дельтообразных двигателей могут производиться с разным количеством цилиндров, хотя девяти- и восемнадцати-цилиндровые двигатели были наиболее распространены. В 1946 году Адмиралтейство заключило контракт с Английской электрической компанией — материнской компанией Нэйпер, на разработку этого двигателя.

Одно из конструкторских решений в двигателе позволяло сдвинутые по фазе коленчатые валы расположить таким образом, чтобы сначала открывался/закрывался выпускной порт, а потом впускной (с отставанием на 15-20 градусов). Это позволяет осуществлять небольшой наддув. Такие двигатели называют «uniflow» - продувка цилиндра происходит без изменения направления движения газов (в отличие от петлевой продувки), что улучшает удаление продуктов сгорания/коэффициент наполнения цилиндра. Порты располагаются в порядке впуск/выпуск/впуск/выпуск/впуск/выпуск, если обходить треугольник по кругу (впускные и выпускные порты имеют вращательную симметрию).

Более ранние попытки разработки подобных двигателей потерпели неудачу из-за трудностей при попытках расположить поршни в таком положении, которое позволяло бы им двигаться корректно.

Эта проблема была решена Н. Перварденом из Инженерной лаборатории Адмиралтейства. Он предложил задать одному из коленчатых валов направление вращения против часовой стрелки, чтобы обеспечить корректный сдвиг по фазе между валами. Конструкторы фирмы Нэйпер разработали для этой идеи необходимую шестерённую передачу.

Хотя в конструкции двигателя не требовалось наличия тарельчатых клапанов, он имел распределительные валы — по одному отдельному валу на каждую сторону. Они использовались исключительно для привода топливных насосов. Каждый цилиндр имел собственный насос, приводимый в движение своим кулачковым механизмом.

Военно-морской флот[править | править код]

Развитие началось в 1947 году, первый образец дельтообразного двигателя был построен в 1950 году. К январю 1952 года шесть двигателей имелось в распоряжении, что достаточно для полноценной разработки и продолжительных испытаний.

S212, трофейный немецкий E-Boat, приводимый в движение дизельными двигателями Мерседес-Бенц, был выбран для этих испытаний, поскольку их силовая установка была примерно равна по мощности новому 18-цилиндровому дельтообразному двигателю. Два двигателя Мерседес-Бенц были заменены на дельтообразные двигатели. Компактность дельтообразных двигателей можно продемонстрировать наглядно: они были в два раза меньше «родных» двигателей Мерседес-Бенц. Вес дельтообразных двигателей составлял примерно пятую часть от веса других современных двигателей аналогичной мощности.[1]

После успешных испытаний дельтообразные двигатели стали универсальной силовой установкой для небольших и быстрых военно-морских судов. Военно-морские силы Великобритании впервые использовали их в качестве силовых установок быстроходных патрульных катеров типа Dark.[2] Впоследствии они устанавливались на многих других типах скоростных катеров и кораблей малого водоизмещения.

Применение в железнодорожном транспорте[править | править код]

Британский локомотив класса 55 Alycidon, приводимый в движение дельтообразным двигателем, находящийся в Национальном железнодорожном музее Великобритании в Йорке

Дельтообразные двигатели использовались в двух типах британских локомотивов: классов 55 и 23, построенных в 1960-х годах.

Надёжность и обслуживание[править | править код]

В то время как дельтообразные двигатели были успешными и очень мощными для своих размеров и веса, они были очень «капризными» устройствами, требующими аккуратного обращения. Их приходилось снимать с транспортных средств и заменять для ремонта, вместо того, чтобы обслуживать их на месте. Дельтообразные двигатели легко изымались после поломки, и обычно отправлялись производителю для ремонта, хотя после того как исходные контракты истекли, Британские военно-морские силы и «Британские железные дороги» основали собственные мастерские для ремонта и обслуживания этих двигателей.[3]

  • Bryan 'Bob' Boyle. The Napier Way (неопр.). — Bookmarque Publishing, 2000. — ISBN 1-870519-57-4.
  • Alan Vessey (compiler). Napier Powered (неопр.). — Tempus, 1997. — ISBN 0-7524-0766-X.

Двенадцатицилиндровый двигатель — Википедия

Авиационный двигатель BMW VI V12 с водяным охлаждением, 1926 год

Двенадцатицилиндровый двигатель — поршневой двигатель внутреннего сгорания с 12 цилиндрами. Имеет несколько вариантов компоновок.

Рядный двенадцатицилиндровый двигатель (L12 или I12) — двигатель внутреннего сгорания с рядным расположением двенадцати цилиндров, и поршнями, вращающими один общий коленчатый вал. Является полностью сбалансированной конфигурацией как двухтактного так и четырёхтактного двигателя. Подобные двигатели имеют очень большую длину при сравнительно малой ширине, в связи с чем применяются только на судах.

V-образный двенадцатицилиндровый двигатель (V12) — двигатель внутреннего сгорания с V-образной конфигурацией и 12 цилиндрами, размещёнными друг напротив друга, как правило, под углом в 60°[1]. Включает два ряда по шесть цилиндров, и поршни, вращающие один общий коленчатый вал.

W-образный двенадцатицилиндровый двигатель (W12) — двигатель внутреннего сгорания с W-образной конфигурацией и 12 цилиндрами. Имеет более компактную компоновку, чем V12, однако лишён такой же плавной работы.

X-образный двенадцатицилиндровый двигатель (X12) — двигатель внутреннего сгорания с X-образным расположением двенадцати цилиндров (три ряда по четыре) и поршнями, вращающими один общий коленчатый вал.

Оппозитный двенадцатицилиндровый двигатель (F12) — двигатель внутреннего сгорания с оппозитной конфигурацией и 12 цилиндрами, угол между рядами которых составляет 180 градусов. Шире и меньше в высоту, чем V12, а также отличаются более низким центром тяжести. Используются исключительно в спортивных автомобилях среднемоторной компоновки и крайне редко на серийных автомобилях.

V12[править | править код]

Первый V-образный двигатель с двумя цилиндрами был построен в 1889 году Даймлер, Готтлиб по проекту Вильгельма Майбаха. К 1903 году V8 двигатели производились для моторных лодок компанией Société Antoinette по проекту Леона Левавассора, который опирался на опыт, накопленный при разработке двигателей с четырьмя цилиндрами. В 1904 году компания Putney Motor Works сконструировала новый морской двигатель V12, известный также как Craig-Dörwald — первый двигатель V12, произведённый с широким спектром применения[2].

В 1909 году французская компания Renault впервые представила авиационный двигатель V12 с углом расположения цилиндров в 60° и воздушным охлаждением. Рабочий объём силового агрегата составлял 12,2 литра, диаметр цилиндров и ход поршня равнялись 96×140 мм соответственно.

Ещё два двигателя с конфигурацией V12 появились в гоночном сезоне 1909—1910 годов для моторных лодок. Производителем 25,5-литрового силового агрегата выступала компания Lamb Boat & Engine Company. Второй, 56,76-литровый двигатель, был разработан компанией Orleans Motor Company.

В 1912 году компания ABC Motors выпустила 17,4-литровый двигатель V12 с водяным охлаждением. Мощность силового агрегата составляла 130 кВт при 1400 об/мин.

В октябре 1913 года Луис Коатлен, главный конструктор Sunbeam Motor Car Company, представил двигатель в конфигурации V12 для автомобиля. Рабочий объём силового агрегата составлял 9 литров, диаметр цилиндров и ход поршня равнялись 80×150 мм соответственно. Алюминиевый картер включал два блока с железными цилиндрами, расположенными под углом в 60°. Двигатель мощностью 150 кВт устанавливался на автомобиль Toodles V, который установил несколько рекордов на протяжении 1913 и 1914 годов[2].

Дальнейшее развитие двенадцатицилиндровых двигателей пришлось на Первую и Вторую мировые войны.

I12[править | править код]

Судовой двигатель конфигурации I12 компании Wolseley Motors 1905 года

Двенадцатицилиндровые двигатели имеют большую длину, в связи с чем они крайне редко устанавливаются на автомобилях. Первый зарегистрированный подобный автомобиль называется Corona и датируется 1920 годом[3]. Рабочий объём силового агрегата составлял 7238 см3. Компания Packard также экспериментировала с автомобилями, оснащёнными рядными 12-цилиндровыми двигателями в 1929 году.

Помимо автомобилей, основное своё применение двигатели с конфигурацией I12 нашли в крупных военных грузовиках и судах. Некоторые русские компании производили подобные силовые агрегаты в 1960-х и 1970-х годах. В 2000-х годах машиностроительная фирма Wärtsilä выпустила рядный дизельный двигатель Wärtsilä-Sulzer RTA96-C с 12-ю цилиндрами.

