Пружина в форсунке двигателя предназначена: Устройство и конструкция форсунок

Содержание

Принцип работы форсунки

Форсунка (другое название - инжектор), являясь конструктивным элементом системы впрыска, предназначена для дозированной подачи топлива, его распыления в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси.
Форсунка используется в системах впрыска как бензиновых, так и дизельных двигателей. На современных двигателях устанавливаются форсунки с электронным управлением впрыска.
В зависимости от способа осуществления впрыска различают следующие виды форсунок:
электромагнитная;
электрогидравлическая;
пьезоэлектрическая.
Электромагнитная форсунка
Электромагнитная форсунка устанавливается, как правило, на бензиновых двигателях, в т.ч. оборудованных системой непосредственного впрыска. Форсунка имеет достаточно простое устройство, включающее электромагнитный клапан с иглой и сопло.

Схема электромагнитной форсунки

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 сетчатый фильтр
2 электрический разъем
3 пружина
4 обмотка возбуждения

5 якорь электромагнита
6 корпус форсунки
7 игла форсунки
8 уплотнение
9сопло форсунки

Работа электромагнитной форсунки осуществляется следующим образом. В соответствии с заложенным алгоритмом электронный блок управления обеспечивает в нужный момент подачу напряжения на обмотку возбуждения клапана. При этом создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло. Производится впрыск топлива. С исчезновением напряжения, пружина возвращает иглу форсунки на седло.

Электрогидравлическая форсунка
Электрогидравлическая форсунка используется на дизельных двигателях, в т.ч. оборудованных системой впрыска Common Rail. Конструкция электрогидравлической форсунки объединяет электромагнитный клапан, камеру управления, впускной и сливной дроссели.

 

Схема электрогидравлической форсунки

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 сопло форсунки

2 пружина
3 камера управления
4 сливной дроссель
5 якорь электромагнита
6 сливной канал
7 электрический разъем
8 обмотка возбуждения
9 штуцер подвода топлива
10 впускной дроссель
11 поршень

12игла форсунки

Принцип работы электрогидравлической форсунки основан на использовании давления топлива, как при впрыске, так и при его прекращении. В исходном положении электромагнитный клапан обесточен и закрыт, игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Впрыск топлива не происходит. При этом давление топлива на иглу ввиду разности площадей контакта меньше давления на поршень.
По команде электронного блока управления срабатывает электромагнитный клапан, открывая сливной дроссель. Топливо из камеры управления вытекает через дроссель в сливную магистраль. При этом впускной дроссель препятствует быстрому выравниванию давлений в камере управления и впускной магистрали. Давление на поршень снижается, а давление топлива на иглу не изменяется, под действием которого игла поднимается и происходит впрыск топлива.

Пьезоэлектрическая форсунка
Самым совершенным устройством, обеспечивающим впрыск топлива, является пьезоэлектрическая форсунка (пьезофорсунка). Форсунка устанавливается на дизельных двигателях, оборудованных системой впрыска Common Rail.

Преимуществами пьезофорсунки являются:
быстрота срабатывания (в 4 раза быстрее электромагнитного клапана), и как следствие возможность многократного впрыска топлива в течение одного цикла;
точная дозировка впрыскиваемого топлива.
Это стало возможным благодаря использованию пьезоэффекта в управлении форсункой, основанного на изменении длины пьезокристалла под действием напряжения. Конструкция пьезоэлектрической форсунки включает пьезоэлемент, толкатель, переключающий клапан и иглу, помещенные в корпусе.

Схема пьезоэлектрической форсунки

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 игла форсунки
2 уплотнение
3 пружина иглы
4 блок дросселей
5 переключающий клапан
6 пружина клапана
7 поршень клапана

8 поршень толкателя
9 пьезоэлемент
10 сливной канал
11 сетчатый фильтр
12 электрический разъем
13 нагнетательный канал

В работе пьезофорсунки, также как и электрогидравлической форсунки, используется гидравлический принцип. В исходном положении игла посажена на седло за счет высокого давления топлива. При подаче электрического сигнала на пьезоэлемент, увеличивается его длина, которая передает усилие на поршень толкателя. Открывается переключающий клапан, топливо поступает в сливную магистраль. Давление выше иглы падает. Игла за счет давления в нижней части поднимается и производится впрыск топлива.
Количество впрыскиваемого топлива определяется:
длительностью воздействия на пьезоэлемент;
давлением топлива в топливной рампе.

Форсунки двигателей трактора

Категория:

   Тракторы-2

Публикация:

   Форсунки двигателей трактора

Читать далее:



Форсунки двигателей трактора

Форсунка предназначена для впрыскивания топлива в камеру сгорания дизеля в тонкораспыленном виде. Она состоит из корпуса (рис. 1), к которому снизу при помощи гайки прикрепляется корпус распылителя. Внутри корпуса форсунки размещаются штанга, регулировочный винт, детали крепления пружины и фиксации положения регулировочного винта. Сверху форсунка закрывается колпаком.

Топливо под давлением поступает в форсунку от насосной секции через топливопровод высокого давления. В форсунке топливо проходит по каналам в полость кольцевой камеры распылителя. Давлением топлива на конусную поверхность игла приподнимается, преодолевая сопротивление пружины. При этом игла открывает распыливающие отверстия и топливо выходит из форсунки, тонко распыливаясь. Как только ослабевает давление топлива, поступающего в форсунку, пружина, действуя через штангу на иглу распылителя, перемещает ее вниз и закрывает распиливающие отверстия. Впрыск прекращается. Таким образом, впрыск топлива форсункой происходит только тогда, когда сила давления топлива на конусную поверхность иглы превышает силу воздействия на иглу пружины.

Рекламные предложения на основе ваших интересов:

Рис. 1. Форсунка ФД-22: 1 — игла распылителя; 2 и 6 — прокладки; 3 — кольцевая камера; 4 и 5 — каналы подвода топлива к распылителю; 7 — фильтр; 8 — штуцер; 9 — регулировочный винт; 10 — колпак; 11 — контргайка; 12 — пружина; 13- штанга; 14 — корпус форсунки; 15 -штифт; 1в — корпус распылителя; 17 — гайка распылителя; 18 — распиливающее отверстие

Давление впрыска топлива форсункой зависит от силы воздействия пружины на иглу. Чем больше затянута пружина регулировочным винтом, тем сильнее ее воздействие на иглу и, следовательно, требуется большее давление топлива для подъема иглы и начала впрыска.

Форсунки (распылители) классифицируются по принципу действия — открытые и закрытые, по конструкции запорной части иглы — штифтовые и бесштифтовые, по числу распыливающих отверстий — однодырчатые и многодырчатые.

Форсунка называется открытой, если ее топливный канал высокого давления свободно сообщается с камерой сгорания.

Закрытой называется такая форсунка, у которой канал ввода топлива в камеру сгорания закрыт, например, запорной иглой и открывается только под определенным давлением топлива в моменты впрыска топлива. На современных дизельных двигателях применяют преимущественно форсунки закрытого типа.

Штифтовая форсунка может иметь прямой (рис. 2, а) или обратный конус (рис. 2, б), определяющий форму струи впрыскиваемого топлива.

Штифт с прямым конусом обеспечивает лучшее распы-ливание топлива (вершина конуса распыли в выходном отверстии распылителя). Факел струи охватывает больший объем камеры сгорания. Топливо лучше перемешивается с воздухом. Штифты с прямым конусом весьма сложны в изготовлении и требуют высокой точности обработки.

Рис. 2. Конструкции распылителей форсунок: а — с прямым конусом; б — с обратным конусом; в - с плоской запорной частью; г — с конусной запорной частью

Штифт с обратным конусом дает струйное распылива-ние. Остро направленная струя обладает большой дальнобойностью. Однако струя впрыскиваемого топлива не охватывает большого объема камеры сгорания, и вследствие этого не достигается хорошее перемешивание топлива с воздухом. Закрытые штифтовые форсунки работают при сравнительно низких давлениях впрыска (12,5… 13,5 МПа) и применяются на тракторных дизелях с разделенными камерами сгорания.

Бесштифтовые форсунки более чувствительны к изменениям подачи топлива насосом. Запорная часть иглы бесштифтового распылителя может быть плоской (рис. 2, в) и конической (рис. 2, г).

У бесштифтовых форсунок может быть одно или несколько распыливающих отверстий. Форсунки с многодырчатым распылителем (рис. 2, г) имеют коническую форму запорной части. Бесштифтовые форсунки с многодырчатым распылителем работают при давлении 15…21 МПа. Их устанавливают на быстроходных тракторных дизелях с непосредственным впрыском топлива.

Рекламные предложения:


Читать далее: Техническое обслуживание форсунок и топливных насосов

Категория: - Тракторы-2

Главная → Справочник → Статьи → Форум


УСТРОЙСТВО ФОРСУНКИ

 

Форсунка (инжектор), является основным элементом системы впрыска.

Назначение форсунки

Дозированная подача топлива, распыление его в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси. Форсунки нашли свое применение в системах впрыска бензиновых и дизельных двигателей. На современных автомобилях устанавливаются форсунки с электронным управлением впрыска

.

Виды форсунок

Форсунки различаются в зависимости от способа осуществления впрыска топлива. Давайте рассмотрим основные виды форсунок:

  • Электромагнитные форсунки;
  • Электрогидравлические форсунки;
  • Пьезоэлектрические форсунки.

Устройство электромагнитной форсунки

1 - сетчатый фильтр; 2 - электрический разъем; 3 – пружина; 4 - обмотка возбуждения; 5 - якорь электромагнита; 6 - корпус форсунки; 7 - игла форсунки; 8 – уплотнение; 9 - сопло форсунки.

Электромагнитная форсунка нашла свое применение на бензиновых двигателях, в том числе оборудованных системой непосредственного впрыска. Электромагнитной форсунка имеет простую конструкцию, которая включает электромагнитный клапан с иглой и соплом.

Как работает электромагнитная форсунка

Работа электромагнитной форсунки осуществляется в соответствии с заложенным алгоритмом в электронный блок управления. Электронный блок в определенный момент подает напряжение на обмотку возбуждения клапана. Вследствие этого создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло форсунки, после чего производится впрыск топлива. Когда напряжение исчезает, пружина возвращает иглу форсунки обратно на седло.

Устройство электрогидравлической форсунки

1 - сопло форсунки; 2 – пружина; 3 - камера управления; 4 - сливной дроссель; 5 - якорь электромагнита; 6 - сливной канал; 7 - электрический разъем; 8 - обмотка возбуждения; 9 - штуцер подвода топлива; 10 - впускной дроссель; 11 – поршень; 12 - игла форсунки.

Электрогидравлическая форсунка применяется на дизельных двигателях. Электрогидравлическая форсунка включает электромагнитный клапан, камеру управления, впускной и сливной дроссели.

Как работает электрогидравлическая форсунка

Работа электрогидравлической форсунки основана на использовании давления топлива при впрыске. В обычном положении электромагнитный клапан закрыт и игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Давление топлива на иглу меньше давления на поршень, благодаря этому впрыск топлива не происходит.

Когда электронный блок управления дает команду на электромагнитный клапан, открывается сливной дроссель. Топливо вытекает из камеры управления через сливной дроссель в сливную магистраль. Впускной дроссель препятствует выравниванию давлений в камере управления и впускной магистрали, вследствие чего давление на поршень снижается, а давление топлива на иглу форсунки не изменяется. Игла форсунки поднимается и происходит впрыск топлива.

Устройство пьезоэлектрической форсунки

1 - игла форсунки; 2 – уплотнение; 3 - пружина иглы; 4 - блок дросселей; 5 - переключающий клапан; 6 - пружина клапана; 7 - поршень клапана; 8 - поршень толкателя; 9 – пьезоэлектрический элемент; 10 - сливной канал; 11 - сетчатый фильтр; 12 - электрический разъем; 13 - нагнетательный канал.

Пьезофорсунка (пьезоэлектрическая форсунка) является самым совершенным устройством, обеспечивающим впрыск топлива в современных автомобилях. Форсунка применяется на дизельных двигателях с системой впрыска Common Rail. Основные преимущества пьезоэлектрической форсунки в точности дозировки и быстроте срабатывания. Благодаря этому пьезофорсунка обеспечивает многократный впрыск на протяжении одного рабочего цикла.

Как работает пьезофорсунка (пьезоэлектрическая форсунка)

Работа пьезофорсунки основана на изменении длины пьезокристалла при подачи напряжения. Пьезоэлектрическая форсунка состоит из: корпуса, пьезоэлемента, толкателя, переключающего клапана и иглы.

Пьезофорсунка работает по гидравлическому принципу. В обычном положении игла прижата к седлу силой высокого давления топлива. Электронный блок подает электрический сигнал на пьезоэлемент и его длина увеличивается, воздействуя на поршень толкателя, открывает переключающий клапан и топливо поступает в сливную магистраль. Давление над иглой падает, и за счет давления в нижней части игла поднимается, что приводит к впрыску топлива. Количество впрыскиваемого топлива зависит от длительности воздействия на пьезоэлемент и давления топлива в топливной рампе.

