Принцип работы стояночной тормозной системы – Стояночный тормоз: устройство и принцип работы

Содержание

Стояночный тормоз, устройство и механизм ручного тормоза

С момента времени Х, когда заурчал двигателем первый, пока экспериментальный, прототип автомобиля, конструкторская мысль непрестанно двигалась вперед, воплощаясь в металле, пластмассе или в пластинках кремния. Шла черепашьим шагом, летела, как птица, но только вперед, придавая нашим любимцам такой привычный и узнаваемый вид.Виды стояночного тормоза

Виды стояночного тормоза

Герой сегодняшней статьи, стояночный тормоз, так же претерпел ряд кардинальных изменений, приобрел «интеллект», а сложностью конструкции превосходит станки с ЧПУ, собиравшие автомобили в середине 70-х годов двадцатого столетия.

Сколько в автомобиле тормозных систем

Три. И все они обеспечивают функции изменения скорости движения автомобиля, остановку и удержания на месте, используя силу трения и реакции опоры между колесом и материалом дорожного покрытия. Итак, разновидности тормозных систем:

Рабочая — обеспечивает управляемое снижение скорости движения автомобиля, при необходимости вплоть до остановки. Состоит из привода для передачи усилия и тормозного механизма. Он бывает, как правило, фрикционного типа, устанавливается в колесе и делится на два типа, барабанный и дисковый. Система привода и передачи усилия так же разделяется на несколько видов:

  • Механический привод
  • Гидравлический
  • Электрический
  • Пневматический

Первые три вида приводов будут детально рассмотрены в дальнейшем материале статьи.Виды ручника

Виды ручника

Запасная — выполняет функции рабочей, при ее полном или частичном отказе. Конструктивно может представлять собой автономный узел или быть частью основной системы. Использует механизмы рабочей системы.

Стояночная — известная больше как ручной тормоз, служит для длительного удержания авто на месте, препятствует скатыванию по наклонной поверхности. При вождении транспортного средства используется для начала движения по наклонной поверхности вверх. Использует элементы рабочей.

Как это работает

Принцип работы стояночного тормоза легче всего пояснить на примере системы с механическим приводом.
Механический ручной тормоз представляет собой систему из управляющего рычага, посредством тяг и системы тросов связанного с фрикционными механизмами колес.

Рычаг ручного тормоза, оснащенный храповым колесом для фиксации в рабочем положении, передает усилие на систему из одного, двух или трех тросов, соединенных с тормозным механизмом задних колес транспортного средства. Наибольшей популярностью пользуется схема с использованием трех тросов, одного центрального и двух боковых. Для обеспечения равного усилия на тормозных механизмах правого и левого колеса, центральный трос соединен с боковыми через специальную деталь сложной формы, так называемый уравнитель.Устройство механического ручника

Устройство механического ручника

Элементы стояночного тормоза соединены с тросами посредством регулируемых наконечников. Такая схема позволяет производить подстройку системы без трудоемкой замены основных элементов привода.

Рычаги фрикционных механизмов, связанные с тросами, разводят тормозные колодки, прижимая их к поверхности барабана. Разблокировать стояночный тормоз, или снять автомобиль с ручника, можно опустив рычаг механического привода. Возвратное устройство вернет колодки в первоначальное положение и освободит тормозной барабан.

Просмотр небольшого видеоролика позволит яснее понять принцип работы стояночного тормоза.

Историческая справка. Барабанные тормоза были изобретены французским инженером Луи Рено в 1902 году. До 1930-х годов использовалась схема, в которой колодки разводились при помощи системы рычагов, позднее стали использовать небольшие по размеру тормозные цилиндры. Устройство барабанного тормоза подразумевает быстрый износ колодок, и до изобретения в 1950-х годах саморегулирующегося механизма, система требовала постоянной подстройки. С 1970-ого года на передние колеса легковых автомобилей устанавливают дисковые тормоза. На задние – как правило, барабанные, поскольку стояночный тормоз наиболее эффективно работает именно с этим видом фрикционных механизмов.

Тюнинг гидравлической системы

Гидравлический привод используется в большинстве современных машин. Простое и надежное устройство, минимум сложных и ломких деталей, позволяют оставаться в строю даже в век электронных вычислительных и управляющих блоков, заменивших многие механические элементы в конструкции автомобиля.
Простая схема включает в себя:

  1. главный тормозной цилиндр;
  2. расширительный бачок;
  3. регулятор давления;
  4. два тормозных контура, для передних и задних колес транспорта.

При нажатии на педаль, в системе создается давление, передающееся на тормозные цилиндры, расположенные в колесах, которые прижимают колодки к поверхности дисков или барабанов. Разблокировка при снятии давления выполняется при помощи возвратного механизма.

Схема работы гидравлического ручника станет яснее после просмотра следующего видео.


Многие автолюбители, недовольные тем, как работает механический привод стояночного тормоза, решаются на модификацию основной тормозной системы. Гидравлический ручной тормоз устанавливается на контур, обслуживающий механизмы задних колес. Все элементы механического привода безжалостно удаляются.

По внешнему виду ручной тормоз, используемый для проведения модификации, практически не отличается от механического «собрата». Та же рукоять с кнопкой разблокировки, тот же храповой механизм, но вместо центрального троса – гидроцилиндр, мало чем отличающийся от ГТЦ основной системы.

Внешний вид ручного гидравлического тормоза.
гидравлический ручной тормоз

гидравлический ручной тормоз
Теперь давление в тормозном контуре, отвечающем за задние колеса автомобиля можно создать не только совместно с передним контуром, как происходит при штатном срабатывании основной системы, но и затянув рукоять ручного стояночного тормоза.

Схема установки ручного тормоза в гидравлическую систему автомобиля ВАЗ.
схема тормозной системы ваз

схема тормозной системы ваз
Основное преимущество модификации такого рода заключается в простоте обслуживания. Гидравлический привод стояночного тормоза работает без уравнителя усилий на правом и левом колесе. Согласно закону Паскаля, описывающему поведение жидкости в сообщающихся сосудах, давление во всех точках тормозного контура будет одинаковым.

Основной недостаток – снижение надежности системы в целом. Механический привод стояночного тормоза работал независимо от гидравлической рабочей тормозной системы. Теперь же, пробой контура и потеря жидкости, грозит оставить автомобиль без средств экстренной остановки.

Электромеханический стояночный тормоз

Развитие электронно-вычислительных систем и активное использование бортовых компьютеров в автомобилестроении привело к замене многих механических элементов блоками с программным управлением. Не обошло стороной это нововведение и тормозную систему. Электрический, или как его еще называют, электронный стояночный тормоз представляет собой автономный узел, работающий под управлением бортового компьютера автомобиля.

Конструктивно данное устройство состоит из электродвигателя, ременной передачи, планетарного редуктора и винтового привода. Электрический стояночный тормоз устанавливается на суппорте задних колес автомобиля.