Автомобильная промышленность[править | править код]

V12 двигатель на купе Cadillac Series 370 A 1931 года

В автомобильной промышленности двигатели V12 не получили массового распространения из-за их сложности и стоимости. В основном они применяются в дорогих спортивных и роскошных автомобилях благодаря своей мощности, более плавной работе и характерному звуку.

Одним из первых серийных автомобильных двигателей в конфигурации V12 является Packard «Twin Six»[4][5], который выпускался в период с 1915 по 1923 год.

До начала Второй мировой войны 12-цилиндровые двигатели устанавливались на автомобили класса люкс таких производителей, как Packard (с 1916 по 1923 год, затем снова с 1932 по 1939 год), Daimler-Benz (с 1926 по 1937 год), Hispano-Suiza (1931 год), Cadillac, Auburn (1932 год), Lincoln (с 1932 по 1942 год, затем снова с 1948 года), Rolls-Royce и другие.

Улучшения в конструкции камеры сгорания и формы поршня позволило более лёгким двигателям V8 превзойти V12 в мощности начиная с 1930-х годов: только малые силовые агрегаты Lincoln V12 H-серии остались после войны, но уже в 1949 году были также вытеснены двигателями V8. Двенадцатицилиндровые двигатели не имели спроса на послевоенном рынке в Европе, в связи с чем производство V12 двигателей для автомобилей было весьма ограниченным до 1960-х годов.

С 1949 итальянская компания Ferrari применяет двенадцатицилиндровые двигатели для собственных флагманских спортивных купе. Её ближайший конкурент, Lamborghini, также использует конфигурацию V12 для многих дорожных автомобилей с момента создания компании в 1963 году.

Packard Twin-Six V12 1916 года

В 1972 году компания Jaguar представила двигатель XJ12 в конфигурации V12 с рабочим объёмом в 5,3-литра, выпуск которого продолжался до 1996 модельного года, после чего компания прекратила его производство.

Немецкая компания BMW вернулась к силовым агрегатом V12 в рамках собственных седанов 7-й серии в 1986 модельном году, вынудив конкурента, Mercedes-Benz, последовать их примеру в 1991 году. Основными рынками сбыта для транспортных средств с подобным двигателем стали страны США, Китай[6] и Россия[7]. BMW разработала V12 двигатели для автомобилей торговой марки Rolls-Royce, в то время как штутгартский концерн Daimler-Benz применял их на автомобилях марки Maybach.

Британская автомобилестроительная компания TVR разработала собственный 7,7-литровый V12 двигатель, названный «Speed Twelve», однако проект не получил дальнейшего развития.

В 1997 году Toyota оснастила роскошный седан Toyota Century 5,0-литровым DOHC V12 двигателем (модель #1GZ-FE).

В 2008 году немецкая компания Audi запустила свою модель Q7 с 5,9-литровым V12 твин-турбо дизельным двигателем, который также был установлен на концепт-кар Audi R8 V12 TDI. В 2009 году китайская компания First Automotive Works выпустила представительский автомобиль Hongqi HQE с 6,0-литровым двенадцатицилиндровым двигателем (модель #CA12VG).

В настоящее время основным автомобильными производителями, использующими двигатели в конфигурации V12, являются такие компании, как BMW, Ferrari, Jaguar, Lamborghini, Lincoln, Mercedes-Benz, Pagani Automobili и Rolls-Royce. В Великобритании единственным производителем, широко применяющим двигатели V12, является компания Aston Martin.

Серийные автомобили с двигателем V12[править | править код]
V12 двигатель производства Jaguar

В список автомобилей, оснащённых двигателем V12 и выпущенных после Второй мировой войны, входят следующие модели (в алфавитном порядке и в порядке выпуска):

Прототипы с двигателями V12[править | править код]
Двигатель Matra MS11 1968 года
Автомобили с двигателем F12[править | править код]
F12 двигатель на автомобиле Ferrari Testarossa

В число автомобилей, оснащённых двенадцатицилиндровыми оппозитными двигателями, входят:

Автомобили с двигателем W12[править | править код]
Двигатель W12 объёмом 6.3 литра

В качестве примера автомобилей с двигателем W12 можно привести следующие модели:

Автоспорт[править | править код]

Двигатель 3512 компании Lamborghini для Формулы-1

Двигатели V12 широко применялись в Формуле-1 и гонках на выносливость. С 1965 по 1980 год такие компании как Ferrari, Weslake, Honda, BRM, Maserati, Matra, Delahaye, Peugeot, Delage, Alfa Romeo, Lamborghini и Tecno оснащали собственные автомобили 12-цилиндровыми силовыми агрегатами в V-образной или оппозитной (F12) конфигурации. Последний двигатель V12, применённый на гоночном автомобиле в рамках Формулы-1, называется Ferrari 044. Он был установлен на Ferrari 412 T2, которым управлял Жан Алези и Герхард Бергер в 1995 году.

В конце 1960-х годов компания Nissan использовала двигатели V12 для участия в гонках Гран-при Японии. Впоследствии она снова вернулась к ним в рамках группы C в начале 1990-х годов.

На Парижском автосалоне 2006 года компания Peugeot представила новый гоночный автомобиль, а также роскошный концепт-кар седана, названные 908 HDi FAP и 908 RC соответственно. Оба транспортных средства оснащены дизельным двигателем в конфигурации V12, мощность которого составляет 700 л. с. (515 кВт). Гоночная версия приняла участие в 24-часовой гонке 2007 года в Ле-Мане, заняв второе место. Первое досталось автомобилю Audi R10 TDI, также оснащённому дизельным двигателем V12, специально разработанным для сезона 2006 года.

Авиационная промышленность[править | править код]

Американский авиационный двигатель Liberty L-12 V12

К концу Первой мировой войны, двигатели V12 хорошо зарекомендовали себя в авиации, будучи установленными на некоторых новейших и крупнейших истребителях и бомбардировщиках. Выпуском подобных силовых агрегатов занимались такие компании, как Renault и Sunbeam. Большинство дирижаблей марки Цеппелин оснащались двенадцатицилиндровыми двигателями производства фирм Maybach и Daimler. Множество американских компаний наладили производство двигателя Liberty L-12.

В 1923 году советский конструктор Аркадий Швецов спроектировал двенадцатицилиндровый двигатель жидкостного охлаждения РАМ (русский авиационный мотор) мощностью 750 лошадиных сил, который был собран в 1926 году[9]. В 1930 году В. Я. Климов создал двенадцатицилиндровый двигатель жидкостного охлаждения М-13 мощностью 880 лошадиных сил[10].

Наиболее серьёзное развитие V-образные двенадцатицилиндровые двигатели получили во время Второй мировой войны. Истребители и бомбардировщики, такие как британской Rolls-Royce Merlin и Griffon, советский Климов ВК-107 и Микулин АМ-38, американский Allison V-1710 или немецкие Daimler-Benz DB 600 и Junkers Jumo использовали двигатели V12.

После Второй мировой войны двигатели V12 стали устаревать в связи с введением турбореактивных и турбовинтовых двигателей, которые имели больше мощности для своего веса при меньшей сложности конструкции.

Военная промышленность[править | править код]

Двигатель Chrysler V12 для танков

Двигатели в конфигурации V12 применяются на танках и других боевых бронированных машинах (ББМ). Среди наиболее известных можно выделить:

  • Немецкий бензиновый двигатель Maybach HL120TRM, устанавливавшийся на танки PzKpfw III и PzKpfw IV во время Второй мировой войны.
  • Британский бензиновый двигатель Rolls-Royce Meteor, основанный на английском авиационном силовом агрегате Merlin, устанавливавшийся на танки Кромвель и Комета, а также послевоенные Центурион и Конкэрор.
  • Советский дизельный двигатель В-2, которым оснащались танки Т-34, КВ-1, КВ-2 и ИС-2. Большинство современных российских дизельных двигателей для танков вернулись к базовой конструкции V12.
  • Американский Continental AV1790, выпускавшийся как в бензиновой, так и дизельной модификации, устанавливался на все версии танков Patton и M103.
  • 26,6-литровый дизельный силовой агрегат производства фирмы Perkins Engines устанавливался на основной боевой танк Челленджер 2 и его модификации.

Тяжёлые грузовики[править | править код]

11,5-литровый двигатель GMC V12 702, 1961 год

Производитель пожарных автомобилей компания Seagrave Fire Apparatus LLC выпускала две версии двигателя V12 Pierce Arrow начиная с 1935 года. После окончания производства в 1938 году, компания закупила необходимое оборудование и продолжила производить и предлагать данные силовые агрегаты до 1970 года. Автопроизводитель American LaFrance начиная с 1931 года также предлагал специальные транспортные средства с серией V-образных двигателей с 12 цилиндрами, построенных компанией ALF, но разработанных на основе двигателей Lycoming ВВ. Оба производители перестали предлагать V12 двигатели после того, как отделы пожарной охраны начали запрашивать дизельные двигатели при заказе пожарных автомобилей.