Что такое форсунка - Статья

Форсунка-инжектор - устройство, предназначенные для подачи (впрыскивания) жидкостей и газов в двигателях различных механических устройств легкой и тяжелой промышленности. В более узком представлении форсунки – электромагнитные клапаны, обеспечивающие дозированную подачу топлива в цилиндры дизельного двигателя с системой непосредственного впрыска. Подача топлива осуществляется периодически через равные промежутки времени, и подобная система имеет

неоспоримые преимущества перед карбюраторной системой. Первое из них – точная дозировка топлива, которую осуществляют форсунки, и это важно, когда экономичный расход топлива играет одну из первостепенных ролей. Инжекторные двигатели позволяют использовать все топливо, в то время как карбюраторные «теряют» примерно 10 процентов его потенциала.

Второе преимущество – экологичность, поскольку инжекторные двигатели (работающие на системе непосредственного впрыска топлива при помощи форсунок) снабжены системой нейтрализации токсичных выхлопов. Дизельные двигатели современных автомобилей работают на принципе распределенного впрыска, когда каждый цилиндр двигателя получает топливо из отдельной форсунки. Впрочем, и владельцы автомобилей с карбюраторными двигателями не стоит отчаиваться, поскольку всегда есть возможность перейти на инжектор и, в зависимости от конструктивных особенностей автомобиля, установить инжекторную систему любого типа.

В последние годы отечественные автомобилисты все чаще стремятся оснастить свои устаревшие двигатели системой непосредственного впрыска и, соответственно, одна из главных ее деталей – форсунка – является одновременнои одной из наиболее востребованных деталей на рынке автозапчастей. Учитывая, что работают форсунки в достаточно жестких условиях, их обслуживание должно осуществляться максимально аккуратно и ответственно. То же самое следует сказать и о выборе форсунок для двигателя с инжекторной системой подачи топлива. Непременно основное внимание следует уделить качеству деталей (и готовых комплектов), которое наиболее часто подкреплено репутацией фирмы-производителя. Поэтому лучше всего не скупиться и приобретать у официальных дилеров новые автозапчасти проверенных торговых марок с гарантийным сроком службы.

Гидромеханические форсунки

Гидромеханические форсунки (ГМ-форсунки) бывают открытого и закрытого типов. Первый тип ГМ-форсунок представляет собой жиклерные форсунки и в современных системах впрыска бензина не используется. ГМ-форсунки закрытого типа предназначены для применения в механических системах непрерывного распределенного по цилиндрам впрыска топлива на бензиновых ДВС. Такие форсунки не имеют электрического управления. Они открываются под напором бензина, а закрываются возвратной пружиной. Давление напора бензина, при котором закрытая форсунка открывается, называется начальным рабочим давлением (НРД) форсунки и обозначается как Рфн. ГМ-форсунки закрытого типа устанавливаются в предклапанных зонах впускного коллектора для каждого цилиндра в отдельности.

По конструкции закрытые форсунки могут различаться устройством запорного клапана и способом крепления в литом корпусе впускного коллектора. По типу запорного устройства закрытые форсунки подразделяют на форсунки со сферическим, дисковым и штифтовым клапаном; по способу крепления — на вставные и резьбовые.

Закрытые ГМ-форсунки в дозировании топлива участия не принимают. Их главная функция — распылять бензин на горячие впускные клапаны двигателя. При этом распыленные частицы бензина переходят в парообразное состояние, а впускной клапан охлаждается. Чтобы не было соприкосновения струи бензина со стенками предклапанной зоны впускного коллектора, бензин распыляется с раскрывом на угол не более 35е, а форсунка по отношению к клапану устанавливается по строго заданной геометрии.

Дозирование топлива в механической системе впрыска производится изменением напора бензина у постоянно открытого распылительного сопла форсунки. При этом давление напора формируется давлением вне форсунки — в дифференциальном клапане дозатора-распределителя механической системы впрыска.

Для того чтобы клапан форсунки закрытого типа находился в состоянии "открыто", давление бензина в клапанной полости 6 должно быть все время несколько выше усилия Рп возвратной пружины 10 (Рфн > Р„).

Это достигается заданием достаточно высокого (не менее 6 бар) рабочего давления Ps (РДС) в системе (в топливоподающей магистрали до дозатора-распределителя) и поддержанием РДС на постоянном уровне.

Основными параметрами закрытой форсунки являются пять показателей.

1. Начальное рабочее давление Рфн (НРД) форсунки сразу после ее сборки на заводе-изготовителе (давление открывания новой форсунки). НРД для закрытых форсунок разных модификаций лежит в пределах 2,7...5,2 кг/см2. Для новых форсунок из одного типоразмерного ряда НРД может отличаться не более чем на ±20%. При подборе комплекта форсунок на двигатель различие НРД не должно превышать ±4%. В продажу (как запчасти) форсунки поступают с одинаковым НРД в упаковке. Замена форсунок неполным комплектом может стать причиной нарушения нормальной работы двигателя.

2. Минимальное рабочее давление Рф т|„ (МРД) форсунки после ее приработки на двигателе (после 5000 км пробега). Это давление становится меньше НРД новой форсунки на 15...20% и стабилизируется (за 5 лет нормальной эксплуатации изменяется не более чем на 5%).

3. Рабочее давление Рф форсунки после ее приработки. Это изменяющееся во время работы двигателя давление во внутренней полости форсунки от минимального рабочего давления Рф min (МРД) до максимального значения рабочего давления Ps max(РДС)в механической системе впрыска.

4. Давление отсечки форсунки Р0 (ДОТ). Это давление, ниже которого форсунка надежно закрытаиногда называется давлением слива). Давление отсечки всегда меньше Рф min на 1,0...1,5 кг/см2, но несколько больше остаточного давления Рост в системе впрыска сразу после выключения двигателя.

5. Производительность Пф форсунки. Это количество бензина, которое распыляется через постоянно открытую форсунку за единицу времени при определенном рабочем давлении Рф в полости форсунки. Обычно Пф закрытой форсунки задается для двух крайних значений рабочего давления: Рф min и Ps max. Этим двум значениям соответствуют два режима работы двигателя: Рф m,n — холостому ходу, Ps m8K — полной нагрузке. Производительность Пф задается в см3/мин или в гр/с. Например, для закрытых форсунок 5-ти цилиндрового ДВС автомобиля AUDI-1O0 (2,2 л, 140 л/с) показатели производительности соответственно равны 30 и 90 см3/мин (при работе в системе "K-Jetronic").

Вышедшие из строя форсунки закрытого типа ремонту не подлежат, но, как и любые другие, могут быть "промыты" в составе системы впрыска на работающем двигателе.

Электромагнитные форсунки

Электромагнитные форсунки применяются в современных системах впрыска бензина в качестве клапанных рабочих и пусковых форсунок (для систем распределенного по цилиндрам впрыска с электронным управлением), а также в качестве центральных форсунок впрыска (в системах питания с моновпрыском). Центральная форсунка наиболее распространенной конструкции для систем впрыска бензина группы "Mono".

Современные ЭМ-форсунки способны надежно срабатывать со скважностью* S = 0,5 и при этом устойчиво (управляемо) удерживать открытое состояние в течение 2. ..2,5 мс. Разброс этого параметра в конкретном типоразмерном ряде форсунок не более ±5%. Такой быстроте срабатывания ЭМ-форсунки отвечает частота возвратно-поступательного движения подвижного стержня электромагнита форсунки в 200...250 с-1. Это является пределом возможного для данного типа электроуправляемых форсунок.

При применении ЭМ-форсунок в качестве клапанных рабочее давление Ps в системе впрыска может быть понижено с 6,5 бар (в механических системах) до 4,8...5 бар, что повышает надежность работы электробензонасоса и понижает вероятность протечек топлива в уплотнительных соединениях бензома-гистралей.

При электронном управлении форсунками точность дозирования впрыснутого бензина значительно повышается. Это становится возможным потому, что давление внутри ЭМ-форсунки поддерживается постоянным, и количество впрыснутого топлива определяется только временем открытого состояния форсунки.

Основными параметрами ЭМ-форсунки являются:

1. Постоянное рабочее давление в полости форсунки (РДФ), равное рабочему давлению Ps системы, выраженное в бар.

2. Производительность форсунки (пропускная СПОСОбнОСТЬ В ОТКРЫТОМ СОСТОЯНИИ — В СМ3/МИН или в г/с при заданном Ps РДС).

3. Минимальное напряжение надежного срабатывания форсунки (постоянное напряжение в вольтах).

4. Минимальное время цикловой подачи топлива (минимальное надежно управляемое время продолжительности открытого состояния форсунки — в мс).

5. Внутреннее омическое сопротивление Нф форсунки (сопротивление катушки соленоида — в омах).

На корпусе форсунки набивается цифровой код, по которому в справочном каталоге можно определить все вышеперечисленные параметры. На корпусе выбивается также торговый знак или название фирмы-изготовителя.

О внутреннем омическом сопротивлении Нф форсунки следует сказать отдельно. Если катушка соленоида намотана медным проводом, то получить величину Нф более 2...3 Ом невозможно (накладывается требование минимизации индуктивности Ls катушки). В таком случае для ограничения величины рабочего тока 1ф форсунки последовательно с катушкой соленоида включают дополнительный резистор. Применяют также обмоточный провод с высоким удельным сопротивлением (для катушки соленоида), что исключает необходимость установки дополнительных резисторов. Но в любом случае общий средний ток управления сразу всеми форсунками (или группой форсунок) впрыска на двигателе не должен превышать значения 3...5 А. В некоторых случаях на многоцилиндровых двигателях применяют "групповое" управление форсунками. Это когда форсунки объединены в группы, а каждая группа управляется от отдельного электронного блока. Но наиболее эффективной является система впрыска бензина, в которой каждая рабочая клапанная ЭМ-форсунка управляется независимо от других (последовательный синхронизированный распределенный по цилиндрам импульсный впрыск бензина с управлением от многоканального ЭБУ впрыском).

По типу запирающего клапана ЭМ-форсунки, как и гидромеханические, подразделяют на три вида:

— форсунки со сферическим профилем запорного элемента:

— форсунки с штифтовым клапаном (с конусным или игольчатым запорным стержнем):

— форсунки с дисковым клапаном (с плоским или тарельчатым запорным элементом).

Выпускаются форсунки с внутренним электрическим сопротивлением 2,4 Ом: 12,5 Ом; 16 Ом. Малое сопротивление связано с применением обмоточного провода из меди и с необходимостью иметь малую величину индуктивности L соленоида, которая прямо зависит от числа витков Wc обмотки соленоида.

Низкое сопротивление форсунки увеличивают дополнительным сопротивлением в 6...8 Ом, что уменьшает потрябляемый ток. Обмотки высокоомной форсунки выполнены из провода с большим удельным сопротивлением (например, из латуни), что позволяет иметь малое L и большое R.

По производительности П впрыска форсунки подбирают по типам и мощности тех двигателей, на которые эти форсунки устанавливаются. Производительность форсунки определяется под рабочим давлением системы, как количество Кв бензина, прошедшего через форсунку за единицу времени t, если она постоянно открыта.

Пусковые электромагнитные форсунки

К электромагнитным форсункам относятся и пусковые гидроклапаны с электромагнитным управлением, которые по принципу действия мало чем отличаются от ЭМ-форсунок. Именно поэтому пусковые гидроклапаны чаще называют пусковыми форсунками.

Основное назначение пусковой форсунки (ПС-форсунки) — это работа в механической системе непрерывного распределенного впрыска во время запуска холодного двигателя. Иногда ПС-форсунка используется как форсажное устройство, наподобие ускоритвльного насоса в карбюраторе, или как устройство для запуска перегретого двигателя с турбонаддувом. Пусковая форсунка применяется и в некоторых системах впрыска группы "L". В любом случае ПС-форсунка работает непосредственно от бортсети автомобиля, а в систему электронного управления двигателем включается опосредовано через специальное электронное реле управления.

К ПС-форсункам требования высокой скорости срабатывания не предъявляются, что значительно упрощает конструктивное исполнение ее составных компонентов. Так, масса якоря электромагнита, который (якорь) одновременно является и запирающим элементом клапана форсунки, число витков катушки электромагнита, сечение распылительного сопла, упругость возвратной пружины — все это заметно увеличено по сравнению с рабочей клапанной ЭМ-форсункой.

Форсунка закрытого типа с плунжерным насосом

Ведутся исследования в направлении поиска принципиально новых способов впрыска бензина с помощью форсунок. Испытаны так называемые магнитоэлектрические форсунки, которые отличаются высоким быстродействием (0,5 мс), так как работают с принудительным высокочастотным (до 1000 с"1) переключением полярности магнитного поля в катушке соленоида.

Перспективными считаются также форсунки закрытого типа с дополнительным электромагнитным управлением (электрогидравлические).

В системах впрыска бензина группы "Д" (впрыск в камеру сгорания) используется насос-форсунка закрытого типа с плунжерным насосом высокого давления, который приводится в действие от кулачка распредвала.