При подаче управляющего сигнала электродвигатель посредством ременной передачи сообщает вращательное движение планетарному редуктору. Последний, снизив частоту оборотов электродвигателя, воздействует на винтовой механизм, отвечающий за прижатие колодок к тормозному диску.

Электронный привод стояночного тормоза. Схема исполнительной части.
электронный привод стояночного тормоза

электронный привод стояночного тормоза
Электромеханический стояночный тормоз включает в себя:
  • входные датчики;
  • электронный блок управления.

Датчик уклона информирует бортовой компьютер о положении автомобиля относительно линии горизонта, датчик сцепления фиксирует положение педали и скорость ее отпускания.

При нажатии кнопки включения, расположенной на передней панели автомобиля, электрический привод стояночного тормоза, воздействуя на прижимной винт, притягивает колодки к тормозному диску. Электрический стояночный тормоз отключается автоматически, при нажатии на педаль акселератора. Предусмотрен и «ручной» режим снятия – при нажатии на педаль тормоза.

При отключении тормоза электронный блок управления анализирует угол наклона автомобиля, положение педали акселератора и скорость отпускания сцепления. Эти данные помогают выбрать правильное время для разблокировки тормозных дисков, что создает исключительно комфортные условия вождения.

Схема включения электромеханической тормозной системы в бортовую управляющую сеть современного автомобиля.
электромеханическая томозная система

электромеханическая томозная система

Общие рекомендации при использовании стояночного тормоза

Не следует оставлять автомобиль на продолжительное, более двух недель, время на стояночном тормозе. На влажном воздухе тормозные колодки могут «прикипеть» к дискам или барабану, полностью обездвижив машину. Такая же ситуация может случиться в холодное время года. Осевшая на тормозных механизмах влага может препятствовать нормальной работе системы.

Следует не реже раза в месяц проводить проверку работоспособности ручника. Особенно это касается автомобилей с механическим приводом стояночного тормоза. Тросы, передающие усилие, могут растянуться, что приведет к крайне неприятным последствиям.

znanieavto.ru

Тормозная система

Работа тормозной системы непосредственно влияет на безопасность движения, поэтому обслуживание тормозной системы автомобиля залог правильной эксплуатации транспортного средства.

Ремонт систем и узлов автомобиля всегда сопровождается планированием ремонта, который зависит от различных факторов. Тем более если вы хотите, чтобы ваш ремонт был экономически целесообразен, нужно понимать, что разборка стоит денег, поэтому важно заменить все узлы и детали системы, ресурс которых на подходе. В данный момент мы рассматриваем тормозную систему, поэтому при замене тормозных колодок мы обращаем внимание на тормозные диски.

Сроки замены тормозных дисков или протачивание тормозных дисков

Обычно, износ тормозных дисков сопоставим по времени с износом двух пар колодок, это если говорить образно, учитывая, что эксплуатация автомобиля имела постоянный характер. Если характер движения меняется, в процессе эксплуатации появляются элементы интенсивной езды, может наступить преждевременный износ дисков.

diskis


Некоторые умудряются «убить» тормозные диски при спокойной езде. Для этого достаточно попасть в лужу после интенсивного торможения. В этом случае вода и влага попадет на чугунный диск, соответственно перепад температур сделает свое дело, на рабочих поверхностях диска со временем появятся элементы коробления, что в итоге будет передаваться на рулевое колесо и педаль тормоза.

Материалы изготовления тормозных дисков

Самым распространенным материалом для изготовления тормозных дисков является чугун. У чугунных тормозных дисков есть свои недостатки: на чугун сильно влияют какие-либо перепады температур, что приводит к изменению внутренней структуры чугуна и характеристик материала (твердость).

На рынке есть альтернативные варианты, такие как тормозные диски из композитных или керамических материалов, но их стоимость существенно выше.

Как узнать, что надо менять тормозные диски?

Во время замены тормозных колодок нужно внимательно осмотреть поверхность тормозного диска на наличие повреждений и трещин. Следует визуально и если требуется приборным методом измерить толщину тормозного диска, которая должна быть не меньше 50 % от номинала. Выход износа тормозного диска за допустимые параметры является показанием к их замене.

Чтобы узнать, нужно ли менять тормозные диски, следует обратить внимание на лишние вибрации на рулевом колесе и педали тормоза. Если при торможении возникает какая-либо вибрация, проведите эксперимент – отпустите педаль тормоза, если вибрация уйдет, меняйте тормозные диски. Есть некая альтернатива замене дисков (в определенных случаях) – протачивание тормозных дисков.


Протачивание тормозных дисков: за и против

Если на поверхности тормозного диска образовалась выработка в виде местного коробления, альтернативой к замене тормозных дисков будет протачивание тормозных дисков. Протачивание тормозных дисков проводится при не сильном износе диска по толщине. Это объясняется тем, что слишком тонкий тормозной диск очень плохо переносит тепловую нагрузку, что может привести к полному его разрушению. Поэтому перед тем, как протачивать тормозные диски проводят замеры толщины диска, степени коррозии и величины биения тормозного диска.

Что лучше проточить или заменить тормозной диск

Конечно стоимость проточки тормозных дисков ниже, чем стоимость замены тормозных дисков. Главное, чтобы толщина диска позволяла проводить операцию по расточке. При этом, чтобы избежать тормозного дисбаланса, следует протачивать оба тормозных диска и не забудьте заменить тормозные колодки. Старые тормозные колодки будут негативно влиять на проточенные тормозные диски.

Проточка передних тормозных дисков с заменой колодок будет варьироваться от 30 до 50 долларов.

Стоимость оригинальных тормозных дисков от 60 до 120 долларов.

Чтобы определится, что лучше покупать новые тормозные диски или проточить оригинальные тормозные диски, следует понимать, что заводские тормозные диски намного надежнее. Поэтому лучше искать оригинальные запчасти, а если финансы не позволяют, лучше проточить заводские тормозные диски.

www.autoezda.com

Стояночный тормоз с электроприводом | Стояночный тормоз

Общая компоновка стояночного тормоза с электроприводом показана на рисунке.

Общая компоновка стояночного тормоза с электроприводом

Рис. Общая компоновка стояночного тормоза с электроприводом:
1 – тормозной диск; 2 – тормозная колодка; 3 – подвижная скоба; 4 – редуктор; 5 – электродвигатель; 6 – подвод электроэнергии; 7 – шестерня электродвигателя; 8 – электродвигатель; 9 – ведущая шестерня привода; 10 – качающаяся шестерня; 11 – ведомая шестерня электропривода

Включение и выключение стояночного тормоза производится посредством специального выключателя. Снятие с тормоза производится нажатием движка выключателя при одновременном воздействии на педаль тормоза или акселератора.