Чешская компания Tatra использует дизельные двигатели V12 при производстве большинства собственных грузовиков. Так, например, модель Tatra 813 оснащается 19-литровым атмосферным дизельным V-образным двигателем с 12 цилиндрами и воздушным охлаждением. На грузовик Tatra T815 устанавливается турбированный V12 дизельный двигатель. Некоторые большие грузовики оснащаются двумя раздельными V12 двигателями, которыми управляет общий вал, и зачастую они рекламируется как силовые агрегаты V24.

Компания GMC с 1960 по 1965 год выпускала большой бензиновый двигатель в конфигурации V12 для собственных грузовиков, известный под названием «Twin-Six». Он представлял собой пару обычных силовых агрегатов GMC 351 V6 с четырьмя клапанными крышками и четырьмя выпускными коллекторами[11].

Американская компания Detroit Diesel, подразделение Daimler AG, выпускала двигатели серий 53, 71, 92 и 149 в различных конфигурациях, в том числе и V12.

  1. Malcolm James Nunney. Light and Heavy Vehicle Technology. — Routledge, 2007. — С. 13—14. — 671 с. — ISBN 9780750680370. — ISBN 0750680377.
  2. 1 2 Karl Ludvigsen. The V12 Engine: The Untold Story of Technology, Evolution, Performance and Impact of All. — Haynes Publishing UK, 2005. — С. 14—19. — 432 с. — ISBN 9781844250042. — ISBN 1844250040.
  3. Burgess Wise, David. The Illustrated Encyclopedia of Automobiles. — New Burlington Books, 1979. — С. 131. — 352 с. — ISBN 9780906286166. — ISBN 0906286166.
  4. C.W. Hauck. America Is Short 100,00 Atuo Mechanics // Популярная механика. — Огайо, США: Hearst Magazines, 1958. — Октябрь (т. 110, № 4). — С. 8. — ISSN 0032-4558.
  5. Mike Mueller. American Horsepower. — MotorBooks International, 2006. — С. 56. — ISBN 9781610608060. — ISBN 1610608062.
  6. ↑ 2013 BMW 760Li review notes (англ.). Autoweek (21 июля 2013). Дата обращения 16 февраля 2017. Архивировано 9 февраля 2015 года.
  7. JENS MEINERS. 2010 BMW 760i / 760Li (англ.). Car and Driver (июль 2009). Дата обращения 16 февраля 2017. Архивировано 16 февраля 2017 года.
  8. Mike Lawrence. A to Z of Sports Cars, 1945-1990. — Bay View Books, 1996. — С. 62. — 336 с. — (A-Z Series). — ISBN 9781870979818. — ISBN 9781870979818.
  9. В.С. Рыбальчик. Теория поршневых авиационных двигателей. — Рипол Классик, 2013. — С. 5. — 360 с. — ISBN 9785458295932. — ISBN 5458295935.
  10. Виталий Викторович Рыбалка, Леонид Михайлович Шишов. Крылья Родины. — Изд-во ДОСААФ СССР, 1983. — 285 с.
  11. Norm Mort. American Trucks of the 1960s. — Veloce Publishing Ltd, 2010. — С. 41—44. — 96 с. — ISBN 9781845842284. — ISBN 1845842286.

Вечный двигатель — Википедия

У этого термина существуют и другие значения, см. Perpetuum Mobile.

Ве́чный дви́гатель (лат. Perpetuum Mobile) — воображаемое неограниченно долго действующее устройство, позволяющее получать большее количество полезной работы, чем количество сообщённой ему извне энергии (вечный двигатель первого рода) или позволяющее получать тепло от одного резервуара и полностью превращать его в работу (вечный двигатель второго рода)[2][3]. Этот тип машины невозможен, так как он нарушил бы первый или второй закон термодинамики[4][5][6][7]. Эти законы термодинамики применяются независимо от размера системы. Например, движения и вращения небесных тел, таких как планеты, могут казаться вечными, но на самом деле они подвержены многим процессам, которые медленно рассеивают их кинетическую энергию, таким как солнечный ветер, сопротивление межзвездной среды, гравитационное излучение и тепловое излучение, поэтому они не будут продолжать двигаться вечно[8][9].

Таким образом, машины, которые извлекают энергию из конечных источников, не будут работать бесконечно, потому что ими управляет энергия, запасённая в источнике, которая в конечном итоге будет исчерпана. Типичным примером являются устройства, работающие благодаря океаническим течениям, чья энергия в конечном итоге поступает от Солнца, которое само со временем сгорит. Были предложены машины, приводимые в действие более неясными источниками, но на них распространяются те же неизбежные законы, и в конечном итоге они будут прекращены.

В 2017 году были открыты новые состояния материи, темпоральные кристаллы, в которых в микроскопическом масштабе атомы компонентов находятся в непрерывном повторяющемся движении, что удовлетворяет буквальному определению «вечного движения»[10][11][12][13]. Однако, они не представляют собой вечные двигатели в традиционном смысле и не нарушают термодинамические законы, потому что они находятся в своем квантовом основном состоянии, поэтому никакая энергия не может быть извлечена из них; у них есть «движение без энергии».

Современная классификация вечных двигателей

  • Вечный двигатель первого рода — неограниченно долго действующее устройство, способное бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Согласно закону сохранения энергии, все попытки создать такой двигатель обречены на провал. Невозможность осуществления вечного двигателя первого рода постулируется в термодинамике как первое начало термодинамики.
  • Вечный двигатель второго рода — неограниченно долго действующая машина, которая, будучи пущена в ход, превращала бы в работу всё тепло, извлекаемое из окружающих тел. Невозможность осуществления вечного двигателя второго рода постулируется в термодинамике в качестве одной из эквивалентных формулировок второго начала термодинамики[14].

И первое, и второе начала термодинамики были введены как постулаты после многократного экспериментального подтверждения невозможности создания вечных двигателей. Из этих начал выросли многие физические теории, проверенные множеством экспериментов и наблюдений, и у учёных не остаётся никаких сомнений в том, что данные постулаты верны, и создание вечного двигателя невозможно. В частности, второе начало термодинамики может быть сформулировано как один из следующих (эквивалентных) постулатов:

  1. Постулат Кельвина — невозможно создать периодически действующую машину, совершающую механическую работу только за счёт охлаждения теплового резервуара.
  2. Постулат Клаузиуса — самопроизвольный переход теплоты от более холодных тел к более горячим невозможен.

Демон Максвелла и броуновский храповик, если бы такие устройства были осуществимы, позволили бы реализовать вечный двигатель второго рода. Однако доказано, что работа таких систем как замкнутых (без обмена энергией с внешней средой) невозможна[уточнить].

Видеоурок: вечный двигатель

История

Индийский или арабский вечный двигатель с небольшими косо закреплёнными сосудами, частично наполненными ртутью

Попытки исследования места, времени и причины возникновения идеи вечного двигателя — задача весьма сложная. Не менее затруднительно назвать и первого автора подобного замысла. К самым ранним сведениям о Perpetuum mobile относится, по-видимому, упоминание, которое мы находим у индийского поэта, математика и астронома Бхаскары, а также отдельные заметки в арабских рукописях XVI в., хранящихся в Лейдене, Готе и Оксфорде[15]. В настоящее время прародиной первых вечных двигателей по праву считается Индия. Так, Бхаскара в своём стихотворении, датируемом примерно 1150 г., описывает некое колесо с прикреплёнными наискось по ободу длинными, узкими сосудами, наполовину заполненными ртутью. Принцип действия этого первого механического перпетуум мобиле был основан на различии моментов сил тяжести, создаваемых жидкостью, перемещавшейся в сосудах, помещённых на окружности колеса. Бхаскара обосновывает вращение колеса весьма просто: «Наполненное таким образом жидкостью колесо, будучи насажено на ось, лежащую на двух неподвижных опорах, непрерывно вращается само по себе»[16]. Первые проекты вечного двигателя в Европе относятся к эпохе развития механики, приблизительно к XIII веку. К XVI—XVII векам идея вечного двигателя получила особенно широкое распространение. В это время быстро росло количество проектов вечных двигателей, подаваемых на рассмотрение в патентные ведомства европейских стран.