Насос-форсунка оснащен сливным каналом с быстродействующим электрогидравлическим клапаном. Комбинация — плунжерный насос, закрытая гидромеханическая форсунка, электроуправляемый от электронной автоматики сливной канал — дает возможность реализовать так называемый "послойный впрыск бензина" непосредственно в камеру сгорания ДВС. Это обеспечивает значительную экономию топлива за счет работы двигателя на очень бедных ТВ-смесях (а = 2,0), а также повышает ряд его эксплуатационных показателей.

При послойном впрыске цикловая подача бензина непрерывно дифференцируется по времени посредством управления давлением в рабочей полости насос-форсунки (под плунжером). Давление регулируется электроуправляемым гидроклапаном в сливном канале. Суть послойного впрыска топлива состоит в его подаче отдельными, строго дозированными порциями. Получается так: за один цикл впрыска бензин подается прямо в цилиндр не сплошной однородной струей, а несколькими частями, каждая из которых образует "свой" коэффициент избытка воздуха а. В объеме цилиндра образуется "послойный пирог" из ТВ-смеси разной концентрации. Преимущество послойного впрыска бензина состоит в том, что в первый момент воспламенения в зону центрального электрода свечи зажигания подается нормальная (стехиометрическая) ТВ-смесь с а = 1, которая легко возгорается. Далее процесс горения топлива в очень бедной ТВ-смеси (а = 2.0) поддерживается за счет "открытого огня", образовавшегося в первый момент воспламенения. Однако система впрыска бензина с насос-форсунками обладает двумя существенными недостатками: она содержит дорогостоящие и очень сложные механические устройства, а также способствует появлению значительных количеств оксидов азота (N0X) в выхлопных отработавших газах двигателя, бороться с которыми крайне сложно. Тем не менее система выпускается фирмой TOYOTA для двигателей TD4 легковых автомобилей.

Обслуживание форсунок (инжектора) бензиновых двигателей

Многие современные автомобили оснащаются системами впрыска топлива. Состояние форсунок - неотъемлемой части системы впрыска - во многом определяет эффективность работы двигателя. Впрыск топлива имеет неоспоримые преимущества по сравнению с карбюраторным принципом смесеобразования. В первую очередь, это более точное дозирование топлива, а следовательно, большая экономичность и приемистость автомобиля и меньшая токсичность отработавших газов. Однако основная исполнительная деталь системы впрыска - форсунка - работает в тяжелых условиях и поэтому весьма требовательна к обслуживанию.

Общие понятия

Форсунка (инжектор) - управляемый электромагнитный клапан, обеспечивающий дозированную подачу топлива в цилиндры двигателя. Существуют форсунки для центрального (одноточечного, моно) и для распределённого (многоточечного) впрыска. Блок управления - электронный блок, управляющий системой впрыска, в частности работой форсунок.

Устройство и принцип работы

Топливо подаётся к форсунке под определённым (зависящим от режима работы двигателя) давлением. Электрические импульсы, поступающие на электромагнит форсунки от блока управления, приводят в действие игольчатый клапан, открывающий и закрывающий канал форсунки. Количество распыляемого топлива пропорционально длительности импульса, задаваемой блоком управления. Форма и направление распыляемого факела играют существенную роль в процессе смесеобразования и определяются количеством и расположением распылительных отверстий.

Расположение, классификация и маркировка форсунок

Центральный впрыск - В общий впускной трубопровод топливо впрыскивается одной форсункой (или двумя как на Хонде), которая устанавливается перед дроссельной заслонкой, в месте, где "должен стоять карбюратор", и характеризуется низким сопротивлением обмотки электромагнита (до 4-5 Ом).Распределённый впрыск - Отдельные форсунки осуществляют впрыск топлива во впускные трубопроводы каждого цилиндра. Они располагаются у основания впускных трубопроводов (у корпуса головки блока цилиндров) и отличаются относительно высоким сопротивлением обмоток электромагнитов (до 12-16 Ом). Или меньшим, но с дополнительным блоком сопротивлений. На некоторых автомобилях последнего поколения топливо подаётся непосредственно в камеру сгорания (непосредственный впрыск). Форсунки таких двигателей отличаются высоким рабочим напряжением электромагнита (до 100 В).В маркировке форсунок может отражаться фабричная (торговая) марка или название; каталожный номер или наименование; номер серии.

Основные признаки и причины неисправности форсунок

Состояние форсунок существенно влияет на работу двигателя. Основными признаками их неисправности бывают: недостаточная мощность, развиваемая двигателем; рывки и провалы при увеличении нагрузки на двигатель; неустойчивая работа на малых оборотах; повышенная токсичность отработавших газов. Наиболее распространенной неисправностью форсунок является их загрязнение. Они расположены в зоне воздействия высоких температур. Следствие этого - закоксовывание содержащимися в топливе (особенно низкокачественном) смолами, образование на форсунке твердых отложений, перекрывающих (частично или полностью) распылительные отверстия и нарушающих герметичность игольчатого клапана. Кроме того, общее загрязнение элементов топливной системы (бака, трубопроводов, фильтра и т.д.) приводит к засорению частичками шлама каналов и фильтра форсунки. Основным способом восстановления нормальной работоспособности форсунок является их промывка.

Промывка форсунок

Эта операция подразумевает удаление (вымывание) накопившихся загрязнений из системы. К основным способам промывки форсунок относятся: промывка специальными присадками к топливу; промывка без демонтажа форсунок с двигателя с помощью специальной установки; промывка на ультразвуковом стенде с демонтажом форсунок с двигателя. Промывка с помощью присадок к топливу отличается простотой и заключается в периодическом (каждые 2-3 тыс.км) добавлении в топливо специальных препаратов. Это позволяет промывать не только сами форсунки, но и всю топливную систему. Данный способ эффективен при регулярном удалении небольших загрязнений и носит, скорее, профилактический характер. Внимание! Удаление застарелых отложений подобным методом может привести к прямо противоположному результату: большое количество шлама, смытого моющей присадкой со стенок топливной системы, засоряет трубопровод, топливный фильтр, а иногда и сами форсунки, окончательно выводя их из строя. Промывка форсунок с помощью специальной установки без их демонтажа заключается в работе двигателя на специальном промывающем топливе (сольвенте). Для этого отключается штатный топливный насос автомобиля и магистраль слива топлива в бак (обратка), а топливопровод системы впрыска соединяется с установкой, имеющей резервуар с сольвентом, который под давлением подаётся на форсунки. Процесс делится на несколько этапов. Сначала двигатель работает в течении 15 минут в режиме холостого хода. Затем его останавливают на 15 минут для размягчения особо стойких отложений. Потом двигатель снова запускается и работает 15 минут в режиме периодического увеличения оборотов до их максимального числа. Заключительным этапом промывки является восстановление соединений штатных топливопроводов и работа двигателя на бензине в течении 30 минут. Подобную промывку рекомендуется проводить через каждые 15-20 тыс. км пробега. Промывка на ультразвуковом стенде с демонтажом форсунок применяется в качестве крайней меры для удаления больших затвердевших отложений, когда первые два способа не приводят к желаемым результатам. Принцип действия таких стендов основан на разрушении отложений погруженной в специальный моющий состав форсунки с помощью ультразвука. Кроме того, стенды, как правило, позволяют точно оценить производительность и качество распыла форсунки.

ТНВД и форсунки дизеля ЯМЗ-236

Топливный насос высокого давления двигателя ЯМЗ-236

Топливный насос высокого давления ТНВД ЯМЗ-236 автомобилей Урал, Маз, трактора Т-150 расположен в развале двигателя между рядами цилиндров и имеет шестеренчатый привод.

Топливный насос ТНВД ЯМЗ-236 многосекционный. Число секций равно шести по числу цилиндров двигателя. Устройство секции насоса высокого давления показано на рис.1


Рис.1 - Секция ТНВД ЯМЗ-236

1–корпус насоса; 2–контргайка; 3–регулировочный болт; 4–втулка поворотная; 5–зубчатый венец; 6–установочный винт; 7–пробка для выпуска воздуха; 8–штуцер; 9–пружина нагнетательного клапана; 10–нагнетательный клапан; 11–корпус нагнетательного клапана; 12–втулка плунжера; 13–плунжер; 14–рейка; 15–тарелка верхняя пружины; 16–пружина толкателя; 17–тарелка нижняя пружины; 18–толкатель; 19–ролик толкателя; 20–кулачковый вал

В корпусе 1 топливного насоса ЯМЗ-236 автомобилей Урал, Маз, трактора Т-150 установлены плунжерные пары, нагнетательные клапаны 10 и штуцеры 8, к которым подсоединяются трубопроводы высокого давления.

Нагнетательный клапан и корпус клапана – прецизионная пара, которая может заменяться только комплектно. Прецизионную пару составляют и плунжер 13 с втулкой 12.

Правильное положение втулки плунжера ТНВД ЯМЗ-236 относительно корпуса обеспечивается винтом 6. Плунжер 13 приводится в движение от кулачкового вала 20 через роликовый толкатель 18. В толкатель ввернут регулировочный болт 3, который контрится гайкой 2 и служит для регулировки начала подачи топлива.

Пружина 16 через нижнюю тарелку 17 постоянно прижимает толкатель к кулачку. От проворота толкатель фиксируется сухарем толкателя, который входит в паз на расточке корпуса насоса. Для изменения количества подаваемого топлива плунжер во втулке 12 поворачивается поворотной втулкой 4 с зубчатым венцом 5, входящим в зацепление с рейкой 14.

Регулировка подачи топлива на номинальном режиме каждой секцией топливного насоса высокого давления ЯМЗ-236 производится поворотом втулки 4 относительного зубчатого венца 5 при ослабленном винте крепления зубчатого венца.

Работа секции ТНВД ЯМЗ-236 протекает следующим образом:

При движении плунжера 13 вниз внутреннее пространство втулки 12 заполняется топливом, и одновременно оно подается насосом низкого давления в подводящий клапан корпуса насоса.

При этом открывается впускное отверстие, и топливо поступает в надплунжерное пространство. При обратном движении плунжера топливо перепускается в топливо подводящий канал до тех пор, пока торцовая кромка плунжера не перекроет впускное отверстие втулки.

При дальнейшем движении плунжера ТНВД ЯМЗ-236 вверх давление в надплунжерном пространстве возрастает. Когда давление достигнет величины, при которой открывается нагнетательный клапан, он приподнимется, и топливо поступит по топливопроводу высокого давления к форсунке.

Движущийся плунжер продолжает сжимать топливо. Когда давление достигнет такой величины, что превысит усилие, создаваемое пружиной форсунки, игла форсунки поднимется и начнется процесс впрыскивания топлива в цилиндр двигателя.

По мере движения плунжера вверх наступает момент, когда кромка плунжера открывает отсечное отверстие на втулке, что вызывает падение давления в топливопроводе.

При этом разгрузочный поясок нагнетательного клапана, погружаясь в корпус 11 под действием пружины 9, увеличивает объем в топливопроводе между форсункой и клапаном. Этим достигается более четкая отсечка подачи топлива.

Количество подаваемого топлива дозируется изменением момента конца подачи при постоянном его начале. При перемещении рейки плунжер топливного насоса высокого давления ЯМЗ-236 поворачивается, и регулирующая кромка открывает отверстие втулки раньше или позже, вследствие чего изменяется продолжительность подачи, а, следовательно, и количество подаваемого топлива.

На поверхности плунжера имеется кольцевая канавка, а во втулке плунжера радиальное отверстие для отвода топлива, просочившегося через зазор в плунжерной паре.

Уплотнение между втулкой плунжера и корпусом ТНВД ЯМЗ-236 осуществляется резиновым кольцом. Из полости вокруг втулки плунжера просочившееся топливо отводится в канал, проходящий вдоль корпуса насоса.

Далее из канала топливо поступает через дренажный трубопровод в топливный бак. В нижней части корпуса насоса расположен кулачковый вал.

Топливный насос ЯМЗ-236 автомобилей Урал, Маз, трактора Т-150 в сборе с регулятором частоты вращения, муфтой опережения впрыска и топливоподкачивающим насосом изображен на рис. 25.

Кулачковый вал вращается в роликовых конических подшипниках и промежуточной опоре. Осевой люфт кулачкового вала в пределах 0,01…0,07 мм регулируется набором прокладок. Рейка топливного насоса перемещается в направляющих втулках, запрессованных в корпус насоса.

Выступающий из ТНВД ЯМЗ-236 конец рейки защищен втулкой 3 (рис. 2), в которую ввернут винт 2, ограничивающий мощность двигателя в обкаточный период. Винт-ограничитель контрится проволокой и пломбируется.

В верхней части корпуса насоса имеются подводящий и отводящий каналы, по которым топливо поступает к плунжерным парам.

Со стороны регулятора каналы закрыты пробками с уплотнительными резиновыми кольцами. Со стороны муфты опережения впрыска к подводящему каналу присоединяется подводящий топливопровод, а по отводящему через перепускной клапан отводится избыточное количество топлива.