Стояночный тормоз можно привести в действие также при выключенном зажигании, если потянуть на себя движок его выключателя. Снятие автомобиля с тормоза осуществляется только при включенном зажигании.

Принцип действия стояночного тормоза с электроприводом

Для выполнения основной функции стояночного тормоза необходимо преобразовать вращение вала электродвигателя в небольшое поступательное движение поршня тормозного механизма. Это достигается применением редуктора 4 с качающейся шестерней в сочетании с винтовой передачей.

В приводе реализовано трехступенчатое снижение частоты вращения. Первая ступень образована передачей зубчатым ремнем, связывающей электродвигатель с редуктором (с передаточным отношением 1:3). Вторая ступень – с помощью редуктора с качающейся шестерней (с передаточным отношением 1:50). Вследствие применения двойного редуктора частота вращения выходного вала редуктора в 150 раз меньше частоты вращения вала электродвигателя.

На ведущем валу редуктора установлена жестко связанная с ним качающаяся коническая шестерня 4. Ось вращения этой шестерни пересекает ось ведущего вала редуктора под углом, поэтому при вращении ведущего вала шестерня совершает круговое качательное движение. Качающаяся шестерня вращается на ступице ведущей шестерни привода и снабжена двумя поводками 2 и 5, которые входят в направляющие пазы корпуса редуктора, которые не допускают ее вращения относительно корпуса редуктора, поэтому она качается, не вращаясь.

Редуктор с качающейся шестерней

Рис. Редуктор с качающейся шестерней:
1 – ведомый вал; 2,5 – поводок; 3 – ведущая шестерня привода; 4 – качающаяся шестерня; 6 – ведомая шестерня

Kачающаяся шестерня имеет 51 зуб, а на ведомой шестерне предусмотрено 50 зубьев. Из-за этой так называемой «ошибки шага» зуб качающейся шестерни всегда прижимается к боковой поверхности зуба ведомой шестерни и никогда не попадает точно в проем между зубьями.

Зацепление качающееся шестерни с ведомой шестерней

Рис. Зацепление качающееся шестерни с ведомой шестерней

При вращении ведущего вала редуктора постоянно находятся в зацеплении два зуба качающейся шестерни с двумя зубьями ведомой шестерни. При повороте ведущего вала на пол-оборота входит в зацепление другая пара зубьев. В этом положении зуб качающейся шестерни входит в зацепление с зубом ведомой шестерни, взаимодействуя с его боковой поверхностью. В результате этого, при повороте ведущего вала на пол-оборота при каждом качании ведущей шестерни, ведомая шестерня и вместе с ней ходовой винт поворачиваются на очень маленький угол, соответствующий половине ширины зуба, что позволяет производить плавное торможение.

Принцип работы редуктора с качающейся шестерней

Рис. Принцип работы редуктора с качающейся шестерней:
1,5 – ведомый вал; 2 – ступица; 3 – наклон ступицы; 4,6 – находящиеся в зацеплении зубья качающейся и ведомой шестерни

Преобразование вращательного движения в поступательное движение производится посредством ходового винта 3, связанного с поршнем тормозного механизма 5. Ходовой винт приводится непосредственно от редуктора с качающейся шестерней. В полости поршня тормоза расположен цилиндр 6. В утолщение головной части цилиндра запрессована нажимная гайка 2. Нажимная гайка и связанный с ней цилиндр могут свободно скользить вдоль поршня тормозного механизма, не вращаясь относительно него. Вращение гайки невозможно ввиду специальной формы внутренней поверхности поршня, взаимодействующей с фигурной поверхностью нажимной гайки.

Число оборотов вала электродвигателя определяется посредством датчика Холла. Благодаря этому блок управления может вычислить ход поршня.

При затяжке стояночного тормоза вращение ходового винта 3 преобразуется в поступательное движение нажимной гайки связанной с цилиндром 6, который упирается в поршень тормозного механизма и прижимает через него колодки к тормозному диску. При этом происходит деформация уплотнительного кольца поршня 7 в направлении к колодкам. По мере повышения усилия прижима колодок к тормозному диску возрастает потребления тока электродвигателем. Блок управления электромеханическим стояночным тормозом контролирует в течение всего процесса затяжки тормоза величину потребляемого тока и при достижении этим током определенной величины выключает электродвигатели.

Резьба винта является самотормозящей. Благодаря этому после сведения тормозных колодок и прекращения подачи напряжения на электромотор тормоз остается затянутым.

При снятии с тормоза гайка перемещается по ходовому винту назад вследствие вращения ходового винта в обратном направлении. Давление на цилиндр прекращается. Поршень отходит от тормозного диска под действием упругих сил уплотнения уплотнительного кольца 7 стремящегося занять исходное положение и биения тормозного диска. При этом колодки также отходят от тормозного диска.

Схема работы стояночного тормозного механизма с электроприводом

Рис. Схема работы стояночного тормозного механизма с электроприводом:
1 ­­– тормозной диск; 2 – нажимная гайка; 3 – ходовой винт; 4 – редуктор; 5 – поршень тормозного механизма; 6 – цилиндр; 7 – уплотнительное кольцо; а – затяжка тормоза; б – снятие с тормоза

Зазоры в приводе стояночного тормоза определяются периодически при стоянке автомобиля. Они регулируются автоматически, если при пробеге очередных 1000 км стояночный тормоз не приводился в действие ни одного раза. Для этого тормозные колодки перемещаются из их исходного положения до упора в тормозной диск. Блок управления стояночным тормозом определяет величину хода колодок по величине тока, потребляемого электромотором, и производит компенсацию износа колодок.

Действие стояночного тормоза прекращается автоматически, если водитель закрыл дверь, пристегнул ремень безопасности, запустил двигатель и нажал на педаль акселератора, чтобы привести автомобиль в движение. При этом момент выключения тормоза зависит от угла продольного наклона автомобиля и крутящего момента двигателя.

Применение стояночного тормозного механизма с электроприводом позволяет осуществлять плавное трогание с места и скатывание автомобиля назад на уклоне при неумелых действиях водителя.

На момент выключения стояночного тормоза влияют следующие параметры:

  • угол наклона автомобиля, определяемый с помощью датчика продольного ускорения, встроенного в блок управления стояночным тормозом
  • крутящий момент двигателя
  • положение педали акселератора
  • степень выключения сцепления, определяемая у автомобилей с механической коробкой передач по сигналу датчика положения педали сцепления
  • желаемое направление движения автомобиля, определяемое по положению селектора АКП или по сигналу, получаемому с выключателя фонарей заднего хода

Скатывание автомобиля назад при этом исключается, так как стояночный тормоз отпускается только при условии, если передаваемый на колеса крутящий момент превышает его расчетное значение, соответствующее углу подъема дороги. Если крутящий момент двигателя превышает расчетное значение, блок управления включает электромеханические приводы обеих задних тормозных механизмов.