Среди рисунков Леонардо Да Винчи была найдена гравюра с чертежом вечного двигателя, но в целом он скептически относился к идее вечного двигателя.[16]

Неудачные конструкции вечных двигателей из истории

Рис. 1. Одна из древнейших конструкций вечного двигателя

На рис. 1 показана одна из древнейших конструкций вечного двигателя. Она представляет зубчатое колесо, в углублениях которого прикреплены откидывающиеся на шарнирах грузы. Геометрия зубьев такова, что грузы в левой части колеса всегда оказываются ближе к оси, чем в правой. По замыслу автора, это, в согласии с законом рычага, должно было бы приводить колесо в постоянное вращение. При вращении грузы откидывались бы справа и сохраняли движущее усилие.

Однако, если такое колесо изготовить, оно останется неподвижным. Причина этого факта заключается в том, что хотя справа грузы имеют более длинный рычаг, слева их больше по количеству. В результате моменты сил справа и слева оказываются равны.

Рис. 2. Конструкция вечного двигателя, основанного на законе Архимеда

На рис. 2 показано устройство ещё одного двигателя. Автор решил использовать для выработки энергии закон Архимеда. Закон состоит в том, что тела, плотность которых меньше плотности воды, стремятся всплыть на поверхность. Поэтому автор расположил на цепи полые баки и правую половину поместил под воду. Он полагал, что вода будет их выталкивать на поверхность, а цепь с колёсами, таким образом, бесконечно вращаться.

Здесь не учтено следующее: выталкивающая сила — это разница между давлениями воды, действующими на нижнюю и верхнюю части погруженного в воду предмета. В конструкции, приведённой на рисунке, эта разница будет стремиться вытолкнуть те баки, которые находятся под водой в правой части рисунка. Но на самый нижний бак, который затыкает собой отверстие, будет действовать лишь сила давления на его правую поверхность. И она будет уравновешивать или превосходить силу, действующую на остальные баки.

Патенты и авторские свидетельства на вечный двигатель

В 1775 году Парижская академия наук приняла решение не рассматривать проекты вечного двигателя из-за очевидной невозможности их создания[17]. Патентное ведомство США не выдаёт патенты на perpetuum mobile уже более ста лет[18]. Тем не менее, в Международной патентной классификации сохраняются разделы для гидродинамических (раздел F03B 17/04) и электродинамических (раздел H02K 53/00) вечных двигателей.

Известные «изобретатели» вечных двигателей

Проект вечного двигателя Орфиреуса

Псевдовечный двигатель

Псевдовечный двигатель (даровой двигатель, мнимый вечный двигатель[19], псевдо-вечный двигатель[20]) — механизм, способный работать неопределённо долго (до износа своих составных частей) без вмешательства человека, но, в отличие от вечного двигателя, не нарушающий законов термодинамики. Энергию он черпает из окружающей среды (например, это может быть энергия Солнца или радиоактивного распада).

Разновидности

Известны псевдовечные двигатели, использующие: энергию периодических суточных колебаний атмосферного давления[21][22];; энергию теплового расширения вследствие суточных колебаний температуры[23][22]; энергию распада радия[24]; энергию магнитного поля постоянного магнита[25]; солнечную энергию (магнитно-тепловой двигатель)[26][27].

Экономическая эффективность

Я. И. Перельман[23] и Н. В. Гулиа[22] пишут, что даровые двигатели экономически невыгодны для промышленного применения из-за малой стоимости производимой энергии по сравнению с капитальными вложениями в их создание и обслуживание.

Например, для завода часов на сутки работы нужна энергия 1,5{\displaystyle 1{,}5} Дж. Если этот механизм проработает 10{\displaystyle 10} лет, то за свой срок службы он выработает энергии 1,5⋅365⋅10=5500{\displaystyle 1{,}5\cdot 365\cdot 10=5500} Дж. При стоимости механизма в 10{\displaystyle 10} долларов себестоимость производства одного киловатт-часа энергии с его помощью составит 3,6⋅1065500⋅10=6,5{\displaystyle {\frac {3{,}6\cdot 10^{6}}{5500}}\cdot 10=6{,}5} тыс. долларов[22].

В. М. Бродянский считает этот вывод неверным, поскольку стоимость устройства не пропорциональна его размерам[20].

Пример псевдовечного двигателя 2-го рода

Анализ конкретной конструкции вечного двигателя 2-го рода может представлять собой нетривиальную задачу, особенно если речь идёт о конструкции сложной или такой, принцип действия которой на первый взгляд вообще непонятен, либо потоки энергии и их источник неочевидны. Зафиксируем, например, один конец работающей на изгиб биметаллической пластины, а ко второму концу подвесим груз и поместим получившуюся конструкцию на открытый воздух. За счёт колебаний температуры пластина будет изгибаться/распрямляться, а груз подниматься и опускаться, то есть устройство будет совершать работу. Заменив груз на храповой механизм, получим механический привод, способный выполнять полезную работу за счёт извлечения энергии из единственного теплового резервуара — окружающей среды. Но поскольку окружающая среда попеременно выступает в качестве то нагревателя, то охладителя, противоречие со вторым законом термодинамики отсутствует. Таким образом, рассмотренная конструкция представляет собой не вечный, а псевдовечный двигатель 2-го рода[28].

См. также

Примечания

  1. Перельман Я. И. В поисках вечного двигателя (Въ поискахъ вѣчнаго двигателя). — «Природа и люди», 1915, № 32, с. 508—510. На странице 509.
  2. ↑ Большая российская энциклопедия
  3. ↑ [[Большая советская энциклопедия]], 3-е изд. (неопр.) (недоступная ссылка). Дата обращения 13 мая 2018. Архивировано 13 мая 2018 года.
  4. Derry, Gregory N. What Science Is and How It Works (неопр.). — Princeton University Press, 2002. — С. 167. — ISBN 978-1400823116.
  5. Roy, Bimalendu Narayan. Fundamentals of Classical and Statistical Thermodynamics (англ.). — John Wiley & Sons, 2002. — P. 58. — ISBN 978-0470843130.
  6. ↑ Definition of perpetual motion (неопр.). Oxforddictionaries.com (22 ноября 2012). Дата обращения 27 ноября 2012.
  7. ↑ Sébastien Point, Free energy: when the web is freewheeling, Skeptikal Inquirer, January February 2018
  8. Taylor, J. H.; Weisberg, J. M. Further experimental tests of relativistic gravity using the binary pulsar PSR 1913 + 16 (англ.) // The Astrophysical Journal : journal. — IOP Publishing, 1989. — Vol. 345. — P. 434—450. — DOI:10.1086/167917. — Bibcode: 1989ApJ...345..434T.
  9. Weisberg, J. M.; Nice, D. J.; Taylor, J. H. Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16 (англ.) // The Astrophysical Journal : journal. — IOP Publishing, 2010. — Vol. 722, no. 2. — P. 1030—1034. — DOI:10.1088/0004-637X/722/2/1030. — Bibcode: 2010ApJ...722.1030W. — arXiv:1011.0718v1.
  10. Grossman, Lisa Death-defying time crystal could outlast the universe (неопр.). newscientist.com. New Scientist (18 января 2012). Архивировано 2 февраля 2017 года.
  11. Cowen, Ron "Time Crystals" Could Be a Legitimate Form of Perpetual Motion (неопр.). scientificamerican.com. Scientific American (27 февраля 2012). Архивировано 2 февраля 2017 года.
  12. Powell, Devin. Can matter cycle through shapes eternally? (англ.) // Nature. — 2013. — ISSN 1476-4687. — DOI:10.1038/nature.2013.13657. Архивировано 3 февраля 2017 года.
  13. Gibney, Elizabeth. The quest to crystallize time (англ.) // Nature. — 2017. — Vol. 543, no. 7644. — P. 164—166. — ISSN 0028-0836. — DOI:10.1038/543164a. — Bibcode: 2017Natur.543..164G. Архивировано 13 марта 2017 года.
  14. Ю. Румер, М. Рывкин. §9. Круговые процессы. Цикл Карно // Термодинамика, статистическая физика и кинетика. — Рипол Классик, 1977. — ISBN 9785458513012.
  15. ↑ ВЕЧНЫЙ ДВИГАТЕЛЬ Наиболее ранние сведения о вечных двигателях
  16. 1 2 Стефанова А. Суета сует, или краткая летопись изысканий вечного движения // Мир измерений. 2013. № 6. С. 62-64.
  17. ↑ Histoire de l’Académie royale des sciences, 1775, p. 61, 65
  18. ↑ «Вечный двигатель» Архивная копия от 26 апреля 2018 на Wayback Machine PrimeInfo
  19. ↑ Вечный двигатель // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
  20. 1 2 Бродянский В.М. Вечный двигатель: прежде и теперь. — М., 2001. — С. 225.
  21. ↑ Перельман, 1972, с. 104—105.
  22. 1 2 3 4 Гулиа Н. В. Удивительная физика. — М., ЭНАС-КНИГА, 2014. — ISBN 978-5-91921-236-2. — с. 270—274
  23. 1 2 Перельман, 1972, с. 114—116.
  24. Я. И. Перельман Занимательная физика. Книга 2.
  25. Томилин А. К., Аксенова Н. В., Шевчук А. С. Анализ одного «вечного» двигателя // Молодой ученый. — 2015. — № 10. — С. 330—333.
  26. Пресняков А. Г. Авторское свидетельство СССР от 28.02.1978 г. Магнитно-тепловой двигатель
  27. ↑ Алиев Ш. М., Каммилов И. К., Алиев М. Ш. Преобразователь солнечной энергии в механическую на основе магнитно-теплового двигателя // ДАН РФ 2009 № 3
  28. ↑ Александров Н. Е. и др., ч. 2, 2012, с. 108.