Продольные каналы со стороны подвода топлива соединены поперечным каналом. Отверстие для выпуска воздуха закрыто пробкой 7 (рис. 1).


Рис.2 - Топливный насос ЯМЗ-236

1–муфта опережения впрыскивания; 2–винт-ограничитель; 3–втулка; 4–топливопровод низкого давления; 5–перепускной клапан; 6–топливопровод высокого давления; 7–топливный насос высокого давления; 8 болт ограничения максимальной частоты вращения; 9–регулятор частоты вращения; 10– рычаг управления регулятором; 11– болт ограничения минимальной частоты вращения; 12–рычаг останова; 13–топливоподкачивающий насос; А– положение рычага при минимальной частоте вращения холостого хода; Б–положение рычага при максимальной частоте вращения холостого хода; В– положение рычага при работе; Г– положение рычага при выключенной подаче

Регулятор частоты вращения топливного насоса ТНВД дизеля ЯМЗ-236

ТНВД ЯМЗ-236 автомобилей Урал, Маз, трактора Т-150 оснащен всережимным механическим регулятором частоты вращения (рис. 3), который, изменяя подачу топлива в зависимости от нагрузки, поддерживает заданную водителем частоту вращения коленчатого вала двигателя.


Рис. 3 - Регулятор частоты вращения топливного насоса ЯМЗ-236

1–корректор подачи топлива по наддуву; 2–ось двуплечего рычага; 3–пружина регулятора; 4–двуплечий рычаг; 5–крышка смотрового люка; 6–винт двуплечего рычага; 7–рычаг регулятора; 8–буферная пружина; 9–корпус буферной пружины; 10–регулировочный болт; 11–вал рычага пружины; 12– серьга регулятора; 13–корпус пружины корректора; 14–гайка корректора; 15–пружина корректора; 16–корректор; 17–винт подрегулировки мощности; 18–рычаг рейки; 19–кулиса; 20–пята; 21–грузы регулятора; 22–муфта грузов; 23–ось грузов; 24– державка грузов; 25–ведущая шестерня; 26–сухари; 27–валик державки грузов; 28–стакан; 29–тяга рейки; 30–рычаг пружины; 31–пружина рычага рейки.

Регулятор закреплен на заднем торце топливного насоса ЯМЗ.

Муфта опережения впрыскивания топлива ТНВД дизеля ЯМЗ-236

Муфта опережения впрыскивания топлива (рис. 4) устанавливается на двигатели ЯМЗ-236НЕ,Н,БЕ,Б и предназначена для изменения момента начала подачи топлива в зависимости от частоты вращения коленчатого вала двигателя.

Применение муфты опережения впрыскивания способствует получению наилучшей экономичности на различных скоростных режимах.

Муфта опережения впрыскивания ТНВД ЯМЗ-236 имеет две полумуфты, установленные в корпусе 1: ведущую 6 и ведомую 3. Ведущая полумуфта надета на ступицу ведомой полумуфты и может на ней поворачиваться, а ведомая жестко закреплена на кулачковом валу насоса.

Между полумуфтами расположены два одинаковых груза 10, установленные на осях 5 ведомой полумуфты и две проставки 9, установленные на опорных пальцах ведущей полумуфты.

Между осями 5 и опорными пальцами в распор установлены пружины 13, которые, стремясь увеличить расстояние между ними, поворачивают одну полумуфту относительно другой. В основу работы муфты положен принцип использования центробежных сил грузов.


Рис. 4 - Муфта опережения впрыскивания топлива ТНВД ЯМЗ-236

1–корпус; 2–кольцо уплотнительное; 3–ведомая полумуфта; 4–шайба; 5–ось груза; 6–ведущая полумуфта; 7,8–манжеты; 9–проставка; 10–груз; 11,12– шайбы регулировочные; 13–пружина

Топливоподкачивающий насос двигателя ЯМЗ-236

Топливоподкачивающий насос ТНВД двигателя ЯМЗ-236 автомобилей Урал, Маз, трактора Т-150 – поршневого типа.

Топливоподкачивающий насос (рис. 5) крепится тремя болтами с левой стороны на корпусе топливного насоса высокого давления и приводится в действие от эксцентрика кулачкового вала через роликовый толкатель.

В корпусе 1 насоса размещены поршень 2, пружина 3 поршня, упирающаяся с одной стороны в поршень, а с другой – в пробку 5, всасывающий 26 и нагнетательный 13 клапаны, прижимаемые к седлам 27 пружинами 14.


Рис. 5 - Топливоподкачивающий насос ТНВД ЯМЗ-236

1–корпус; 2–поршень; 3–пружина поршня; 4–уплотнительное кольцо; 5, 16–пробки; 6–втулка штока; 7–шток толкателя; 8–толкатель; 9–стопорное кольцо толкателя; 10–сухарь толкатели; 11–ось ролика; 12–ролик; 13–нагнетательный клапан; 14–пружина клапана; 15–уплотнительные шайбы; 17–корпус цилиндра; 18–цилиндр; 19–поршень; 20–шток; 21–рукоятка; 22–защитный колпачок; 23,24,25–уплотнительные всасывающий кольца; 26–клапан; 27– седло клапана

Полость корпуса насоса ТНВД двигателей ЯМЗ-236 автомобилей Урал, Маз, трактора Т-150, в которой перемещается поршень, соединена каналами с полостями над всасывающим и под нагнетательным клапанами.

Привод поршня осуществляется толкателем 8 через шток 7. Ролик толкателя вращается на плавающей оси 11, застопоренной двумя сухарями 10 от продольного перемещения.

Одновременно сухари толкателя, перемещаясь в пазах корпуса 1, предохраняют толкатель от разворота. Шток 7 перемещается в направляющей втулке 6, которая ввернута в корпус насоса на специальном клее. Шток и втулка представляют собой прецизионную пару.

Для нагнетания топлива при неработающем двигателе насос ТНВД оборудуется топливопрокачивающим насосом. Этот насос используется для удаления воздуха из топливной системы перед пуском двигателя, а также для заполнения топливом всей магистрали при техническом уходе за топливной аппаратурой.

Форсунка дизеля ЯМЗ-236

Форсунка двигателя ЯМЗ-236 автомобилей Урал, Маз, трактора Т-150 – закрытого типа, с многодырчатым распылителем и гидравлическим управлением подъема иглы.

На двигатели устанавливаются форсунки нескольких моделей, имеющие конструктивные и регулировочные отличия.

Модели форсунок двигателей ЯМЗ-236

Все детали форсунки ЯМЗ собраны в корпусе 7 (рис. 29). К нижнему торцу корпуса форсунки гайкой 5 присоединяются проставка 3 и распылитель (мод. 335.1112110-50, 335.1112110-70, 204.1112110-50 и 204.1112110-50.01 соответственно).

Взаимное расположение корпуса форсунки, проставки и распылителя определяется штифтами, запрессованными в проставке. Внутри корпуса 1 распылителя находится запорная игла 2. Корпус и игла составляют прецизионную пару. Распылитель имеет пять распыливающих отверстий.

Усилие затяжки пружины 6 (давление начала впрыскивания) регулируется винтом 12, ввернутым в корпус форсунки. Винт фиксируется гайкой 10.

Для форсунок моделей 204-50 и 204-50.01 усилие затяжки пружины 6 регулируется регулировочными шайбами, установленными в корпус форсунки. Топливо подводится к форсунке через штуцер 8 ввернутый в корпус форсунки. В штуцер запрессован стержень фильтра 15.

Топливо, просочившееся через зазор между иглой и корпусом распылителя, отводится из форсунки через полость пружины и отверстия в регулировочном винте и колпачке 9.


Рис. 6 - Форсунка ЯМЗ модели 267-01

1–корпус распылителя; 2–игла распылителя; 3–проставка; 4–штанга; 5–гайка распылителя; 6–пружина; 7–корпус; 8–штуцер с фильтром; 9–колпак; 10–гайка; 11–шайба; 12–регулировочный винт; 13–тарелка пружины; 14–штифт; 15–щелевой фильтр

Форсунка автомобилей Урал, Маз, трактора Т-150 устанавливается в стакан головки цилиндров. Под торец гайки распылителя подкладывается гофрированная шайба для уплотнения от прорыва газов.

Форсунки ЯМЗ моделей 261-13

Все детали форсунки ЯМЗ-236 (рис. 7) собраны в корпусе 2. К нижнему торцу корпуса форсунки гайкой 3 присоединяется корпус 4 распылителя, внутри которого находится запорная игла 5. Игла и корпус распылителя составляют прецизионную пару, которая может заменяться только комплектно.

Распылитель имеет четыре распыливающих отверстия и фиксируется относительно корпуса двумя штифтами 6. Нижний конец штанги 1 упирается в хвостовик иглы распылителя. Сверху на штангу напрессована тарелка 7, в которую упирается пружина 13 форсунки.

Усилие предварительной затяжки пружины регулируется винтом 9, ввернутым в гайку 11 пружины с контргайкой 8. На гайку пружины навернут колпак 10 с уплотнительной шайбой 12.


Рис. 7 - Форсунка ЯМЗ модели 267-13

1–штанга; 2–корпус; 3–гайка распылителя; 4–корпус распылителя; 5–игла распылителя; 6–штифт; 7–тарелка пружины; 8–контргайка; 9– регулировочный винт; 10–колпак; 11–гайка пружины; 12–шайба; 13–пружина; 14–втулка; 15–штуцер; 16–фильтр;

Топливо к форсунке ЯМЗ-236 подводится через штуцер 15, в который установлена втулка 14, поджимающая сетчатый фильтр 16. Топливо, просочившееся между иглой и корпусом распылителя, отводится из форсунки через отверстия в гайке пружины и колпаке.

Форсунка устанавливается в стакан головки цилиндров. Под торец гайки распылителя подкладывается медная гофрированная шайба для уплотнения от прорыва газов. Для уплотнения внутренней полости головки цилиндров на штуцер форсунки надет уплотнитель.

Регулировка форсунок дизельного двигателя ЯМЗ-236

При обслуживании каждой форсунки двигателя ЯМЗ-236 провести проверку и регулировку в следующем порядке:

Каждую форсунку автомобилей Урал, Маз, трактора Т-150 отрегулируйте на давление начала впрыскивания.

Давление начала впрыскивания форсунок моделей 267-01, 267-11, 261-13 (12) регулируется винтом при снятом колпаке форсунки и отвернутой контргайке. При ввертывании винта давление повышается, при вывертывании - понижается.

Проверить герметичность распылителя по запирающему конусу иглы и отсутствие течей в местах уплотнений линии высокого давления. Для этого создать в форсунке ЯМЗ-236 давление топлива на 1…1,5 МПа (10…15 кгс/см2) ниже давления начала впрыскивания.

При этом в течение 15 секунд не должно быть подтекания топлива из распыливающих отверстий; допускается увлажнение носика распылителя без отрыва топлива в виде капли.

Герметичность в местах уплотнений линии высокого давления проверить при выдержке под давлением в течение 2 мин; на верхнем торце гайки распылителя (при установке форсунки под углом 15 к горизонтальной поверхности) не должно образовываться отрывающейся капли топлива.

Подвижность иглы проверить прокачкой топлива через форсунку, отрегулированную на заданное давление начала впрыскивания на опрессовочном стенде, при частоте впрыскивания 30-40 в минуту. Допускается подвижность иглы проверять одновременно с проверкой качества распыливания.

Качество распыливания считается удовлетворительным, если топливо впрыскивается в атмосферу в туманообразном состоянии и равномерно распределяется как по всем струям, так и по поперечному сечению каждой струи.

Начало и конец впрыскивания при этом должны быть четкими. После окончания впрыскивания допускается увлажнение носика распылителя без образования капли.

Впрыскивание топлива у новой форсунки ЯМЗ-236 автомобилей Урал, Маз, трактора Т-150 сопровождается характерным резким звуком. Отсутствие резкого звука у бывших в эксплуатации форсунок не означает снижения качества их работы.

Герметичность уплотнения, соединения и наружных поверхностей полости низкого давления проверять опрессовкой воздухом давлением 0,45-0,05 МПа (4,5-0,5 кгс/см2). Пропуск воздуха в течении 10 секунд не допускается при подводе воздуха со стороны носика распылителя.

Герметичность соединений «распылитель-гайка распылителя» проверять опрессовкой воздухом давлением 0,5-0,1 МПа (5-1 кгс/см2) в течение 10 секунд при подводе воздуха со стороны носика распылителя. Пропуск пузырьков воздуха по резьбе гайки распылителя при погружении ее в дизельное топливо не допускается.

При закоксовке или засорении одного или нескольких распыливающих отверстий распылителя форсунку ЯМЗ-236 разобрать, детали форсунки прочистить и тщательно промыть в профильтрованном дизельном топливе. При не герметичности по запирающему конусу распылитель в сборе подлежит замене. Замена деталей в распылителе не допускается.

Разборку форсунки ЯМЗ-236 выполнять в следующей последовательности:

Форсунки моделей 267-01, 267-11, 204-50, 261-13(12)

- отвернуть колпак форсунки;
- отвернуть контргайку и вывернуть до упора регулировочный винт;
- отвернуть гайку пружины на полтора – два оборота;
- отвернуть гайку распылителя;
- снять распылитель, предохранив иглу распылителя от выпадания.