Использование стояночного тормозного механизма с электроприводом позволяет отказаться от частого включения его, например, при остановках на светофорах.

В случае неисправности привода служебного тормоза автомобиль можно затормозить посредством системы динамического управления тормозами. Функция аварийного торможения действует как при включенном, так и выключенном зажигании. Если нажать и удерживать клавишу выключателя электромеханического стояночного тормоза при движении автомобиля, он будет заторможен с замедлением приблизительно 6 м/с2. При этом раздается звуковой сигнал и зажигаются сигналы торможения. При скорости автомобиля свыше 7 км/ч система динамического управления производит торможение повышением давления тормозной жидкости во всех четырех рабочих цилиндрах. При этом подключается система ABS/ESP, которая обеспечивает торможение автомобиля без заноса. Если скорость автомобиля не превышает 7 км/ч, нажим и удерживание клавиши выключателя стояночного тормоза вызывает торможение автомобиля посредством электромеханических приводов тормозных механизмов (подобно затягиванию стояночного тормоза на стоянке). Если необходимо прервать аварийное торможение при движении автомобиля со скоростью более 7 км/ч, достаточно отпустить клавишу выключателя стояночного тормоза или нажать педаль акселератора.

ustroistvo-avtomobilya.ru

Стояночный тормоз винт-гайка | Стояночный тормоз

Такие тормозные механизмы для стояночного тормоза применяются в ряде зарубежных автомобилей. Ниже приводится конструкция и принцип работы стояночного тормоза, применяемого на автомобилях Вольво.

При подъеме рычага стояночного (ручного) тормоза трос перемещается относительно оплетки, опирающейся на кронштейн 9 и за рычаг 8 поворачивает вокруг оси вал 7, на другом конце которого расположена пластина 6 с тремя коническими гнездами переменной глубины. В каждом гнезде находится шарик 11. Вместе с кольцом 10 эти детали образуют механизм, который при проворачивании за­ставляет вал 7 перемещаться в осевом направлении. Конические гнезда выполнены так, что первоначально большое, по отношению к вращательному, осевое перемещение, становится малым тем самым увеличивая передава­емое усилие. Осевое перемещение вала 7 передается на головку винта 5, который, сжи­вая пружину 12, через гайку 4 передает усилие поршню 3, смонтированному в плаваю­щей скобе 13, и вместе со скобой, действуя через тормозные колодки 2, зажимает тор­мозной диск 1.

Эффект саморегулирования стояночного тормоза происходит за счет то­го, что по мере износа пары «тормозные колодки — тормозной диск» появляется увели­ченный зазор и, не встречая сопротивления, вал 7 проворачивает винт 5 относительно гайки 4, что приводит к уменьшению зазора между тормозными колодками и диском. Пара «винт-гайка» (поз. 5 и 4) имеет люфт в резьбовом соединении, что позволяет тор­мозному механизму освободить тормозной диск, когда стояночный тормоз не задейст­вован.
Механизм стояночного тормоза

Рис. Механизм стояночного тормоза:
1 – тормозной диск; 2 – тормозные колодки; 3 – поршень; 4 – гайка; 5 – винт; 6 – пластина; 7 – вал; 8 – рычаг; 9 – кронштейн; 10 – кольцо; 11 – шарик; 12  пружина; 13 – плавающая скоба

Привод стояночного тормоза осуществляется обычно через трос его натяжением рукой от рукоятки рычага, однако некоторые автомобили могут иметь ножное педальное управление стояночным тормозом. Примером может служить автомобиль Фаэтон фирмы Фольксваген.

Привод троса педального управления состоит из педали, барабана, тросов торможения и растормаживания, петлевой пружины.

Прилагаемая к педали сила передается тросом на уравнитель, расположенный под днищем автомобиля. Уравнитель распределяет приводное усилие между двумя тросами, приводящими в действие задние тормозные механизмы.
Привод тросового стояночного тормоза барабанного типа

Рис. Привод тросового стояночного тормоза барабанного типа:
1 – педаль стояночного тормоза; 2 – барабан; 3 – петлевая пружина; 4 – крепление наконечника троса; 5 – пластмассовая пружина; 6 – трос торможения; 7 – трос растормаживания; а – затормаживание; б — растормаживание

При нажатии на педаль тормоза петлевая пружина прижимается к барабану, увеличивая силы трения о него и противодействуя перемещению педали в обратном затяжке тормоза направлении.  В результате производится практически бесступенчатое и бесшумное фиксирование педали. Нажатие на тормозную педаль вызывает поворот барабана и натяжение троса торможения.

Чтобы разблокировать стояночный тормоз, необходимо рукой нажать на специальный рычаг. При нажатии на рычаг устройства растормаживания наконечник его троса подтягивается вверх. В результате петлевая пружина разжимается, освобождая при этом барабан, и педаль возвращается в исходное положение. Этот принцип позволяет производить растормаживание с минимальными усилиями.
Схема работы петлевой пружины

Рис. Схема работы петлевой пружины:
а – затяжка тормоза; б — растормаживание

Педальное управление может быть и сегментного типа. Педаль 1 стояночного тормоза соединена с тросом через зубчатую рейку 9. Одна сторона зубчатой рейки жестко связана с тросом 13. Зубчатая рейка ходит в направляющем рычаге 8, который шарнирно соединен с зубчатым сегментом 3. Направляющий рычаг прижимается к зубчатой рейке под действием нажимной пружины 7 и стопорит рейку на педали стояночного тормоза. Этим обеспечивается жесткая связь между педалью и тросом.

При нажатии педаль приводит трос стояночного тормоза 13. В нажатом состоянии педаль фиксируется храповиком 4, который входит в зацепление с зубчатым сегментом 3, неподвижно соединенным с педалью. Храповик подвижно закреплен на кронштейне педали и прижимается к зубчатому сегменту пружиной. При зафиксированной педали приводной трос остается натянутым. Через разжимной механизм натянутый трос прижимает обе колодки стояночного тормоза к тормозному барабану и автомобиль удерживается стояночным тормозом.