Литература

  • Александров Н. Е., Богданов А. И., Костин К. И. и др. Основы теории тепловых процессов и машин. Часть II / Под ред. Н. И. Прокопенко. — 4-е изд. (электронное). — М.: Бином. Лаборатория знаний, 2012. — 572 с. — ISBN 978-5-9963-0834-7.
  • Бродянский В. М. Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии. — М.: Энергоатомиздат, 1989. — 256 с. — (Научно-популярная библиотека школьника). — ISBN 5-283-00058-3.
  • Вознесенский Н. Н. О машинах вечного движения. М., 1926.
  • Ихак-Рубинер Ф. Вечный двигатель. М., 1922.
  • Кирпичёв В. Л. Беседы по механике. М.: ГИТЛ, 1951.
  • Лермантов В. В. Вечное движение // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Мах Э. Принцип сохранения работы: История и корень его. СПб., 1909.
  • Михал С. Вечный двигатель вчера и сегодня / Пер. с чеш. И. Е. Зино; Предисл. А. Т. Григорьяна. — М.: Мир, 1984. — 256 с. — (В мире науки и техники). — 100 000 экз.
  • Орд-Хьюм А. Вечное движение. История одной навязчивой идеи. М.: Знание, 1980.
  • Перельман Я. И. Занимательная физика. Кн. 1 и 2. М.: Наука, 1979.
  • Петрунин Ю. Ю. Почему идея вечного двигателя не существовала в античности?  (недоступная ссылка с 16-05-2018 [626 дней]) // Петрунин Ю. Ю. Призрак Царьграда: неразрешимые задачи в русской и европейской культуре. — М.: КДУ, 2006, с. 75-82.
  • Савельев И. В. Курс общей физики в 3-х томах. Том 1. Механика. Молекулярная физика. — 12-е изд., стереотип. — СПб.—М.—Краснодар: Лань, 2016. — 432 с. — (Учебники для вузов. Специальная литература). — ISBN 978-5-8114-0630-2. Архивная копия от 22 сентября 2017 на Wayback Machine  (недоступная ссылка с 16-05-2018 [626 дней])
  • Вечный двигатель // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  • Я. И. Перельман. Занимательная физика. Книга 1. — М.: Наука, 1972. — 215 с.

Ссылки

Двигатель внутреннего сгорания Отто. История техники и изобретений

В первом тепловом двигателе — паровой машине — тепло производилось в топке и в паровом котле, вне цилиндра — рабочего органа машины. Топка и котёл делали двигатель громоздким и тяжёлым, годным только для стационарного использования или для установки на большие пароходы и паровозы. В поисках идеи компактного и лёгкого двигателя конструкторы пришли к мысли сжигать топливо внутри рабочего цилиндра — так появились прототипы двигателя внутреннего сгорания (ДВС). Первый ДВС, схожий с современным, создал в 1876 г. немецкий конструктор Николаус Отто.

Двигатель де Риваса на самодвижущейся тележке

Двигатель де Риваса на самодвижущейся тележке. Сдавливая баллон (1), в рабочий цилиндр (2) впрыскивали сжатый водород. Одновременно через открывавшийся рычагом (3) клапан (4) в цилиндр впускали воздух. Водородно — воздушную смесь (5) поджигала электрическая искра от батареи Вольта (6). Взорванная смесь расширялась, и её давление поднимало поршень (7). Обратным движением рычага открывался клапан отработанного газа, и тяжёлый поршень падал. Движения поршня через цепь (9) передавались валу (10), но лишь при обратном ходе поршня трещотка (11) на кривозубой шестерёнке (12) позволяла крутиться валу, который через ременную передачу (13) раскручивал ось передних колёс (14) тележки.

Пробный вариант

Первый двигатель внутреннего сгорания (ДВС) создал французский изобретатель Ф.И. де Ривас в 1807 г. Смесь воздуха и водорода в рабочем цилиндре зажигалась электрической искрой от батареи Вольта, после подрыва смесь расширялась, создавая высокое давление в цилиндре и подбрасывая поршень. Отработанные газы выпускались, образуя под поршнем вакуум. Под воздействием давления атмосферы и своего веса поршень падал, возвращаясь в исходное положение, чтобы повторить цикл. Де Ривас использовал свой ДВС как привод передних колёс повозки. Но из-за низкой эффективности его двигатель не нашёл спроса. Впоследствии идеи де Риваса легли в основу дальнейших разработок ДВС.

Двигатель Ленуара

В 1860 г. другой француз, механик Э. Ленуар, сделал ДВС, похожий на горизонтальную паровую машину, но работающий на смеси воздуха со светильным газом (содержащим углеводороды). ДВС Ленуара был двойного действия — рабочий ход поршень совершал при движении в обе стороны. Это обеспечивалось тем, что смесь поджигалась искрой от двух электрических свечей по обе стороны от поршня, и впуск и выпуск газов проводился также с двух концов цилиндра с помощью золотников (таких же, как в паровых машинах).

Цикл работы ДВС Ленуара состоял из двух тактов (из двух ходов поршня — вперёд и назад). Оба хода обеспечивались расширением газовой смеси при сжигании, что требовало большого расхода топлива. Работа ДВС Ленуара обходилась в 7 раз дороже работы паровой машины той же мощности. Зато из-за отсутствия котла и топки ДВС был компактнее, и его, например, ставили на лодки, где не было места для паровой машины.

Цикл двухтактного ДВС Ленуара. 1864 г.

Цикл двухтактного ДВС Ленуара. 1864 г. Первый такт. Поршень (1) двигается вперёд. Тяга (2) впускного золотника (3), связанная через эксцентрик (4) вала (5), открывает заднее отверстие (6) в цилиндре (7) для впуска смеси светильного газа и воздуха. Поршень немного продвигается, впускной золотник перекрывает задний впуск, а выпускной золотник (8) открывает переднее отверстие выпуска (9), через которое поршень выталкивает газы, отработанные в прошлом такте. На заднюю свечу зажигания (10) подаётся высоковольтный разряд от электрической батареи (11). Смесь зажигается, расширяется и толкает поршень дальше вперёд до крайнего положения. Шток (12) поршня через кривошипно — шатунный механизм (13) раскручивает вал и маховик (14). Второй такт. Инерция крутящегося маховика тянет поршень назад. Впускной золотник открывает переднее отверстие впуска газов (15), поршень продолжает двигаться, впуск закрывается, смесь в цилиндре поджигается передней свечой зажигания (16), давление газов толкает поршень назад, золотник выпуска открывает заднее отверстие (17), и отработанные в первом такте газы выходят. Поршень занимает исходное крайне заднее положение. Цикл повторяется.

Первая победа Отто

Недостатки ДВС Ленуара учёл немецкий конструктор Н.А. Отто при создании своего двухтактного двигателя. Сделанный им в 1864 г. ДВС тоже работал на смеси воздуха со светильным газом. Отто поджигал смесь не электрической искрой, а пламенем газовой горелки, что было надёжнее при тогдашнем уровне развития электротехники. ДВС Отто совершал один рабочий ход. Сделав цилиндр вертикальным, Отто заставил поршень двигаться вниз без помощи давления газов, только под воздействием своего веса и давления атмосферы. Это позволило его ДВС при вдвое меньшем расходе топлива развивать мощность как у ДВС двойного действия. ДВС Отто оказался в 4-5 раз экономичнее двигателя Ленуара. Первые ДВС Отто широко использовались как приводы для типографских машин, грузовых лифтов-подъёмников, токарных и ткацких станков, прядильных машин и прочего оборудования.

Двухтактные ДВС, работающие по принципу ДВС Отто 1864 г., и сейчас используются как приводы сенокосилок и бензопил, в лодочных и мотоциклетных моторах.