Нагар с корпуса распылителя счищать металлической щеткой или шлифовальной шкуркой с зернистостью не грубее "М40". Распыливающие отверстия прочистить стальной проволокой диаметром 0,3 мм.

Применять для чистки внутренних полостей корпуса распылителя и поверхностей иглы твердые материалы и шлифовальную шкурку не допускается.

Перед сборкой распылитель и иглу тщательно промыть в профильтрованном дизельном топливе. Игла должна легко перемещаться: выдвинутая из корпуса распылителя на одну треть длины направляющей, при наклоне распылителя на угол 45 от вертикали, игла должна плавно, без задержек полностью опускаться под действием собственного веса.

Сборку форсунки ЯМЗ-236 производить в последовательности обратной разборке. При затяжке гайки разверните распылитель против направления навинчивания гайки до упора в фиксирующие штифты и, придерживая его в этом положении, наверните гайку рукой, после чего гайку окончательно затяните.

Момент затяжки гайки распылителя 60…70 Нм (6…7 кг/см), штуцера форсунки 80…100 Нм (8…10 кг/см). После сборки отрегулировать форсунку на давление начала впрыскивания и проверить качество распыливания топлива и четкость работы распылителя.

Все необходимые детали можно приобрести в нашем каталоге

Устройство форсунки двигателя

Проблемы и неисправности форсунок двигателя

Для поддержания нормальной работы топливной системы необходимо проводить периодическую чистку форсунок. По мнению специалистов, процедура должна выполняться каждые 20-30 тыс. км пробега, но на практике необходимость в таких работах возникает уже после 10-15 тыс. км. пробега. Это связано с некачественным топливом, плохим состоянием дорог и не всегда правильным уходом за машиной. Рекомендуется производить ремонт форсунок у специалистов, например ремонтировать форсунки систем Common Rail лучше тут.

К самым актуальным проблемам, преследующими форсунки любого типа, относится появление на стенках деталей отложений, являющихся следствием использования низкокачественного топлива. Результатом является появление загрязнений в системе подачи горючей жидкости и возникновение перебоев в работе, потеря мощности мотором, чрезмерный расход ГСМ. Причинами, влияющими на работу форсунок, могут быть:

  • чрезмерное содержание серы в топливе;
  • коррозия металлических элементов;
  • износ;
  • засорение фильтров;
  • воздействие высоких температур;
  • проникновение влаги и воды.

Надвигающиеся неполадки можно определить по ряду признаков, таких как появление незапланированных сбоев при старте двигателя, увеличение расхода топлива, появление выхлопа черного цвета, нарушение ритмичности работы мотора на холостом ходу.

Способы чистки форсунок

Существует три метода чистки форсунок:

  • ультразвуковая чистка;
  • промывка инжектора через топливную рампу;
  • добавление в топливо специальной промывки.

Ультразвуковая чистка, пожалуй, самая эффективная, но имеет ряд недостатков. Так, с помощью данного метода очищаются лишь сами форсунки, другие же части топливной системы не затрагиваются. Кроме того, данный метод исключен для форсунок, в конструкции которых содержатся элементы керамики (они разрушаются под действием ультразвука).

Метод чистки инжектора через топливную рампу подразумевает присоединение к ней трубок, через которые подается специальный химический состав под высоким давлением. Подобную процедуру выполняют, как правило, на сервисе. Стоимость ее довольно высока. После данной процедуры в обязательном порядке следует заменить свечи зажигания.

Прочистка форсунок посредством специального химического состава, заливаемого в бак, зачастую малоэффективна. Химические соединения, как правило, не способны справиться с сильным загрязнением. Данный способ хорош в профилактических целях, но не для чистки непосредственно. В состав подобных соединений для чистки входят жидкие компоненты, нацеленные на удаление налета, а также мелкодисперсные частицы с абразивными свойствами. Они должны очищать топливопровод от продуктов окисления и налета, а форсунки под их воздействием должны очищаться от нагара. В результате форма распыла топлива вновь должна приобрести правильную конусообразную форму.

Использование форсунок (инжекторов) позволило сделать работу автомобильного двигателя более экономичной и контролируемой в сравнении с карбюраторными системами. Их главная задача – обеспечение точной дозировки топлива, подаваемого в камеру сгорания, в определенный момент времени и образование оптимальной топливовоздушной смеси. Применяются форсунки и на бензиновых, и на дизельных моторах. Конструктивно они представляют собой сложные устройства высокой точности обработки.

Функции и виды форсунок

Топливная форсунка, или инжектор, представляет собой своеобразный клапан, работа которого контролируется блоком управления (ЭБУ) двигателя. Это позволяет подавать топливо, находящееся под высоким давлением, строго ограниченными порциями и в заданный момент времени. В зависимости от типа системы впрыска форсунка может устанавливаться в различных местах. Так, при моновпрыске она располагается перед дросселем во впускном трубопроводе. В системе с распределенным впрыском форсунки устанавливаются в ГБЦ перед клапанами. При этом для каждого цилиндра предусматривается свой отдельный инжектор. В двигателях с непосредственным впрыском форсунки находятся в верхней части цилиндра, подавая топливо сразу в камеру сгорания.

По способу управления (типу привода) инжекторы разделяют на следующие типы:

  • механические;
  • электромагнитные;
  • электрогидравлические;
  • пьезоэлектрические.

Устройство механической форсунки

Механические форсунки применяются на дизелях. Принцип их работы основан в воздействии усилия давления топлива на запорную пружину. Когда давление в системе выше сопротивления пружины, игла поднимается и происходит впрыск. После того как давление падает, игла возвращается в исходное положение. Стоит отметить, что давление таких форсунок дизельных двигателей очень низкое, а потому они редко применяются в современном автомобилестроении.

Электромагнитные и гидромеханические инжекторы могут иметь:

  • клапан форсунки со сферическим профилем;
  • штифтовой клапан;
  • дисковый клапан.

Как устроена электромагнитная форсунка двигателя

Такой тип инжекторов используется преимущественно в бензиновых системах, включая двигатели с непосредственным впрыском. По функциональному назначению электромагнитные форсунки разделяются на пусковые (например, в системе “K-Jetronic”) и рабочие. Последние могут быть центральными (выполняют точечный впрыск) и индивидуальными (распределяют топливо по цилиндрам).

Устройство электромагнитной форсунки

Конструктивно электромагнитная форсунка самая простая. Ее основными элементами являются:

  • герметичный корпус;
  • разъем для подключения к электрической цепи;
  • запирающая пружина;
  • обмотка возбуждения клапана;
  • якорь электромагнита;
  • игла;
  • уплотнители;
  • сопло;
  • фильтр-сеточка форсунки;
  • распылитель.

В заданный момент времени ЭБУ двигателя подает напряжение на обмотку возбуждения, что обеспечивает формирование электромагнитного поля, воздействующего на якорь с иглой. В этот момент усилие сжатия пружины становится меньше магнитной силы, якорь втягивается, игла поднимается и освобождает сопло инжектора. Управляющий клапан форсунки двигателя открывается, и происходит впрыск топлива под высоким давлением. Когда блок управления прекращает подачу энергии на обмотку, пружина возвращает иглу в исходное положение.

Вопреки расхожему заблуждению, сама электромагнитная форсунка бензинового двигателя не создает давление. Давление в системе создается топливным насосом.

Электромагнитные инжекторы подбираются в зависимости от мощности двигателя. Прежде всего, необходимо знать, какое сопротивление у форсунок. В заводском исполнении они бывают низкоомные (2-6 Ом) и высокоомные 12-16 Ом. При низком сопротивлении может быть установлен дополнительный резистор в 6-8 Ом, который снизит потребление тока.

Принцип» действия электрогидравлической форсунки

Электрогидравлический инжектор (насос-форсунка) – это форсунки топливные дизельные. Они подходят для типовых ТНВД и систем Common Rail. Состоят такие форсунки из следующих элементов:

  • сопло;
  • пружина;
  • камера управления;
  • дроссель слива;
  • якорь электромагнита;
  • магистраль слива топлива;
  • разъем для подключения к электрической цепи;
  • обмотка возбуждения;
  • штуцер подачи топлива;
  • дроссель на впуске;
  • поршень;
  • игла распылителя.

В момент начала цикла управляющий электромагнитный клапан форсунки полностью закрыт. Топливо в системе давит на поршень, находящийся в камере управления, а игла инжектора плотно прижата к седлу. ЭБУ двигателя подает напряжение на обмотку возбуждения электромагнитного клапана. Дроссель слива открывается, и топливо поступает в сливную магистраль.

Дроссель впуска, в свою очередь, не позволяет мгновенно выровнять давление на впуске и в камере управления. Таким образом, на некоторый промежуток времени усилие, воздействующее на поршень, уменьшается, а давление на иглу остается высоким. Эта разность давлений и обеспечивает подъем иглы и впрыск топлива.

Особенности работы пьезоэлектрической форсунки

Это исключительно дизельная форсунка, которая считается наиболее прогрессивной, поскольку обеспечивает более быстрое срабатывание, максимально точную дозировку и позволяет выполнять многократный впрыск на протяжении одного цикла. Она применяется в дизельных двигателях Common Rail. Пьезоэлектрические форсунки двигателя состоят из таких деталей:

  • игла;
  • уплотнители;
  • блок дросселей;
  • пружина запора иглы;
  • переключающий клапан форсунки;
  • пружина клапана;
  • поршень клапана;
  • пьезоэлемент;
  • сливная магистраль;
  • поршень толкателя;
  • фильтр;
  • разъем для подключения к цепи питания;
  • нагнетательная магистраль.

Принцип работы такого инжектора основан на изменении длины пьезоэлемента при подаче на него напряжения. В начальном положении игла под воздействием давления топлива посажена на седло. Когда ЭБУ двигателя посылает сигнал на пьезоэлемент, последний, изменяя длину, воздействует на поршень толкателя. Переключающий клапан форсунки открывается, и топливо подается на слив. Аналогично электрогидравлическим системам, создается разность низкого давления над иглой и высокого под ней, и она поднимается, выполняя впрыск дизтоплива. Количество последнего при этом регулируется длительностью подачи напряжения на пьезоэлемент пьезофорсунки и давлением в топливной рампе двигателя.

Рабочие параметры и неисправности инжекторов

Одной из основных характеристик форсунки является факел распыла. Для обеспечения корректной работы двигателя топливо должно распыляться под высоким давлением и на большую площадь. При этом размеры капель горючего должны быть как можно меньше. Это позволяет ускорить процесс сгорания и уменьшить расход топлива. Если же подача бензина или дизеля будет осуществляться струей, возникнут провалы в работе мотора, увеличится количество сажи в выхлопе. Происходит это, когда распылитель инжектора загрязняется.

Также важным параметром является время впрыска форсунок, или лаг открытия и закрытия. Он зависит от множества параметров напряжения, уровня давления и типа топлива. Измеряется лаг лабораторным методом, в ходе которого определяется количество пролитого топлива за единицу времени.

Несмотря на сложное устройство, топливные инжекторы имеют длительный срок эксплуатации. В среднем он составляет от 100 до 150 тысяч километров пробега. Основным требованием для обеспечения продолжительности работы форсунок является качество топлива и своевременный технический осмотр автомобиля.

Видео: Устройство и принцип действия насос форсунки. Принцип работы форсунки инжекторного двигателя. Изучаем Common Rail. Дизельные форсунки. Разбираем топливную форсунку. Промывка топливной форсунки своими руками. Что убивает форсунки дизельного двигателя. Регулировка дизельных форсунок на стенде в домашних условиях. Работа распылителя и стенда КИ-562

Форсунка — это элемент системы впрыска, предназначенный для дозированной подачи топлива, его распыления в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси.

Форсунки используются в системах впрыска как бензиновых, так и дизельных двигателей. На современных двигателях устанавливаются форсунки с электронным управлением впрыска.

В зависимости от способа осуществления впрыска различают:

  • электромагнитные форсунки
  • электрогидравлические форсунки
  • пьезоэлектрические

Общий вид форсунки системы «Коммон рейл» фирмы «Бош» показан на рисунке.

Рис. Разрез электрогидравлической форсунки фирмы Бош:
1 – отводящий дроссель; 2 – игла; 3 – распылитель; 4 – пружина запирания иглы; 5 – поршень управляющего клапана; 6 – втулка поршня; 7 – подводящий дроссель; 8 – шариковый управляющий клапан; 9 – шток; 10 – якорь; 11 – электромагнит; 12 – пружина клапана

Форсунка состоит из:

  • электромагнита 11
  • якоря электромагнита 10
  • маленького шарикового управляющего клапана 8
  • запорной иглы 2
  • распылителя 3
  • поршня управляющего клапана 5
  • подпружиненного штока 9

Шарик клапана прижимается к седлу с усилием пружины и электромагнита. Сила пружины рассчитана на давление до 100 кг/см2, что значительно ниже давления в линии высокого давления (250…1800 кг/см2), поэтому только при приложении усилия электромагнита шариковый клапан не отойдет от седла, отделяя аккумулятор от линии слива. Игла распылителя форсунки в нерабочем состоянии прижимается к седлу пружиной распылителя – это предотвращает попадание воздуха в форсунку при пуске двигателя.