При нажатии на рукоятку разблокировки 1 подпружиненный храповик 4 фиксации педали отжимается рычагом разблокировки 18. При этом он выходит из зацепления с зубчатым сегментом,  разблокируя педаль. Благодаря демпфирующему действию газового упорного амортизатора, педаль плавно возвращается в исходное положение. Приводной трос ослабляется и выключает стояночный тормоз.
Привод тросового стояночного тормоза сегментного типа

Рис. Привод тросового стояночного тормоза сегментного типа:
1 – рукоятка разблокировки; 2 – трос разблокировки; 3 – зубчатый сегмент; 4 – храповик; 5 – ось храповика; 6 – регулировочная пружина; 7 – нажимная пружина; 8 – направляющий рычаг; 9 – зубчатая рейка; 10, 14 – кронштейн педали; 11 – стояночный тормоз барабанного типа; 12 –  упор; 13 – трос стояночного тормоза в оболочке; 15 – ось педали; 16 – газовый упорный амортизатор; 17 – педаль; 18 – рычаг разблокировки

Постепенное растяжение троса и износ шарнирных соединений вызывают прогрессирующий люфт в приводе стояночного тормоза. Поэтому для нормальной работы привод нуждается в регулировке. В данной конструкции стояночного тормоза предусмотрена автоматическая регулировка. Механизм регулировки неподвижно закреплен между педалью стояночного тормоза и тросом. Принцип регулировки заключается в следующем. При отжимании рычага разблокировки 18 педаль стояночного тормоза 17 возвращается в исходное положение. При этом направляющий рычаг 8 прижимается к упору 12. Двигаясь дальше, направляющий рычаг преодолевает сопротивление нажимной пружины 7, отжимается вверх и освобождает зубчатую рейку 9. Под действием регулировочной пружины 6 зубчатая рейка поднимается вверх ровно настолько, насколько это необходимо для того, чтобы компенсировать люфт. При очередном нажатии на педаль стояночного тормоза нажимная пружина 7 снова прижимает направляющий рычаг 8 к зубчатой рейке 9, и она стопорится.

ustroistvo-avtomobilya.ru

Стояночная тормозная система — Энциклопедия журнала "За рулем"

Стояночный тормоз предназначен для затормаживания автомобиля на стоянках и удержания его на уклонах.

Стояночный тормоз также называют ручным или парковочным тормозом, а в шоферской среде - ручником. Даже в том случае, если он приводится не рычагом, а педалью.

Стояночный тормоз нужен для парковки, особенно если площадка с уклоном; для длительной стоянки с работающим двигателем и при трогании на подъеме. Кроме того, стояночным тормозом можно остановить автомобиль в случае отказа главной тормозной системы.

На некоторых автомобилях стояночный тормоз действует на трансмиссию, а не на тормозные механизмы колес. Как правило, такая конструкция встречается на внедорожниках и грузовиках. Раньше практиковался способ, при котором стояночный тормоз блокирует вращение карданного вала. Например, такой тормоз применялся на "Волге" ГАЗ-21. По терминологии тех лет, такой тормоз назывался "центральным". На современных автомобилях практически не используется.

Стояночная тормозная система обычно приводится в действие от рычага (рукоятки) рукой водителя. Иногда стояночная система приводится в действие ногой от специальной педали. Удержание транспортного средства на уклоне должно производиться как на участке подъема так и участка спуска дороги. Стояночная система должна удерживать автомобиль или прицеп (полуприцеп) на уклоне определенной величины неограниченно долгое время. В связи с этим использование, например, гидравлики или пневматики в тормозных механизмах стояночной системы невозможно из-за опасности утечки жидкости или воздуха с течением времени. Привод тормозных механизмов стояночной системы у современных транспортных средств может быть механическим, от рычага (педали) через тросы (тяги) и рычаги, электрическим, пневматическим и т. д.
Для обеспечения тормозной эффективности достаточно использовать тормозные механизмы наиболее нагруженной оси или нескольких осей транспортного средства. Обычно для этой цели используют заднюю ось или заднюю тележку грузового автомобиля или автобуса, заднюю ось или две задние оси соответственно двух- или трехосного полуприцепа. На легковых автомобилях и прицепах нагрузка на переднюю и заднюю оси распределяется почти одинаково. Поэтому у них стояночная система обычно выполнена с использованием задних, неуправляемых колес, что конструктивно несколько проще. Хотя принципиально возможна и технически реализована некоторыми фирмами стояночная тормозная система на передних колесах легкового автомобиля (например, некоторые автомобили Citroen).
В последнее время появились конструкции стояночного тормоза с электрическим приводом.

Механический стояночный тормоз
Электрический стояночный тормоз

wiki.zr.ru

виды, устройство и принцип работы

Если говорить о безопасности в автомобиле, сложно представить что-то более важное, чем хорошие тормоза. Всё остальное тоже важно, никто не спорит:на плохом двигателе далеко не уедешь, на плохих амортизаторах особо не расслабишься, но нормальная, исправная тормозная система автомобиля – это то, с чего вообще нужно начинать разговор о вождении.

Учитывая, что от тормозов буквально зависит человеческая жизнь, инженеры постарались сделать эту систему как можно более надежной. Что же там, под средней педалью?

Тормозная система автомобиля

 

Классификация тормозных систем автомобиля по назначению, устройство

Когда-то можно было обойтись одним видом тормозов. Но автоконструкторы постоянно искали возможности улучшить их конструкцию, и на сегодняшний день мы имеем различные виды тормозных систем, отличающиеся по назначению, принципу работы и техническому исполнению.

Рабочая (основная)

Рабочая тормозная система

Да, учитывая, что именно ей мы обязаны жизнью и безопасностью, рабочая тормозная система по праву стоит на первом месте. Это те тормоза, которыми водитель управляет во время движения: они позволяют замедлить или остановить транспортное средство. Рабочая тормозная система соединена с системой ABS (антиблокировочной), которая помогает маневрировать в критической дорожной ситуации.

Стояночная

Стояночная тормозная система: (1 — регулятор давления; 2 — тормозной механизм заднего колеса; 3 — кожух полуоси заднего моста с кронштейном регулятора давления; 4 — индикатор стояночного тормоза; 5 — рычаг стояночного тормоза; 6 — выключатель индикатора; 7 — уравниватель; 8 — тросы.)

Назначение стояночного тормоза понятно из названия: фиксировать автомобиль на долгое время, чтобы он не покатился с горочки в отсутствие хозяина. В отличие от основной системы, стояночная предназначена для длительного включения без последствий для работоспособности.
Стояночный тормоз может выручить и в том случае, когда основные тормоза по какой-то причине не работают (такое бывает редко, но бывает). Как минимум, она поможет остановиться не в ближайшем столбе.

Запасная

Резервная, она же запасная, она же аварийная – специальная тормозная система, которая предназначена для страховки в случае отказа основных тормозов. Она может устанавливаться отдельно, может быть конструктивным элементом основных тормозов, а может и вообще отсутствовать в автомобиле. Если запасного тормоза нет, в случае чего придется спасаться стояночным, он поможет.

Вспомогательная

Ее называют еще горной, по основному назначению. Ставится вспомогательный тормоз в грузовые автомобили, и применяется в условиях, когда нужно постоянно оттормаживаться в течение долгого времени. Типичный пример – езда по горным дорогам с грузом. Обычные тормоза в таких условиях перегреваются, поэтому водители пользуются вспомогательными.