Николаус Аугуст Отто

Николаус Аугуст Отто

Четыре такта успеха

Настоящий прорыв в создании ДВС Отто совершил в 1876 г. В новом двигателе Отто вернулся к горизонтальной конструкции. Для увеличения мощности ДВС Отто решил перед воспламенением сжать топливную смесь, а для этого цикл работы ДВС пришлось увеличить до 4 тактов — 4 ходов поршня, и этот двигатель стал называться четырёхтактным ДВС.

Мощный четырёхтактный ДВС Отто вытеснил все предыдущие модели ДВС — его схема стала образцом для создания всех последующих ДВС вплоть до нашего времени и открыла возможность применения ДВС на транспорте.

Четырёхтактный цикл работы ДВС Отто 1876 г.

Четырёхтактный цикл работы ДВС Отто 1876 г. I такт. Впуск топлива: поршень (1) идёт вперёд (первый ход), создавая низкое давление в цилиндре. Вращение главного вала (2) через червячную передачу (3) передаётся вспомогательному валу (4), управляющему газораспределительными клапанами. В I такте вал открывает впускной клапан (5), и горючая смесь из топливного бака (6) поступает в цилиндр (7). Клапан закрывается. II такт. Сжатие смеси: поршень идёт назад (второй ход) и сжимает топливную смесь. При запуске ДВС первый и второй ходы поршня осуществлялись вручную, затем это происходило автоматически — инерция маховика (8) поддерживала вращение главного вала. III такт. Расширение смеси (рабочий ход): вспомогательный вал кратковременно открывает клапан (9), подающий порцию смеси в газовую горелку (10), где она воспламеняется (11) и, поступая в цилиндр, воспламеняет в нём основную порцию горючего. Газы в цилиндре расширяются и выталкивают поршень вперёд (третий ход). На этом такте поршень производит полезную работу: через шток (12) передаёт толчок кривошипно — шатунному механизму (13), раскручивающему маховик. IV такт. Выпуск отработанных газов: через выпускной клапан (14) отработавшие газы, быстро сжимающиеся благодаря рубашке охлаждения (15) в корпусе цилиндра, удаляются из цилиндра. Создаётся разряжение (низкое давление), и поршень идёт назад (четвёртый ход).

Развитие идеи

Производством всех ДВС Отто занималась компания «Ланген, Отто и Розен», созданная в 1869 г. Отто совместно с немецкими предпринимателями Э. Лангеном и Л. Розеном. Современные четырёхтактные ДВС сохранили принципиальную схему Отто, но топливо в них поджигается искрой от электрической свечи. Для увеличения мощности ДВС повышали объём его цилиндра, чтобы большим объёмом топлива усилить мощь его расширения. Но увеличение цилиндра не могло быть бесконечным, и тогда придумали усиливать двигатель путём увеличения числа цилиндров, поршни которых крутили один рабочий вал двигателя. Первые двухцилиндровые ДВС появились в конце XIX в., а четырёхцилиндровые — в начале XX в. Сейчас встречаются шести — , восьми — и 20 — цилиндровые ДВС. Светильный газ был довольно дорогим топливом, и в Европе, и в России его производили не так много. В поисках нового вида топлива для ДВС обратили внимание на другие вещества, содержащие углеводороды — продукты нефтепереработки.

Сотрудники компании Отто Г. Даймлер и В. Майбах в 1883 г. создали первый бензиновый ДВС, который в 1885 г. установили на первом мотоцикле, а в 1886 г. — на первом автомобиле.

Четырёхтактный цикл работы современного одноцилиндрового ДВС

Четырёхтактный цикл работы современного одноцилиндрового ДВС. Такт — это один ход поршня (1), т. е. прохождение поршня от крайнего верхнего положения, верхней мёртвой точки (ВМТ), до крайнего нижнего положения, нижней мёртвой точки (НМТ). I такт. Впуск. Поршень идёт вниз, создавая в цилиндре (2) разряжение. Открывается впускной клапан (3), и под воздействием атмосферного давления из впускного трубопровода (4) в цилиндр засасывается горючая смесь — распылённый в воздухе бензин (5). II такт. Сжатие. Впускной клапан закрывается. Поршень идёт вверх, сжимая горючую смесь (6). III такт. Рабочий ход (расширение). Между электродами свечи зажигания (7) проскакивает электрическая искра, поджигающая смесь. Газы расширяются (8), под их давлением поршень идёт вниз и передаёт усилие через кривошипно — шатунный механизм (9) на коленчатый вал (10), проворачивая его. IV такт. Выпуск. Поршень по инерции идёт вверх. Открывается выпускной клапан (11), и под давлением поршня отработанные газы (12) вытесняются в атмосферу.

Однако бензин при испарении плохо смешивался с воздухом, реакция при возгорании протекала неравномерно, и бензиновые ДВС, работая ненадёжно, не могли вытеснить газовые ДВС. Выход нашёл венгерский инженер Д. Банки — в 1893 г. он придумал устройство для распыления бензина в воздухе — карбюратор с жиклёром. Бензиновая взвесь, равномерно смешанная с воздухом, поступала в цилиндр, где при зажигании быстро превращалась в газовую смесь, обеспечивая хорошее протекание реакции и мощное расширение при взрыве. В России первый бензиновый двигатель с карбюратором сконструировал в 1880-х гг. О. С. Костович. В 1897 г. немецкий инженер Р Дизель придумал дизельный двигатель, в котором топливо воспламенялось не от огня или электрической искры, а от высокой температуры, которая возникает при сильном сжатии воздуха. В России производство дизельных двигателей, усовершенствованных российским инженером Г. В. Тринклером, началось в 1899 г. Эти дизели устанавливали на стационарных машинах (станках и пр.).

Поделиться ссылкой

История создания двигателей внутреннего сгорания

История создания двигателей внутреннего сгорания

В 1799 году французский инженер Филипп Лебон открыл светильный газ. В 1799 году он получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля. Это открытие имело огромное значение, прежде всего для развития техники освещения. Очень скоро во Франции, а потом и в других странах Европы газовые лампы стали успешно конкурировать с дорогостоящими свечами. Однако светильный газ годился не только для освещения.

Патент на конструкцию газового двигателя

В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения стремительно расширялись, оказывая сильное давление на окружающую среду. Создав соответствующие условия, можно использовать выделяющуюся энергию в интересах человека. В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой — сжатый светильный газ из газогенератора. Газовоздушная смесь поступала потом в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он погиб, не успев воплотить в жизнь своё изобретение.

Жан Этьен Ленуар

В последующие годы несколько изобретателей из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной. Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому механику Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи.

Ленуар не сразу добился успеха. После того как удалось изготовить все детали и собрать машину, она проработала совсем немного и остановилась, так как из-за нагрева поршень расширился и заклинил в цилиндре. Ленуар усовершенствовал свой двигатель, продумав систему водяного охлаждения. Однако вторая попытка запуска также закончилась неудачей из-за плохого хода поршня. Ленуар дополнил свою конструкцию системой смазки. Только тогда двигатель начал работать.

Август Отто

В 1864 году было выпущено уже более 300 таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над усовершенствованием своей машины, и это предопределило её судьбу — она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Августом Отто.

В 1864 году тот получил патент на свою модель газового двигателя и в том же году заключил договор с богатым инженером Лангеном для эксплуатации этого изобретения. Вскоре была создана фирма «Отто и Компания».

На первый взгляд, двигатель Отто представлял собой шаг назад по сравнению с двигателем Ленуара. Цилиндр был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Вдоль оси поршня к нему была прикреплена рейка, связанная с валом. Двигатель работал следующим образом. Вращающийся вал поднимал поршень на 1/10 высоты цилиндра, в результате чего под поршнем образовывалось разрежённое пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась. Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался, объём газа увеличивался и давление падало. При подъёме поршня специальный механизм отсоединял рейку от вала. Поршень сначала под давлением газа, а потом по инерции поднимался до тех пор, пока под ним не создавалось разряжение. Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, и после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Из-за более полного расширения продуктов сгорания КПД этого двигателя был значительно выше, чем КПД двигателя Ленуара и достигал 15 %, то есть превосходил КПД самых лучших паровых машин того времени.

Поскольку двигатели Отто были почти в пять раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч штук. Отто упорно работал над усовершенствованием их конструкции. Вскоре зубчатую рейку заменила кривошипно-шатунная передача. Но самое существенное из его изобретений было сделано в 1877 году, когда Отто взял патент на новый двигатель с четырёхтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей. В следующем году новые двигатели уже были запущены в производство.

Четырёхтактный цикл был самым большим техническим достижением Отто. Но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Роша[de]. Группа французских промышленников оспорила в суде патент Отто. Суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырёхтактный цикл.

Хотя конкуренты наладили выпуск четырёхтактных двигателей, отработанная многолетним производством модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно суживало область применения первых двигателей внутреннего сгорания. Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два- в Москве и Петербурге.