В отличие от бензиновых электромеханических фор­сунок, в форсунках «Коммон Рейл» электромагнит при давлении 1350 … 1800 кгс/см2 не в состоянии поднять за­порную иглу, поэтому используется принцип гидроусиления.

Рис. Принцип действия электрогидравлической форсунки:
а – форсунка в закрытом состоянии; b – форсунка в открытом состоянии; c – фаза закрытия форсунки

При создании давления в аккумуляторе, оно действует как на конусную поверхность иглы, так и на поршень управляющего клапана 5. Поскольку площадь рабочей поверхности поршня на 50% больше площади конусной поверхности иглы, игла распылителя продолжает прижиматься к седлу.

При подаче напряжения от блока управления на электромагнит 11, шток 9 якоря штока поднимается и открывается шариковый управляющий клапан 8. Давление в камере управления 7 падает в результате открытия дроссельного отверстия и топливо пропускается из зоны над поршнем управляющего клапана в зону слива. Давление на поршень управляющего клапана падает, так как подводящее дроссельное отверстие управляющего клапана имеет меньшее сечение чем отводящее. Запорная игла 2 при этом под действием высокого давления в кармане распылителя 3 открывается. Количество подаваемого топлива зависит от времени подачи напряжения в электромагнит 11, а значит от времени открытия шарикового управляющего клапана 8. При прекращении подачи напряжения на электромагнит 11, якорь под действием пружины опускается вниз, при этом шариковый управляющий клапан закрывается, давление в камере управления восстанавливается через специальный жиклер. Под действием давления топлива на поршень управляющего клапана 5, имеющего диаметр больше диаметра иглы, последняя закрывается.

На входе топлива в форсунку установлен аварийный ограничитель подачи топлива. Он предотвращает опорожнение аккумулятора через форсунку с зависшей иглой или клапаном управления, а также повреждение соответствующего цилиндра дизеля. В нем используется принцип возникновения разницы давлений по обе стороны от клапана 1 при прохождении топлива через его жиклеры 2. Сечение жиклеров, за­тяжка пружины 3 и диаметр клапана подобраны по максимальной продолжительности и расходу, т.е. подаче топлива.

Рис. Аварийный ограничитель подачи топлива через форсунку

В системах «коммон рейл» первых поколений общее количество горючей смеси, впрыскиваемой в цилиндр, разделялось на предварительное и основное. Однако более гармоничной является такая схема сгорания, когда во время одного рабочего такта горючая смесь будет разделена на возможно большее количество частей. До сих пор добиться этого было невозможно по причине инерционности традиционных форсунок с электромагнитным управлением.

Одним из путей совершенствования системы «коммон рейл» является увеличение быстродействия открытия форсунки. Минимальное время открытия форсунки для электромагнита с подвижным сердечником составляет 0,5 мс, что не позволяет оперативно изменять подачу топлива. Для более быстрого срабатывания форсунки в настоящее время применяется пьезокерамическая форсунка, которая работает вчетверо быстрее.

Известно, что при подаче электрического напряжения на пьезокерамическую пластинку она на несколько микрон изменяет свою толщину.

Пьезоэлемент, являющийся исполнительным элементом форсунки, представляет собой параллелепипед длиной 30…40 мм, состоящий из спеченных между собой 300 керамических пластинок (кристаллов), расширяющийся на 80 мкм всего за 0,1 мс, чего достаточно чтобы воздействовать на иглу форсунки с усилием 6300 Н. При этом для управления пьезоэлементом используют напряжение бортовой сети автомобиля.

Для усиления пьезоэффекта в керамику добавляют палладиум и цирконий. Пьезоэлемент потребляет энергию только при подаче напряжения и регенерирует ее при выключении напряжения, таким образом, являясь регенератором энергии.

Использование пьезоэлемента, кроме быстроты срабатывания, обеспечивает большую силу открытия клапана сброса давления над иглой форсунки и высокую точность хода для быстрого сброса давления подачи топлива.

Электрогидравлическая форсунка с пьезоэлементом показана на. Основными составляющими форсунки являются модуль исполнительного элемента, состоящего из пьезоэлектрического элемента и его составляющих, модуль плунжера, состоящего из поршней, амортизатора давления и пружины, клапан переключения, игла. Для окончательной очистки топлива применяется специальный стержневой фильтр.

Рис. Разрез пьезоэлектрогидравличе­ской форсунки:
1 ­– патрубок рециркуляции; 2 – электрический разъем; 3 – стержневой фильтр; 4 – корпус форсунки; 5 – пьезоэлектричесий элемент; 6 – сопряженный поршень; 7 – поршень клапана; 8 – клапан переключения; 9 – игла форсунки; 10 – амортизатор давления

Увеличение длины модуля исполнительного элемента преобразуется модулем соединителя в гидравлическое давление и перемещение, воздействующие на клапан переключения. Модуль плунжера действует как гидравлический цилиндр. На него постоянно воздействует давление подачи топлива 10 кгс/ см2 через редукционный клапан в обратной магистрали.

Топливо выполняет роль амортизатора давления между плунжером соединителя выпускного дросселя 8 и плунжером клапана 5 в модуле плунжера. Из пустого закрытого инжектора (присутствует воздух) воздух удаляется при стартерном пуске двигателя (с частотой вращения вала стартера). Помимо этого, инжектор наполняется топливом, подаваемым погруженным в топливном баке насосом, проходящим через управляемый обратный клапан против направления потока топлива.

Клапан переключения состоит из пластины клапана, плунжера клапана 5, пружины клапана и пластины дросселя 3. Топливо под давлением протекает через впускной дроссель 4 в пластине дросселя к игле форсунки и в камеру над иглой форсунки. Благодаря этому происходит выравнивание давления над и под иглой форсунки. Игла форсунки удерживается в закрытом положении силой пружины форсунки. При нажиме плунжера клапана 5 открывается канал выпускного дросселя и топливо под давлением вытекает через выпускной дроссель 8 большего размера, расположенный над иглой форсунки. Топливо под давлением поднимает иглу форсунки, в результате чего происходит впрыск. Благодаря быстрым командам на переключение пьезо-электрического элемента за один рабочий такт друг за другом производятся несколько впрысков.

Рис. Принцип работы пьезофорсунки:
1 – игла форсунки; 2 – пружина форсунки; 3 – пластина дросселя; 4 — впускной дроссель; 5 – плунжер клапана; 6 – линия высокого давления; 7 – соединительный элемент; 8 – выпускной дроссель; а – форсунка закрыта; б — форсунка открыта

Из-за особенностей процесса сгорания, присущих дизельным двигателям с турбонаддувом, для уменьшения шума и снижения выброса оксидов азота в цилиндры двигателя перед впрыском основной дозы топлива подается небольшая капля топлива (1…2 мм3) «пилотный впрыск», которая плавно перетекает в распыление остальной части топлива. Предварительный впрыск позволяет топливу воспламеняться быстрее. Давление и температура при этом возрастают медленнее чем при обычном впрыске, что уменьшает «жесткость» работы двигателя и его шум с одновременным снижением выбросов окислов азота. Характер процесса двойного впрыска показан на рисунке:

Рис. График процесса двойного впрыска и характер распыления топлива

При холодном двигателе и в режиме, приближенном к холостому ходу, происходит два предварительных впрыска. При увеличении нагрузки предварительные впрыски один за одним прекращаются, пока при полной нагрузке двигатель не перейдет в режим основного впрыска. Оба дополнительных впрыска необходимы для регенерации сажевого фильтра.

Благодаря тому, что пьезофорсунки имеют намного меньшее время срабатывания, чем традиционные электромагнитные, стало возможным разделение горючей смеси на несколько отдельных микродоз: после многократных предварительных впрыскиваний очень небольших количеств горючей смеси следуют либо основное впрыскивание, либо при необходимости многие так называемые «послевпрыскивания».

Рис. Характер протекания процесса многоступенчатого впрыска

Время между предварительным впрыскиванием и основным впрыскиванием составляет 100 мс. Объем топлива, попадающего в цилиндр в момент каждого предварительного впрыскивания, составляет 1,5 мм3. Это делается для равномерного распределения давления в камере сгорания и, соответственно, уменьшения шума, создаваемого в процессе сгорания. После впрыскивания, в свою очередь, служат для снижения токсичности отработавших газов. Если в конце цикла сгорания произвести еще одно впрыскивание в цилиндр, то оставшиеся частицы сгорают лучше. Кроме того, в случае, когда во впускной системе установлен фильтр для улавливания несгоревших частиц, такая технология за счет высокой температуры способствует его очистке. Это особенно актуально для двигателей с большим рабочим объемом.

Более того, сейчас стало возможным использовать до семи тактов впрыска вместо трех за один рабочий процесс. Благодаря этому появляются новые возможности для увеличения номинальной мощности двигателя и еще более точного контроля за составом отработавших газов.

Новое поколение форсунок позволяет регулировать не только количество впрыска по времени и его фазы, но и управлять подъемом иглы, что позволяет более четко управлять процессом впрыска.

В настоящее время производители дизельной топливной аппаратуры, например фирма Бош, разработала системы Common Rail с давлением впрыска до 2500 кгс/см2. В этих системах форсунка отличается от традиционной тем, что максимальное давление создается не гидроаккумуляторе, а в самой форсунке. Она снабжена миниатюрным гидроусилителем давления и двумя электромагнитными клапанами, позволяющими варьировать момент впрыска и количество топлива в пределах одного рабочего цикла. Таким образом, здесь совмещены принципы работы Common Rail и форсунки.

Другим направлением форсунок фирмы Bosch является устройство в форсунках небольшого напорного резервуара, сокращающего обратный ход к циклу низкого давления. Это позволяет увеличить давление впрыска и КПД системы.

Форсунки с повышенным давлением впрыска соответствуют нормам Евро-6.

Топливная форсунка является основным исполнительным устройством в любой системе впрыска. Ее главная задача — распылять топливо на мелкие частицы в нужном месте впускного воздушного тракта или непосредственно в цилиндрах двигателя. Форсунки бензиновых и дизельных двигателей выполняют одинаковые функции, но по принципу действия и конструкции — это совершенно разные устройства. В данной главе описываются форсунки только для бензиновых двигателей.

ФОРСУНКИ ВПРЫСКА: ОБЩИЕ СВЕДЕНИЯ

Форсунки впрыска бензина (ФВБ) по конструктивному устройству и по типу реализованного в них способа управления подразделяют на гидромеханические, электромагнитные, магнитоэлектрические и электрогидравлические. В современных системах впрыска бензина используются в основном первые два вида.

По назначению в системе впрыска форсунки бывают пусковыми и рабочими. Рабочие форсунки делят на два вида: центральные форсунки для одноточечного импульсного впрыска и клапанные форсунки для впрыска топлива с распределением по цилиндрам. Разрабатываются рабочие форсунки для впрыска бензина под высоким давлением непосредственно в цилиндры двигателя внутреннего сгорания (ДВС).

Следует отметить, что форсунки впрыска бензина изготовляются под каждый тип двигателя индивидуально, т.е. форсунки впрыска не унифицируются и, как правило, не могут переставляться с одного типа двигателя на другой. Исключение составляют универсальные гидромеханические форсунки фирмы BOSCH для механических систем непрерывного впрыска бензина, которые широко применялись на различных двигателях в составе системы «K-Jetronic». Но и эти форсунки имеют несколько не взаимозаменяемых модификаций.

Почти все форсунки впрыска бензина содержат внутри корпуса мелкосетчатый фильтр тонкой очистки топлива, который часто является причиной нарушения работоспособности форсунки. Восстановить нормальную работу форсунки с загрязненным фильтром можно принудительной промывкой всей системы впрыска специальным многокомпонентным растворителем, который добавляют в моторное топливо (в бензин), и двигатель включают в работу на холостом ходу на 30-40 мин. В настоящее время для этой цели продаются специальные промывочные установки и растворитель. Промывка форсунки вне двигателя путем «отмачивания» в ацетоне или продувкой воздухом не эффективна.

Следует также заметить, что современные форсунки впрыска бензина не разборные и ремонту с демонтажом на детали не подлежат.

ГИДРОМЕХАНИЧЕСКИЕ ФОРСУНКИ

Гидромеханические форсунки (ГМ-форсунки) бывают открытого и закрытого типов. Первый тип ГМ-форсунок представляет собой жиклерные форсунки и в современных системах впрыска бензина не используется. ГМ-форсунки закрытого типа предназначены для применения в механических системах непрерывного распределенного по цилиндрам впрыска топлива на бензиновых ДВС. Такие форсунки не имеют электрического управления. Они открываются под напором бензина, а закрываются возвратной пружиной. Давление напора бензина, при котором закрытая форсунка открывается, называется начальным рабочим давлением (НРД) форсунки и обозначается как Рфн. ГМ-форсунки закрытого типа устанавливаются в предклапанных зонах впускного коллектора для каждого цилиндра в отдельности.