Классификация тормозных систем автомобиля по типу привода, устройство

Один человек, даже очень сильный, не может приложить достаточное усилие на тормоза, чтобы остановить машину. Для умножения и передачи усилия используется привод тормозной системы. Типы приводов бывают разные:

Механический

Типичный пример – стояночный тормоз, у которого в качестве привода трос и рычаги. Этой системе столько лет, сколько самому автомобилю, но ничего более простого и безотказного пока что инженеры не придумали.

Гидравлический

Тормоза с гидравликой есть у любого легкового автомобиля, это самая привычная нам система. Можно сказать, гидравлика сочетает в себе эффективность и доступность: работает отлично, обслуживать достаточно легко, комплектующие есть в любом магазине автотоваров. Гидравлические тормоза делятся по типу тормозных элементов на дисковые и барабанные.

  1. Дисковый тормоз.
    Эффективно? Да. Надежно? Да. Дисковые тормоза в свое время стали фурором в автоспорте, а затем и в повседневной жизни. По эффективности она сразу же превзошли привычные тогда тормозные барабаны. Устройство дисковых тормозов

    Принцип работы дискового тормоза знает любой водитель: фрикционные накладки расположены по обе стороны стального диска, который надет на ступицу колеса и вращается вместе с ней. Нажатие на педаль тормоза приводит в действие привод, накладки зажимают диск и останавливают его, а вместе с ним и автомобиль.

  2. Барабанный тормоз.
    В отличие от дискового тормоза, в барабанном фрикционные накладки располагаются внутри тормозного барабана. При нажатии педали привод раздвигает колодки, и они прижимаются к внутренним стенкам. Устройство барабанных тормозов

    По эффективности барабанные тормоза стоят далеко позади дисковых, и в прямом, и в переносном смысле. Поскольку для остановки автомобиля торможение передних колес важнее, чем задних, то барабанные тормоза иногда ставят на задние колеса в недорогих моделях автомобилей.

Пневматический

Пневматика в качестве привода тормозной системы не используется в легковых автомобилях, ее ставят на тяжелую коммерческую технику. Принцип действия немного похож на гидравлический, но рабочей средой является не жидкость, а сжатый воздух, который накачивается в систему компрессором. Когда водитель нажимает педаль тормоза, воздух под давлением проходит к тормозным элементам и приводит их в действие.

Комбинированный

Комбинированную тормозную систему можно встретить на тяжелой спецтехнике. Он состоит из различных типов привода, что дает громоздкий, но надежный результат. Электромеханический или гидромеханический привод нужны для тяжелого транспорта в тяжелых условиях.

Контуры подключения

Отказ тормозов всегда был самым большим кошмаром любого водителя. Поэтому инженеры давно придумали, как сделать, чтобы можно было остановить машину даже с поврежденной тормозной системой (а повредить гидравлическую систему проще, чем любую другую. Потек уплотнитель – и привет горячий).

Одним из вариантов страховки на случай отказа стало разнесение системы на два контура. Оказалось, двухконтурные тормоза это не так сложно, как могло быть, зато надежно и безопасно. Даже если один из контуров откажет, система продолжит работать, позволив избежать аварии.

Есть 5 вариантов компоновки контуров гидравлической системы:

  1. 4+2, параллельная со страховкой передней оси. Один контур запитывает все четыре колеса, второй – только два передних.

    Контуры параллельные, схема 4+2

  2. 2+2, параллельная. Один контур на переднюю ось, второй на заднюю. Так чаще всего конструируют заднеприводные автомобили.

    Контуры параллельные, схема 2+2

  3. 2+2, диагональная. Один контур идет на левое переднее и правое заднее колесо, второй на правое переднее и левое заднее. Эту систему обычно ставят на переднеприводные автомобили.

    Контуры диагональные, схема 2+2

  4. 3+3, комбинированная. Один контур идет на передние колеса и правое заднее, а другой тоже идет на передние колеса и на левое заднее.

    Контур комбинированный, схема 3+3

  5. 4+4, параллельная. Два контура подводятся на все 4 колеса параллельно.

    Контур параллельный, схема 4+4

В большинстве случаев владелец автомобиля даже не задумывается, какая там у него схема разнесения контуров. Тормоза работают – и отлично.

Принцип работы тормозной системы

Самая распространенная гидравлическая тормозная система работает достаточно просто, ниже, на видео-уроке детально показан принцип работы в 3Д анимации.

  1. Первой в цепочке элементов стоит педаль тормоза. Когда водитель нажимает на нее, давление передается на вакуумный усилитель тормозов;
  2. Вакуумный усилитель увеличивает давление и передает его на главный тормозной цилиндр, вдавливая поршень;
  3. От ГТЦ по трубопроводам гидравлическая жидкость поступает к цилиндрам суппортов. За счет несжимаемости жидкости, она почти мгновенно передает усилие от главного цилиндра на тормозные механизмы, и они приходят в действие;
  4. Рабочие цилиндры суппортов прижимают тормозные колодки к дискам или барабанам;
    Чем сильней водитель давит на педаль, тем больше и резче будет усилие на тормозах. Это дает возможность управлять автомобилем, чувствуя и рассчитывая силу торможения;
  5. Когда водитель отпускает педаль, система возвращается в нейтральное положение. Педаль становится на место благодаря возвратной пружине, давление в гидросистеме падает.

Неисправности тормозной системы автомобиля

Есть несколько основных неполадок, которые могут произойти с тормозами:

  1. Износ тормозных колодок, дисков, их неисправность, деформация и т.д. Все мы знаем, что тормозные колодки и диски не вечные, но периодически забываем об их существовании. Зато они сами напоминают нам, когда начинают скрипеть, свистеть, скрежетать и издавать другие ненормальные звуки. Если диагностика показала, что колодки вышли из строя, нужно менять и их, и диски;
  2. Проблема с гидросистемой. Это может быть и утечка через поврежденные шланги, и воздушная пробка, и изношенные прокладки главного цилиндра. О таких неполадках говорит увеличенный ход педали тормоза. Ремонт заключается в поиске протечки, устранении неисправности, замене изношенных деталей, прокачке системы;
  3. Вышел из строя вакуумный усилитель. В этом случае при нажатии на педаль будет чувствоваться большее сопротивление, чем обычно. При осмотре нужно обратить внимание на состояние усилителя;
  4. Клин поршня ГТЦ. Когда такое случается, в гидросистеме создается постоянное давление, которое действует, в том числе, и на тормозные суппорта. То есть колёса будут тяжелыми, замедленными. Нужен демонтаж, проверка и ремонт главного тормозного цилиндра, после чего можно ездить дальше.