Поиски нового горючего

Поэтому не прекращались поиски нового горючего для двигателя внутреннего сгорания. Некоторые изобретатели пытались применить в качестве газа пары жидкого топлива. Ещё в 1872 году американец Брайтон пытался использовать в этом качестве керосин. Однако керосин плохо испарялся, и Брайтон перешёл к более лёгкому нефтепродукту — бензину. Но для того, чтобы двигатель на жидком топливе мог успешно конкурировать с газовым, необходимо было создать специальное устройство для испарения бензина и получения горючей смеси его с воздухом.

Брайтон в том же 1872 году придумал один из первых так называемых «испарительных» карбюраторов, но он действовал неудовлетворительно.

Бензиновый двигатель

Работоспособный бензиновый двигатель появился только десятью годами позже. Изобретателем его был немецкий инженер Готлиб Даймлер. Много лет он работал в фирме Отто и был членом её правления. В начале 80-х годов он предложил своему шефу проект компактного бензинового двигателя, который можно было бы использовать на транспорте. Отто отнёсся к предложению Даймлера холодно. Тогда Даймлер вместе со своим другом Вильгельмом Майбахом принял смелое решение — в 1882 году они ушли из фирмы Отто, приобрели небольшую мастерскую близ Штутгарта и начали работать над своим проектом.

Проблема, стоявшая перед Даймлером и Майбахом была не из лёгких: они решили создать двигатель, который не требовал бы газогенератора, был бы очень лёгким и компактным, но при этом достаточно мощным, чтобы двигать экипаж. Увеличение мощности Даймлер рассчитывал получить за счёт увеличения частоты вращения вала, но для этого необходимо было обеспечить требуемую частоту воспламенения смеси. В 1883 году был создан первый бензиновый двигатель с зажиганием от раскалённой полой трубочки, открытой в цилиндр.

Первая модель бензинового двигателя предназначалась для промышленной стационарной установки.

Процесс испарения жидкого топлива в первых бензиновых двигателях оставлял желать лучшего. Поэтому настоящую революцию в двигателестроении произвело изобретение карбюратора. Создателем его считается венгерский инженер Донат Банки. В 1893 году он взял патент на карбюратор с жиклёром, который был прообразом всех современных карбюраторов. В отличие от своих предшественников Банки предлагал не испарять бензин, а мелко распылять его в воздухе. Это обеспечивало его равномерное распределение по цилиндру, а само испарение происходило уже в цилиндре под действием тепла сжатия. Для обеспечения распыления всасывание бензина происходило потоком воздуха через дозирующий жиклёр, а постоянство состава смеси достигалось за счёт поддержания постоянного уровня бензина в карбюраторе. Жиклёр выполнялся в виде одного или нескольких отверстий в трубке, располагавшейся перпендикулярно потоку воздуха. Для поддержания напора был предусмотрен маленький бачок с поплавком, который поддерживал уровень на заданной высоте, так что количество всасываемого бензина было пропорционально количеству поступающего воздуха.

Первые двигатели внутреннего сгорания были одноцилиндровыми, и, для того чтобы увеличить мощность двигателя, обычно увеличивали объём цилиндра. Потом этого стали добиваться увеличением числа цилиндров.

В конце XIX века появились двухцилиндровые двигатели, а с начала XX столетия стали распространяться четырёхцилиндровые.

См. также

Ссылки

Шестицилиндровый двигатель — Википедия

Запрос «V6» перенаправляется сюда; о японском бой-бэнде см. V6 (группа). Рядный шестицилиндровый двигатель автомобиля BMW (M20B25) со снятой головкой L6 турбодизель K6S310DR тепловоза ЧМЭ3, рабочий объём 163 л

Шестицили́ндровые дви́гатели — двигатели внутреннего сгорания, имеющие шесть цилиндров, размещённые чаще всего друг напротив друга под углом 60° или 90°.

Рядный шестицилиндровый двигатель — конфигурация двигателя внутреннего сгорания с рядным расположением шести цилиндров, порядок работы цилиндров 1-5-3-6-2-4, и поршнями, вращающими один общий коленчатый вал. Часто обозначается R6[1][2] (от немецкого[3] «Reihe» — ряд), I6 или L6 («Straight-6», «In-Line-Six»). Плоскость, в которой находятся цилиндры, может быть строго вертикальной, или находиться под определённым углом к вертикали. Во втором случае двигатель иногда называют Slant-6 (/6).

В теории I6 в четырёхтактном варианте является полностью сбалансированной конфигурацией относительно сил инерции разных порядков поршней и верхних частей шатунов (силы инерции 1-го порядка разных цилиндров взаимно компенсируют друг друга так же, как и у рядного четырёхцилиндрового двигателя, но, в отличие от последнего, силы инерции 2-го порядка также взаимно компенсируются), сочетая сравнительно невысокую сложность и стоимость изготовления с хорошей плавностью работы. Такую же сбалансированность демонстрирует и V12, работающий как два шестицилиндровых двигателя с общим коленчатым валом.

Однако на малых (холостых) оборотах коленчатого вала возможна некоторая вибрация, вызванная пульсацией крутящего момента. Рядный восьмицилиндровый двигатель, помимо полной сбалансированности, демонстрирует лучшую равномерность крутящего момента, чем рядный шестицилиндровый, но в наше время применяется очень редко из-за целого ряда иных недостатков.

Двигатели конфигурации I6 широко использовались и продолжают использоваться в настоящее время на автомобилях, автобусах, тракторах, речных судах. На легковых автомобилях в последние десятилетия, в связи с повсеместным распространением переднего привода с поперечным расположением силового агрегата, и вообще компоновочных схем с более «плотной» организацией подкапотного пространства, более популярны оказались V-образные шестицилиндровые двигатели как более компактные и короткие, хоть и более дорогие, менее технологичные и сбалансированные. Вместе с тем, отдельные производители не спешат отказываться от рядных шестицилиндровых моторов. Яркий пример — BMW. Более того, современные[когда?] технологии позволяют создать достаточно компактный рядный шестицилиндровый двигатель даже для поперечной установки, правда, на достаточно крупном автомобиле — примером такого силового агрегата служит Chevrolet Epica с передним приводом и поперечно установленными 2,0- и 2,5-литровыми моторами разработки Porsche.

Максимальный рабочий объём рядных шестицилиндровых двигателей практически не ограничен и на судовых дизелях может достигать 1820 дм³ на один цилиндр.

V-образный шестицилиндровый двигатель[править | править код]

V6 фирмы Lancia, первый серийный двигатель такой конфигурации.

V-образный шестицилиндровый двигатель — двигатель внутреннего сгорания с V-образным расположением шести цилиндров двумя рядами по три, и поршнями, вращающими один общий коленчатый вал. Часто обозначается V6 (англ. «Vee-Six», «Ви-Сикс»).

Это второй по популярности в наши дни автомобильный двигатель после рядного четырёхцилиндрового двигателя.

Первый серийный V6 появился в 1950 году на итальянской модели Lancia Aurelia.

Технические особенности[править | править код]

V6 — несбалансированный двигатель; он работает как два рядных трёхцилиндровых двигателя, и без дополнительных мер может иметь весьма большой уровень вибраций. В двигателях V6 используется дисбаланс коленвала, создаваемый противовесами (иногда дополнительно применяют маховик и шкив с дисбалансом), уравновешивающий момент от сил инерции 1-го порядка поршней и верхних частей шатунов. Кроме того, иногда (при некоторых углах развала цилиндров) для этого дополнительно используют балансировочный вал, вращающийся со скоростью коленвала, но в противоположную сторону. Это позволяет приблизить их по плавности работы и уровню вибраций к рядному шестицилиндровому двигателю. Момент инерции 2-го порядка, как правило оставляют свободным, так как он имеет небольшую величину и может быть поглощён опорами двигателя.

Как правило, угол развала цилиндров составляет 60, 90 или 120 градусов. Но встречаются и иные варианты, например 54°, 45°, 65°, 75° или 15° (VR6).