По конструкции закрытые форсунки могут различаться устройством запорного клапана и способом крепления в литом корпусе впускного коллектора. По типу запорного устройства закрытые форсунки подразделяют на форсунки со сферическим, дисковым и штифтовым клапаном; по способу крепления — на вставные и резьбовые.

Закрытые ГМ-форсунки в дозировании топлива участия не принимают. Их главная функция — распылять бензин на горячие впускные клапаны двигателя. При этом распыленные частицы бензина переходят в парообразное состояние, а впускной клапан охлаждается. Чтобы не было соприкосновения струи бензина со стенками предклапанной зоны впускного коллектора, бензин распыляется с раскрывом на угол не более 35е, а форсунка по отношению к клапану устанавливается по строго заданной геометрии.

Дозирование топлива в механической системе впрыска производится изменением напора бензина у постоянно открытого распылительного сопла форсунки. При этом давление напора формируется давлением вне форсунки — в дифференциальном клапане дозатора-распределителя механической системы впрыска.

Для того чтобы клапан форсунки закрытого типа находился в состоянии «открыто», давление бензина в клапанной полости 6 должно быть все время несколько выше усилия Рп возвратной пружины 10 (Рфн > Р„).

Это достигается заданием достаточно высокого (не менее 6 бар) рабочего давления Ps (РДС) в системе (в топливоподающей магистрали до дозатора-распределителя) и поддержанием РДС на постоянном уровне.

ОСНОВНЫМИ ПАРАМЕТРАМИ ЗАКРЫТОЙ ФОРСУНКИ ЯВЛЯЮТСЯ ПЯТЬ ПОКАЗАТЕЛЕЙ.

1. Начальное рабочее давление Рфн (НРД) форсунки сразу после ее сборки на заводе-изготовителе (давление открывания новой форсунки). НРД для закрытых форсунок разных модификаций лежит в пределах 2,7…5,2 кг/см2. Для новых форсунок из одного типоразмерного ряда НРД может отличаться не более чем на ±20%. При подборе комплекта форсунок на двигатель различие НРД не должно превышать ±4%. В продажу (как запчасти) форсунки поступают с одинаковым НРД в упаковке. Замена форсунок неполным комплектом может стать причиной нарушения нормальной работы двигателя.

2. Минимальное рабочее давление Рф т|„ (МРД) форсунки после ее приработки на двигателе (после 5000 км пробега). Это давление становится меньше НРД новой форсунки на 15…20% и стабилизируется (за 5 лет нормальной эксплуатации изменяется не более чем на 5%).

3. Рабочее давление Рф форсунки после ее приработки. Это изменяющееся во время работы двигателя давление во внутренней полости форсунки от минимального рабочего давления Рф min (МРД) до максимального значения рабочего давления Ps max(РДС)в механической системе впрыска.

4. Давление отсечки форсунки Р0 (ДОТ). Это давление, ниже которого форсунка надежно закрыта иногда называется давлением слива). Давление отсечки всегда меньше Рф min на 1,0…1,5 кг/см2, но несколько больше остаточного давления Рост в системе впрыска сразу после выключения двигателя.

5. Производительность Пф форсунки. Это количество бензина, которое распыляется через постоянно открытую форсунку за единицу времени при определенном рабочем давлении Рф в полости форсунки. Обычно Пф закрытой форсунки задается для двух крайних значений рабочего давления: Рф min и Ps max. Этим двум значениям соответствуют два режима работы двигателя: Рф m,n — холостому ходу, Ps m8K — полной нагрузке. Производительность Пф задается в см3/мин или в гр/с. Например, для закрытых форсунок 5-ти цилиндрового ДВС автомобиля AUDI-1O0 (2,2 л, 140 л/с) показатели производительности соответственно равны 30 и 90 см3/мин (при работе в системе «K-Jetronic»).

Вышедшие из строя форсунки закрытого типа ремонту не подлежат, но, как и любые другие, могут быть «промыты» в составе системы впрыска на работающем двигателе.

ЭЛЕКТРОМАГНИТНЫЕ ФОРСУНКИ

Электромагнитные форсунки применяются в современных системах впрыска бензина в качестве клапанных рабочих и пусковых форсунок (для систем распределенного по цилиндрам впрыска с электронным управлением), а также в качестве центральных форсунок впрыска (в системах питания с моновпрыском). Центральная форсунка наиболее распространенной конструкции для систем впрыска бензина группы «Mono».

Современные ЭМ-форсунки способны надежно срабатывать со скважностью* S =»» 0,5 и при этом устойчиво (управляемо) удерживать открытое состояние в течение 2…2,5 мс. Разброс этого параметра в конкретном типоразмерном ряде форсунок не более ±5%. Такой быстроте срабатывания ЭМ-форсунки отвечает частота возвратно-поступательного движения подвижного стержня электромагнита форсунки в 200…250 с-1. Это является пределом возможного для данного типа электроуправляемых форсунок.

При применении ЭМ-форсунок в качестве клапанных рабочее давление Ps в системе впрыска может быть понижено с 6,5 бар (в механических системах) до 4,8…5 бар, что повышает надежность работы электробензонасоса и понижает вероятность протечек топлива в уплотнительных соединениях бензома-гистралей.

При электронном управлении форсунками точность дозирования впрыснутого бензина значительно повышается. Это становится возможным потому, что давление внутри ЭМ-форсунки поддерживается постоянным, и количество впрыснутого топлива определяется только временем открытого состояния форсунки.

ОСНОВНЫМИ ПАРАМЕТРАМИ ЭМ-ФОРСУНКИ ЯВЛЯЮТСЯ:

1. Постоянное рабочее давление в полости форсунки (РДФ), равное рабочему давлению Ps системы, выраженное в бар.

2. Производительность форсунки (пропускная СПОСОбнОСТЬ В ОТКРЫТОМ СОСТОЯНИИ — В СМ3/МИН или в г/с при заданном Ps РДС).

3. Минимальное напряжение надежного срабатывания форсунки (постоянное напряжение в вольтах).

4. Минимальное время цикловой подачи топлива (минимальное надежно управляемое время продолжительности открытого состояния форсунки — в мс).

5. Внутреннее омическое сопротивление Нф форсунки (сопротивление катушки соленоида — в омах).

На корпусе форсунки набивается цифровой код, по которому в справочном каталоге можно определить все вышеперечисленные параметры. На корпусе выбивается также торговый знак или название фирмы-изготовителя.

О внутреннем омическом сопротивлении Нф форсунки следует сказать отдельно. Если катушка соленоида намотана медным проводом, то получить величину Нф более 2…3 Ом невозможно (накладывается требование минимизации индуктивности Ls катушки). В таком случае для ограничения величины рабочего тока 1ф форсунки последовательно с катушкой соленоида включают дополнительный резистор. Применяют также обмоточный провод с высоким удельным сопротивлением (для катушки соленоида), что исключает необходимость установки дополнительных резисторов. Но в любом случае общий средний ток управления сразу всеми форсунками (или группой форсунок) впрыска на двигателе не должен превышать значения 3…5 А.

В некоторых случаях на многоцилиндровых двигателях применяют «групповое» управление форсунками. Это когда форсунки объединены в группы, а каждая группа управляется от отдельного электронного блока. Но наиболее эффективной является система впрыска бензина, в которой каждая рабочая клапанная ЭМ-форсунка управляется независимо от других (последовательный синхронизированный распределенный по цилиндрам импульсный впрыск бензина с управлением от многоканального ЭБУ впрыском).

По типу запирающего клапана ЭМ-форсунки, как и гидромеханические, подразделяют на три вида:

— форсунки со сферическим профилем запорного элемента:

— форсунки с штифтовым клапаном (с конусным или игольчатым запорным стержнем):

— форсунки с дисковым клапаном (с плоским или тарельчатым запорным элементом).

Выпускаются форсунки с внутренним электрическим сопротивлением 2,4 Ом: 12,5 Ом; 16 Ом. Малое сопротивление связано с применением обмоточного провода из меди и с необходимостью иметь малую величину индуктивности L соленоида, которая прямо зависит от числа витков Wc обмотки соленоида.

Низкое сопротивление форсунки увеличивают дополнительным сопротивлением в 6…8 Ом, что уменьшает потрябляемый ток. Обмотки высокоомной форсунки выполнены из провода с большим удельным сопротивлением (например, из латуни), что позволяет иметь малое L и большое R.

По производительности П впрыска форсунки подбирают по типам и мощности тех двигателей, на которые эти форсунки устанавливаются. Производительность форсунки определяется под рабочим давлением системы, как количество Кв бензина, прошедшего через форсунку за единицу времени t, если она постоянно открыта.

ПУСКОВЫЕ ЭЛЕКТРОМАГНИТНЫЕ ФОРСУНКИ

К электромагнитным форсункам относятся и пусковые гидроклапаны с электромагнитным управлением, которые по принципу действия мало чем отличаются от ЭМ-форсунок. Именно поэтому пусковые гидроклапаны чаще называют пусковыми форсунками.

Основное назначение пусковой форсунки (ПС-форсунки) — это работа в механической системе непрерывного распределенного впрыска во время запуска холодного двигателя. Иногда ПС-форсунка используется как форсажное устройство, наподобие ускоритвльного насоса в карбюраторе, или как устройство для запуска перегретого двигателя с турбонаддувом. Пусковая форсунка применяется и в некоторых системах впрыска группы «L». В любом случае ПС-форсунка работает непосредственно от бортсети автомобиля, а в систему электронного управления двигателем включается опосредовано через специальное электронное реле управления.

К ПС-форсункам требования высокой скорости срабатывания не предъявляются, что значительно упрощает конструктивное исполнение ее составных компонентов. Так, масса якоря электромагнита, который (якорь) одновременно является и запирающим элементом клапана форсунки, число витков катушки электромагнита, сечение распылительного сопла, упругость возвратной пружины — все это заметно увеличено по сравнению с рабочей клапанной ЭМ-форсункой.

ФОРСУНКА ЗАКРЫТОГО ТИПА С ПЛУНЖЕРНЫМ НАСОСОМ

Ведутся исследования в направлении поиска принципиально новых способов впрыска бензина с помощью форсунок. Испытаны так называемые магнитоэлектрические форсунки, которые отличаются высоким быстродействием (0,5 мс), так как работают с принудительным высокочастотным (до 1000 с»1) переключением полярности магнитного поля в катушке соленоида.

Перспективными считаются также форсунки закрытого типа с дополнительным электромагнитным управлением (электрогидравлические).

В системах впрыска бензина группы «Д» (впрыск в камеру сгорания) используется насос-форсунка закрытого типа с плунжерным насосом высокого давления, который приводится в действие от кулачка распредвала.

Насос-форсунка оснащен сливным каналом с быстродействующим электрогидравлическим клапаном. Комбинация — плунжерный насос, закрытая гидромеханическая форсунка, электроуправляемый от электронной автоматики сливной канал — дает возможность реализовать так называемый «послойный впрыск бензина» непосредственно в камеру сгорания ДВС. Это обеспечивает значительную экономию топлива за счет работы двигателя на очень бедных ТВ-смесях (а =»» 2,0), а также повышает ряд его эксплуатационных показателей.

При послойном впрыске цикловая подача бензина непрерывно дифференцируется по времени посредством управления давлением в рабочей полости насос-форсунки (под плунжером). Давление регулируется электроуправляемым гидроклапаном в сливном канале. Суть послойного впрыска топлива состоит в его подаче отдельными, строго дозированными порциями. Получается так: за один цикл впрыска бензин подается прямо в цилиндр не сплошной однородной струей, а несколькими частями, каждая из которых образует «свой» коэффициент избытка воздуха а.

В объеме цилиндра образуется «послойный пирог» из ТВ-смеси разной концентрации. Преимущество послойного впрыска бензина состоит в том, что в первый момент воспламенения в зону центрального электрода свечи зажигания подается нормальная (стехиометрическая) ТВ-смесь с а =»» 1, которая легко возгорается. Далее процесс горения топлива в очень бедной ТВ-смеси (а =»» 2.0) поддерживается за счет «открытого огня», образовавшегося в первый момент воспламенения. Однако система впрыска бензина с насос-форсунками обладает двумя существенными недостатками: она содержит дорогостоящие и очень сложные механические устройства, а также способствует появлению значительных количеств оксидов азота (N0X) в выхлопных отработавших газах двигателя, бороться с которыми крайне сложно. Тем не менее система выпускается фирмой TOYOTA для двигателей TD4 легковых автомобилей.

>

Диагностика дизельных двигателей. Приборы для диагностики дизеля.

 Своевременная диагностика дизельных двигателей позволяет намного упростить и удешевить ремонт агрегатов, а иногда и избежать его, своевременно применяя технологии безразборного ремонта (модификаторы трения), различные очистители узлов двигателя и топливной системы, а также используя качественную смазку и топливо.