Заключение

Что сделать, чтобы никогда не знать, как ломается тормозная система автомобиля? Один из главных советов – своевременное и грамотное ее обслуживание. Тормозная жидкость нуждается в регулярной замене, тормозные колодки – тоже, диски и барабаны не вечные. Осмотр, профилактика и своевременная замена расходников помогут избежать огромного количества проблем и затрат.

vaznetaz.ru

Тормозная система: описание,виды,устройство,фото,видео,принцип работы | НЕМЕЦКИЕ АВТОМАШИНЫ

 

Для эффективного управления движением любого механического средства – регулированием скорости на том или ином участке пути, замедлением её при выполнении маневров, наконец, для остановки в нужном месте – и в том числе экстренной – на всех грузовых и легковых автомобилях должна быть установлена соответствующая классу машины тормозная система. Для удержания машины на месте во время продолжительной стоянки, особенно на склоне, предусмотрен стояночный тормоз.

Для безопасной эксплуатации транспортного средства эта система должна быть надежна, как никакая другая. Не случайно в перечне неисправностей, при которых запрещено использование транспортного средства (приложение к Правилам дорожного движения РФ), неисправности тормозных систем вынесены на первое место.

ВИДЫ И УСТРОЙСТВО ТОРМОЗНЫХ СИСТЕМ

В современных автомобилях используют устройства тормозов двух видов – дисковые и барабанные. Название устройств видов тормозных систем пошло от используемого главного элемента, воспринимающего тормозное усилие, выполненного в виде диска или в виде барабана.

Барабанные тормоза насчитывают более ста лет, в настоящее время считаются устаревшими, обычно применяются в ус

тройстве заднего моста автомобиля. Устройство задних барабанных тормозов достаточно простое и надежное. Ступица колеса жестко соединена с тормозным барабаном, который и воспринимает тормозящее усилие от двух тормозных колодок со специальными накладками. Пара колодок и гидравлический привод, называемый еще колесным цилиндром, смонтированы на тормозном щите, являющимся силовой деталью заднего моста. Устройство барабана таково, что удачно закрывает весь механизм от грязи и пыли, поэтому задний механизм торможения менее восприимчив к воздействию окружающей среды.

При нажатии педали тормоза давление гидравлической жидкости передается в рабочую полость колесного цилиндра и выталкивает из него два симметричных штока, прижимающих колодки к внутренней поверхности тормозного барабана. В старых моделях барабан изготавливался из специальных сортов чугуна, современные барабаны отливаются из алюминиевых сплавов с чугунными вставками, что значительно улучшает отведение тепла от трущихся поверхностей.

В конструкции барабанного механизма предусмотрено крепление троса стояночного тормоза. При выжимании рычага на определенную величину, легко контролируемую по количеству щелчков храповика фиксатора, трос натягивается и через специальный рычаг механизма тормоза с усилием прижимает колодки заднего тормоза к барабану, тем самым фиксируя колеса машины.

Преимущества устройства барабанных систем:

  • общая рабочая поверхность колодок составляет не менее 400 см2для легкового автомобиля класса «В», что в разы больше суммарной поверхности накладок дисковых систем;
  • при меньшей эффективности, значительно большее останавливающее действие;
  • устройство привода позволяет легко подключить трос ручного стояночного тормоза, тогда как для дисковых систем это сделать значительно сложнее;
  • накладки на колодках изнашиваются медленнее.

Важно! Контролировать, насколько выработана и изношена рабочая поверхность барабана, в силу специфики устройства достаточно сложно, поэтому следует с каждой регулировкой системы демонтировать барабан и замерять остаточную толщину стенки.

Усилие торможения может достаточно изменить траекторию движения автомобиля, поэтому в системе управления торможением первым всегда подключается привод задних колес, с небольшим опозданием подключается привод колодок передних колес. Благодаря такой последовательности обеспечивается стабильность курса движения машины без бокового заноса или разворота.

Принцип работы тормозной системы

Принцип работы тормозной системы рассмотрен на примере гидравлической рабочей системы.

При нажатии на педаль тормоза нагрузка передается к усилителю, который создает дополнительное усилие на главном тормозном цилиндре. Поршень главного тормозного цилиндра нагнетает жидкость через трубопроводы к колесным цилиндрам. При этом увеличивается давление жидкости в тормозном приводе. Поршни колесных цилиндров перемещают тормозные колодки к дискам (барабанам).

При дальнейшем нажатии на педаль увеличивается давление жидкости и происходит срабатывание тормозных механизмов, которое приводит к замедлению вращения колес и поялению тормозных сил в точке контакта шин с дорогой. Чем больше приложена сила к тормозной педали, тем быстрее и эффективнее осуществляется торможение колес. Давление жидкости при торможении может достигать 10-15 МПа.

При окончании торможения (отпускании тормозной педали), педаль под воздействием возвратной пружины перемещается в исходное положение. В исходное положение перемещается поршень главного тормозного цилиндра. Пружинные элементы отводят колодки от дисков (барабанов). Тормозная жидкость из колесных цилиндров по трубопроводам вытесняется в главный тормозной цилиндр. Давление в системе падает.

Эффективность тормозной системы значительно повышается за счет применения систем активной безопасности автомобиля.

ТОРМОЗНЫЕ МЕХАНИЗМЫ

Механизмы тормозов используются для создания противодействующего вращению колёс механического момента. В основном на всех авто применяются фрикционные механизмы, работающие на трении соприкасающихся материалов. Они устанавливаются на колесе и делятся по конструкции на дисковые и барабанные типы.

1 — колесная шпилька дисковые тормоза
2 — направляющий палец
3 — смотровое отверстие
4 — суппорт
5  — клапан
6 — рабочий цилиндр
7 — тормозной шланг
8 — тормозная колодка
9 — вентиляционное отверстие
10 — тормозной диск
11 — ступица колеса
12- грязезащитный колпачок

Дисковые механизмы могут быть с подвижным или статичным суппортом. Подвижный суппорт способствует равномерному износу трущихся накладок и, кроме того, обеспечивает постоянный зазор до поверхности диска вне зависимости от выработки накладок. Он крепится на подвеске с помощью кронштейна и имеет пазы для установки рабочих цилиндров. Диск, соединённый со ступицей колеса, имеет гладкую поверхность и отверстия для быстрого воздушного охлаждения.

Колодки с тормозящими накладками в нормальном положении прижаты к суппорту возвратными пружинами. Под давлением штока поршня исполнительных цилиндров колодки отжимаются к поверхности диска, происходит его торможение. Для индикации выработки накладок в колодках имеется датчик износа, который сигнализирует на приборную доску о критической выработке фрикционного поверхностного слоя колодок.

Барабанные механизмы имеют полукруглые колодки в виде полумесяца с фрикционными накладками с наружной стороны, нижние концы которых закреплены на неподвижной оси, а верхние концы могут раздвигаться под давлением поршней исполнительных цилиндров тормозов. Прижатые в нормальном положении друг к другу стяжными пружинами полукруглые колодки под давлением поршней раздвигаются и распирают внутреннюю поверхность вращающегося барабана. Трение поверхностей колодок и барабана приводит к торможению колеса. Для компенсации выработки трущейся поверхности имеется механизм самоподвода колодок к барабану.