Угол развала 90° обычно встречается на двигателях, унифицированных с двигателями конфигурации V8, для которых такой угол развала является основным. В первых двигателях такой конфигурации, по причине того, что технологии тогда не позволяли сделать достаточно прочный коленвал со смещёнными шатунными шейками, а делать полноопорный коленвал с отдельными шейками для каждого шатуна невыгодно, так как по длине двигатель становится сравнимым с исходным V8 (кроме того, это усложняет двигатель), на каждой шатунной шейке располагались (так же, как и в исходном V8) по два шатуна от противоположных цилиндров (схема с 3 кривошипами, пример — Buick Special, а также советский двигатель ЯМЗ-236). Такая конструкция при угле развала 90° позволяет уравновесить момент инерции 1-го порядка без применения балансировочных валов, однако равномерных интервалов поджига смеси она не обеспечивает (рабочие ходы в цилиндрах следуют не равномерно, а через 90 и 150° по углу поворота коленчатого вала, порядок работы цилиндров при этом 1-4-2-5-3-6). Следствием этого является заметная вибрация работающего двигателя, особенно при работе на малых оборотах коленчатого вала, а также грубый и неприятный на слух звук выхлопа, а по плавности хода двигатель больше напоминает трёхцилиндровый. Чтобы уменьшить вибрации и улучшить плавность хода, применяют маховик увеличенной массы. В более современных[когда?] двигателях V6 с углом развала 90° используется усложнённый коленвал со смещёнными шатунными шейками (6 кривошипов), обеспечивающий равномерные интервалы поджига смеси, а момент инерции 1-го порядка уравновешивается при применении балансировочного вала (без него он уравновешивается не полностью, что потребует усовершенствованной подвески двигателя и часто неприемлемо для современного[когда?] легкового автомобиля из-за повышенной вибрации). Однако на болидах формулы-1 (регламент 2014) года используется именно простой коленвал с тремя кривошипами, не обеспечивающий равномерных интервалов поджига, но обладающий большей прочностью и не требующий уравновешивания момента 1-го порядка.

120-градусный развал позволяет получить широкий, но низкий силовой агрегат, что лучше подходит для низких, например, спортивных машин. В нём так же на каждой шатунной шейке располагаются по два шатуна (число шатунных шеек — 3), но за счёт угла развала цилиндров 120° обеспечиваются равномерные интервалы поджига смеси. Такая конфигурация имеет довольно большой момент 1-го порядка, который можно скомпенсировать только при применении балансировочного вала. При всех остальных углах развала (отличных от 120°), чтобы обеспечить равномерные интервалы поджига смеси (через каждые 120° по углу поворота коленвала) и тем самым уменьшить вибрацию двигателя, а также обеспечить плавный ход, каждый шатун располагают на отдельной шатунной шейке коленвала, либо применяют усложнённый коленвал со смещёнными шатунными шейками (это уменьшает длину двигателя, а также упрощает его, но требует усовершенствованния технологии изготовления коленвала).

60-градусный развал позволяет скомпенсировать момент 1-го порядка без применения балансировочных валов. По этой причине, а также благодаря компактности, этот угол развала считается «родным» для V-образных шестёрок. Иногда по каким-либо причинам применяют близкие углы развала, например 54° или 65° при незначительном увеличении вибраций, которые растут по мере отклонения от угла 60°.

Угол развала 15° позволяет сделать одну общую головку для всех цилиндров, а также позволяет использовать порядок зажигания такой же, как у рядного шестицилиндрового двигателя и обладает удовлетворительной сбалансированностью без применения балансировочных валов, что вместе с усовершенствованной подвеской двигателя решает проблему вибраций.

Именно трудности балансировки и являлись основной причиной, сдерживавшей распространение серийных двигателей этого типа. До 1950-х годов такие двигатели создавались, но либо для стационарных установок (например бензогенераторов), либо как опытные образцы.

В 1959 году в США фирма GM начала производство пятилитрового V6, которым оснащались пикапы и субурбаны (гибрид универсала и микроавтобуса на шасси пикапа).

В 1962 году в США пошёл в производство «компакт» Buick Special с 90-градусным V6, разработанным на основе небольшой V-образной «восьмёрки», но он отличался высоким уровнем вибраций и вскоре был снят с производства.

Одним из первых полностью перешёл на V-образные шестицилиндровые моторы (двух семейств — Cologne и Essex, в зависимости от места разработки — ФРГ или Великобритании) европейский филиал «Форда»: с 1965…66 годов они постепенно вытеснили ранее использовавшиеся на наиболее крупных европейских моделях этой марки рядные шестёрки (первоначально европейский «Форд» также повсеместно заменил на своих автомобилях рядные четвёрки на моторы конфигурации V4, принадлежавшие к тем же семействам, что и V6, но впоследствии отказался от них — в то время, как V6 упомянутых выше семейств дожили до 2000-х годов). При этом американский «Форд» оставался крайне консервативен в выборе типов силовых агрегатов, начав выпуск собственных V6 (на основе разработок британского филиала) лишь в начале 1980-х годов (на пике бензинового кризиса рубежа 1970-х — 1980-х годов).

Первый серийный японский V6 появился только в 1983 году у фирмы Nissan — серия Nissan VG, затем более продвинутым японским V6 стал мотор серии 6G от Mitsubishi, появившийся в 1986 году, примечатлен он тем, что устанавливался он на самый дорогой спорткар этой компании Mitsubishi 3000GT и в турбоверсии выдавал аж 320 лошадиных сил, нося индекс 6G72TT.

Использование в автомобилях[править | править код]

V6 — один из самых компактных двигателей, он обычно короче, чем I4, и в большинстве исполнений у́же и короче, чем V8.

В современных[когда?]переднеприводных автомобилях с поперечным расположением двигателя по компоновочным соображениям как правило невозможна установка рядных шестицилиндровых двигателей, что, при повышенных требованиях к мощности в наши дни, обуславливает популярность V-образных шестицилиндровых моторов на автомобилях более высоких классов, несмотря на малую сбалансированность и сложность в производстве в сравнении с I6. Унификация двигателей различных автомобилей приводит к тому, что V6 устанавливают и в машинах с продольным расположением двигателя, в которых, в принципе, нет строгой компоновочной необходимости его применения, — хотя оно и даёт ряд преимуществ. Вместе с тем, на автомобилях того же класса с задним приводом, вроде 5-й серии BMW, всё ещё довольно широко распространены и рядные «шестёрки».

Из советских двигателей серийными V6 были только дизели большого рабочего объёма для грузовиков, и спецтехники: ЯМЗ-236 и СМД-60. Трёхлитровый V6 моделей ГАЗ-24-14 и ГАЗ-24-18 планировался в качестве базового двигателя легкового автомобиля «Волга» ГАЗ-24, но впоследствии в силу целого ряда причин был заменён на рядный четырёхцилиндровый. Однако, была выпущена опытно-промышленная партия этих двигателей, которые использовались на ряде спортивных автомобилей, в частности, на одном из серии «Эстония».

Другим направлением развития является VR-технология, которая зародилась в 1920-е годы, когда компания Lancia выпустила семейство V-образных моторов с очень маленьким углом развала цилиндров (всего 10—20°). «VR» представляет собой аббревиатуру двух немецких слов, обозначающих V-образный и R-рядный, т. е. «v-образно-рядный».[3]

Двигатель представляет собой симбиоз V-образного двигателя с минимально малым углом развала 15° и рядного двигателя, в котором шесть цилиндров расположены V-образно под углом 15°, в отличие от традиционных V-образных двигателей, имеющих угол 60° или 90°. Поршни в блоке размещаются в шахматном порядке.

Двигатель никак не наследует сбалансированность R6[4], но имеет лучшую компактность в сравнении с V6 и R6. Совокупность достоинств обоих типов двигателей привела к тому, что двигатель VR6 стал настолько компактным, что позволил накрыть оба ряда цилиндров одной общей головкой, в отличие от обычного V6. В результате двигатель VR6 получился значительно меньшим по длине, чем R6, и по ширине, чем обычный V6[3].

Рабочий объём варьируется как правило от 2,0 до 5,0 л. Использование конфигурации в двигателях объёмом меньше 2,0 л мало оправдано из-за относительно высокой стоимости изготовления (по сравнению с четырёхцилиндровыми двигателями) и большой (в сравнении с ними же) длины. Однако, подобные случаи имели место, например, мотоцикл Benelli 750 Sei имел двигатель I6 с рабочим объёмом всего 0,75 л.

В настоящее время технология возрождена концерном Volkswagen, который выпустил шестицилиндровые двигатели компоновки VR6. Ставился с 1991 года (1992 модельный) на автомобили Volkswagen Passat, Golf, Corrado, Sharan. Имеет заводские индексы «AAA» объёмом 2,8 литра, мощностью 174 л/с и «ABV» объёмом 2,9 литра и мощностью 192 л/с.

Имеет два ряда по три цилиндра, которые расположены под углом 180°, причём противостоящие поршни двигаются зеркально (одновременно достигают верхней мёртвой точки). Такой двигатель хорошо уравновешен и имеет малую высоту и низкий центр тяжести, но при этом он довольно широкий. Используется на некоторых автомобилях («Порше», «Субару») и мотоциклах («Хонда Голд Винг»).[источник не указан 493 дня]

  • Nunney, M J. Light and Heavy Vehicle Technology.

Отправить ответ

avatar
  Подписаться  
Уведомление о