По отношению к тормозам барабанного типа дисковые механизмы имеют следующие преимущества:

  • температурные изменения материала не влияют на состояние поверхности, и тормозной момент не зависит от нагрева диска;
  • эффективное воздушное охлаждение за счёт использования отверстий на диске и высокая температурная стойкость материала;
  • меньший тормозной путь за счёт активного действия всей поверхности колодок;
  • меньше вес и габариты;
  • высокая чувствительность системы торможения;
  • оперативность срабатывания;
  • лёгкость замены колодок, не требуется обточка и подгонка накладок при замене колодок;
  • до 70% инерции движения автомобиля могут гаситься на передних тормозных дисках.

О тормозных приводах

В автомобильных тормозных системах нашли применение вот эти типы тормозных приводов:

 

  • гидравлический;
  • пневматический;
  • комбинированный.
  • механический;

Гидравлический привод получил самое широкое распространение в рабочей тормозной системе автомобиля. В него входят:

  • главный тормозной цилиндр;
  • тормозная педаль;
  • колесные цилиндры;
  • усилитель тормозов
  • шланги и трубопроводы (рабочие контура).

При усилии на тормозную педаль водителем, та передает усилие от ноги на главный тормозной цилиндр. Усилитель тормозов дополнительно создает усилие, облегчая тем самым жизнь водителя. Широкое применение на машинах приобрел вакуумный усилитель тормозов.

 Главный тормозной цилиндр нагнетает тормозную жидкость к тормозным цилиндрам. Обычно над главным цилиндром стоит расширительный бачок, в нем содержится тормозная жидкость.

Колесный цилиндр прижимает тормозные колодки к тормозному барабану или диску.

Рабочий контур сейчас представляет из себя основной и вспомогательный. Например, вся система исправна, то значит работают оба, но при неисправности одного из них — другой будет работать.

Широко распространены три основные компоновки разделения рабочих контуров:

  • 2 + 2 подключенных параллельно — задние + передние;
  • 2 + 2 подключенных диагонально — правый передний + левый задний и так далее;
  • 4 + 2 в один контур подключены два передних, а в другой тормозные механизмы всех колес.

Прогресс не стоит на месте и сейчас в состав гидравлического тормозного привода добавляются разные электронные компоненты:

  • усилитель экстренного торможения
  • антиблокировочная система тормозов;
  • антипробуксовочная система;
  • система распределения тормозных усилий;
  • электронная блокировка дифференциала.

Пневматический привод применяется в тормозной системе большегрузных автомобилей.

Комбинированный тормозной привод — это комбинация разных типов привода.

Механический привод применяется в стояночной тормозной системе. Он включает в себя систему тяг и тросов, с помощью которых объединяет систему в одно целое, обычно на задние колеса имеет привод. Рычаг тормоза соединен при помощи тонкого троса с тормозными механизмами, где есть устройство, которое приводит в действие основные или стояночные колодки.

Есть автомобили, где стояночная система работает от ножной педали. Сейчас всё чаще стали применять в стояночной системе электропривод, который получил название — электромеханический стояночный тормоз.

Итак, как работает гидравлическая тормозная система

Осталось рассмотреть работу тормозной системы, что мы сделаем на примере гидравлической системы.

Когда водитель нажимает на педаль тормоза, то передается нагрузка к усилителю и тот создает усилие на главном тормозном цилиндре. А в свою очередь поршень главного тормозного цилиндра через трубопроводы нагнетает жидкость к колесным цилиндрам. Поршни колесных цилиндров от давления жидкости передвигают тормозные колодки к дискам или барабанам и происходит торможение автомобиля.

Когда водитель убирает ногу с педали тормоза, то педаль от действия возвратной пружины возвращается в начальное положение. Также, в свое положение возвращается и поршень главного тормозного цилиндра, а пружины отводят колодки от барабанов или дисков. Тормозная жидкость возвращается обратно в главный тормозной цилиндр и падает давление в системе.

УХОД ЗА ТОРМОЗНОЙ СИСТЕМОЙ АВТОМОБИЛЯ

Как один из наиболее важных узлов, тормозная система автомобиля требует постоянного внимания и ухода. Здесь буквально любая неисправность может привести к непредсказуемым последствиям на дороге.

Некоторые диагнозы можно поставить, исходя из характера поведения тормозной педали. Так увеличенный ход или «мягкая» педаль свидетельствуют, скорее всего, о попадании воздуха в систему гидропривода в результате утечки тормозной жидкости. Поэтому необходимо периодически контролировать уровень жидкости в бачке.

Её повышенный расход может быть следствием повреждения гидрошлангов и трубок, а также обыкновенного испарения со временем. Это приводит к попаданию в систему воздуха и отказу тормозов.

Пришедшие в негодность детали необходимо заменить, а систему придется прокачивать, выпуская воздух из каждого рабочего цилиндра на колесах и доливая жидкость. Процесс длительный и нудный.

Уход автомобиля при торможении в сторону говорит о возможном выходе из строя одного из рабочих цилиндров или чрезмерном износе накладок на каком-то определенном колесе. При загрязнении тормозных механизмов может возникать характерный шум при нажатии на педаль.

Все эти неисправности легко устраняются самостоятельно или обращением в сервисный центр. А чтобы свести к минимуму вышеописанные неприятности, берегите тормоза, чаще используйте торможение двигателем, особенно на крутых и затяжных спусках. Продолжительное по времени включение основной рабочей системы ведет к перегреву деталей и служит причиной различных поломок

Выхлопная система: описание,фото,назначение,тюнинг

Тормозные колодки описание виды фото видео параметры категории

Редуктор и все, что нужно о нем знать — описание,виды,фото,видео

ПОХОЖИЕ СТАТЬИ:

  • Новый Audi Q2 2016-2017 описание технические характеристики фото видео
  • Golf VII (лифтинг 2016) технические характеристики
  • Фольксваген каравелла Т6 2016 комплектации и цены обзор описание характеристики фото видео.
  • Мерседес s-class 2019 года: характеристики,комплектации,фото,двигатели
  • Фольксваген Гольф 2019: обзор,фото,характеристики,комплектации
  • Фольксваген Артеон 2019: характеристики,фото,безопасность,цена
  • Опель Грандланд х 2019 года: характеристики,фото,цена,комплектации
  • Опель Антара 2019 года: внешний вид,фото,технические характеристики
  • Toyo Snowprox S943: популярная модель для украинских автолюбителей
  • 12 сумасшедших салонов автомобилей,часть 2
  • Как выбрать автосервис: описание,фото
  • 40 автомобилей, которые прослужат более 250 000 км
  • Что делает автосервис, хорошим?
  • 10 Альтернативных источника топлива для вашего автомобиля
  • 5 Преимуществ окрашивания авто летом

seite1.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о