Главное при выявлении причины любого отказа дизельного двигателя — выбор точки начала поисков. Часто причина оказывается лежащей на поверхности, однако в некоторых случаях приходится потрудиться, проводя небольшое исследование. Автолюбитель, произведший полдюжины случайных проверок, замен и исправлений вполне имеет шанс обнаружить причину отказа (или его симптом), однако такой подход никак нельзя назвать разумным, ввиду его трудоемкости и бесцельности затрат времени и средств. Гораздо эффективнее оказывается спокойный логический подход к поиску вышедшего из строя узла или компонента.

Определение неисправности дизеля

Чаще всего на СТО обращаются с неисправностью дизельного двигателя, вызванной плохим техническим состоянием (упала компрессия, потеря герметичности цилиндров), неисправности в электрических цепях (датчиках, исполнительных механизмах) или неправильной регулировкой начала впрыска топлива, плохой работой ТНВД и форсунок. Первым действием для оценки работы двигателя необходима косвенная информация об условиях в которых проявляется неисправность:

• Неисправность появляется всегда или периодически.
• В каких условиях эксплуатации проявляется неисправность: при запуске двигателя, при ускорении или торможении двигателем, при движении с постоянной скоростью, при определенных оборотах двигателя, на холостом ходу, на холодном или горячем двигателе.
• Какой расход топлива.
• Выдает ли двигатель требуемую мощность.
• Дымит ли двигатель.

Двигатель не запускается: подкачивающий насос не подает топливо, слишком ранний или поздний впрыск, неисправности форсунки, неисправные свечи накаливания, неисправен ТНВД.

Потеря мощности двигателя: слишком малая доза впрыска, повреждение распылителя форсунки, утечки топлива из трубок высокого давления.

Стуки в двигателе: слишком ранний впрыск, слишком большее давление открытия форсунок, люфт поршневых колец, износ поршневых или шатунных вкладышей, заниженная компрессия.

Черный дым: слишком поздний впрыск топлива, слишком низкое давление открытия форсунок, заклинивание иглы в распылителе, лопнувшая пружина форсунки, нагнетательный клапан ТНВД не закрывается, слишком низкая компрессия.

Неравномерная работа двигателя: завоздушивание топливной системы, «льющий» распылитель, трещина в топливопроводе высокого давления, лопнувшая пружина форсунки, повышенное давление открытия форсунки, износ газораспределительного механизма.

Следующее действие это детальный осмотр и сама диагностика дизельного двигателя, его агрегатов и топливной аппаратуры.

 Мы рекомендуем приборы, применение которых позволяет максимально эффективно производить диагностику «железа» двигателя и топливной аппаратуры как импортного так и отечественного производства. Данное оборудование позволяет выявить неисправность и профессионально провести регулировочные и ремонтные работы.

Диагностика электроники дизельных двигателей

В современных дизелях большое значение уделяется диагностике электроники узлов автомобиля. На данный момент на рынке диагностики грузового транспорта, автобусов и спецтехники существуют два основных производителя оборудования: итальянская «TEXA» и испанский «JALTEST».

JalTest — является одним из лучших в мире комплексных решений для диагностики электрических и пневматических систем грузовиков, прицепов, автобусов и легкого коммерческого транспорта. Подключается к персональному компьютеру кабелем через usb-порт или через беспроводное соединение Bluetooth.

 Cканер Jaltest Link позволяет работать с абсолютным большинством марок грузового и пассажирского транспорта: MERCEDES-BENZ, IVECO, SCANIA, VOLVO, MAN, RENAULT, DAF, SCHMITS и остальным коммерческим транспортом, на котором используются блоки BOSCH, MENS, WABCO, LUCAS, ZF, VOITH, HALDEX, KNORR и др. Список диагностируемых систем у автосканера очень обширен и ежеквартально пополняется.

Диагностика «железа» дизельных двигателей

Для более достоверной оценки текущего состояния «железа» двигателя и топливной аппаратуры рекомендуем перед проведением диагностики предварительно применить АКТИВНУЮ ПРОМЫВКУ ТОПЛИВНОЙ СИСТЕМЫ ЭДИАЛ для дизелей или РАСКОКСОВКУ ЭДИАЛ. Применение этих препаратов позволяет почистить и промыть ТНВД, форсунки, детали камеры сгорания двигателя, впускные и выпускные клапана от нагара и лаковых отложений, раскоксовать поршневые кольца. Все это поможет провести более достоверную диагностику дизельного двигателя или топливной аппаратуры и оценить текущее состояние диагностируемого узла.

 
Методы и средства диагностики дизельных двигателей

До 70% отказов дизелей приходится на топливоподающую аппаратуру высокого давления, с нее и начинаем. В систему питания дизельного двигателя входят приборы, оказывающие влияние на расход топлива, такие как воздухоочиститель, фильтры предварительной и тонкой очистки топлива, подкачивающий насос, топливный насос высокого давления и форсунки, регулятор частоты вращения двигателя и привод.

Наиболее интенсивному изнашиванию подвергаются плунжерные пары топливного насоса и форсунок, теряют свою упругость пружины. Нарушение герметичности и засорение элементов топливной системы приводит к перебоям в работе двигателя, а нарушение регулировок начала, величины и равномерности подачи топлива, угла опережения впрыска, давления начала подъема иглы форсунки, а также минимальной частоты вращения коленчатого вала в режиме холостого хода – к повышению расхода топлива и дымному выпуску отработавших газов.

Внешние признаки неисправной работы приборов топливной системы   дизельных двигателей приведены в табл. 1.

Таблица 1. Признаки нарушения нормальной работы топливной системы   дизеля и необходимые технические воздействия

Внешние признаки (симптомы) нарушения нормальной работы Структурные изменения взаимодействующих элементов Необходимые диагностические,
профилактические и ремонтные воздействия
Затрудненный пуск двигателя. Неустойчивая работа двигателя Нарушение герметичности топливной системы Проверить герметичность, при необходимости закрепить элементы
Двигатель глохнет или не развивает достаточной мощности Засорение фильтрующих элементов топливных фильтров Промыть или заменить фильтрующие элементы
Двигатель глохнет, не развивает достаточной частоты вращения коленчатого вала Отказ в работе топливного насоса Снять и разобрать насос, при необходимости заменить детали
Двигатель работает неравномерно и не развивает мощности Засорение фильтров форсунок Проверить состояние
фильтров
Двигатель не развивает необходимой мощности, дымный выпуск Закоксовывание продувочных окон в гильзах цилиндров Проверить и прочистить окна
Затрудненный пуск и неравномерная работа двигателя Нарушение нормальной работы форсунок Снять форсунки и проверить на приборе
Неравномерная           и
«жесткая» работа двигателя, выпуск черного цвета
Нарушение угла опережения впрыска топлива Проверить и отрегулировать установку угла опережения впрыска
Неравномерная работа двигателя со стуками и дымным выпуском Нарушение регулировки реек топливного насоса Проверить и отрегулировать равномерность подачи топлива в цилиндры
Двигатель чрезмерно увеличивает частоту вращения, идет «вразнос» Нарушение работы регулятора Проверить и отрегулировать регулятор или отремонтировать
Двигатель не развивает мощности, в воздухоочистителе темное масло Загрязнение воздухоочистителя Промыть фильтрующий элемент, залить масло

Контроль работы фильтров предварительной и тонкой очистки топлива и технические воздействия заключаются в ежедневном сливе отстоя, промывке фильтрующих элементов при ТО-1 и замене их при выполнении операций ТО-2.

Засорение воздухоочистителя приводит к понижению мощности двигателя и перерасходу топлива. Воздухоочиститель проверяют при работе на запыленных дорогах при ТО-1, в условиях зимнего периода при ТО-2.

Давление топлива в магистрали низкого давления проверяют подключением контрольного манометра между фильтром тонкой очистки и топливным насосом; при частоте вращения кулачкового вала 1050 об/мин максимальное давление должно быть не менее 4 кгс/см2.

Топливный насос высокого давления (ТНВД) должен обеспечивать равномерную подачу дозированных порций топлива к форсункам под высоким давлением в порядке работы двигателя в момент, соответствующий концу такта сжатия в цилиндрах.

Моментоскоп для дизеля

При выполнении ТО-2 в случае повышенного расхода топлива насос высокого давления рекомендуется снимать с места и диагностировать на стенде. Проверка и регулировка начала подачи топлива производится с помощью моментоскопа (рис. 1) в следующей последовательности:
– отключить автоматическую муфту опережения впрыска;
– повернуть кулачковый вал насоса по часовой стрелке (со стороны привода). Первая секция отрегулированного насоса начинает подавать топливо за 38–39° до оси симметрии профиля кулачка;
– определить профиль симметрии кулачка первой секции, для чего установить моментоскоп на секции и, поворачивая вал насоса по часовой стрелке, следить за уровнем топлива в трубке моментоскопа;
– момент начала движения топлива в моментоскопе зафиксировать на градуированном диске, закрепленном на валу насоса;
– повернуть вал по часовой стрелке на 90°. Затем повернуть вал против часовой стрелки до начала движения топлива в моментоскопе и зафиксировать это положение на диске;
– отметить на градуированном диске середину между зафиксированными точками, которая определяет ось симметрии профиля кулачка первой секции;
– приняв угол, при котором первая секция начинает подачу топлива условно за 0°, определить начало подачи топлива в остальных секциях двигателя ЯМЗ-236 в следующем порядке: для четвертой секции 45°, второй – 120, пятой – 165, третьей – 240 и шестой – 285°.

Рис. 1. Моментоскоп
1 – стеклянная трубка;
2 – переходная трубка;
3 – топливопровод высокого давления;
4 – шайба;
5 – накидная гайка

 

Неточность угла между началом подачи топлива любой секции насоса относительно первой не более 20°. Регулировка начала подачи топлива производится регулировочным болтом толкателя. При вывертывании болта – подача ранняя, при ввертывании – поздняя.
Для двигателя ЯМЗ-238 начало подачи каждой последующей секции в соответствии с порядком работы секции должно происходить через 45° по отношению к предыдущей.

Диагностика форсунок дизеля

Техническое состояние дизельных форсунок определяют при выполнении ТО-2. Неисправную форсунку можно определить путем последовательного отключения цилиндров двигателя из работы. Для этого необходимо ослабить гайку у топливопровода высокого давления проверяемой форсунки так, чтобы топливо выходило наружу, минуя форсунку, что вызовет выключение цилиндра двигателя. Если при выключении цилиндра изменения в работе двигателя не будет – форсунка неисправна, если же увеличатся перебои и неравномерность работы – форсунка исправна.

Для точной проверки технического состояния форсунки с целью определения ее герметичности, давления начала подъема иглы форсунки и качества распыливания топлива используют прибор Механотестер МТА-2 (ДД-2120).  

Для диагностики состояния форсунок с электронным управлением впрыска применяется ТЕСТЕР ОБРАТНОЙ ПОДАЧИ ТОПЛИВА Common Rail. При помощи этого прибора можно оценить визуально работоспособность каждой форсунки по наполняемости колб или при помощи трубчатых мензурок. Диагностика производится прямо на двигателе и позволяет выявить неисправную форсунку.

Оборудования для диагностики дизельного двигателя с механическими форсунками

Наименование

Применимость

Диагностика состояния цилиндропоршневой группы двигателя

Компрессометры дизельные (индикаторы пневмоплотности цилиндров).  

Компрессометры предназначены для сервисного обслуживания ДВС и поиска неисправностей. Замер компрессии дизеля позволяет оценить работоспособность отдельных цилиндров двигателя путем измерения максимального давления сжатия (компрессии) в режиме стартерного пуска. Модели компрессометров различаются только наличием фальш-форсунок для измерения компрессии в различных типах автомобилей.
 

Анализатор герметичности цилиндров
(АГЦ, АГЦ-2),
моделей
ДД-4100, ДД-4120

В основе работы АГЦ (АГЦ-2) лежит вакуумный метод оценки пневмоплотности цилиндропоршневой группы. При диагностике двигателя при помощи АГЦ производится замер следующих параметров:
Р1 – значение полного вакуума в цилиндре
Р2 – значение остаточного вакуума в цилиндре
Замеры производятся прибором через форсуночные отверстия в процессе вращения двигателя стартером. По величине значения полного вакуума в цилиндре Р 1 оценивается степень износа гильзы цилиндра, а так же герметичность закрытия клапанов. По величине значения остаточного вакуума Р2 оценивается состояние поршневых колец, их закоксовка, залегание, поломка колец или перегородок в кольцевой канавке поршня.
 

Диагностика топливной аппаратуры 

Прибор для проверки дизельных форсунок

ДД-2110

Прибор позволяет провести диагностику практически всех типов дизельных форсунок. Диагностируемые параметры: давление начала впрыска и качество распыления топлива, герметичность запорного конуса (по появлению капли топлива на носике распылителя), гидроплотность по запорному конусу и направляющей цилиндрической части. Аналогичен механотестеру МТА-2, только выполнен в стационарном исполнении.

Механотестер
(МТА-2) ДД-2120

Прибор предназначен для экспресс оценки текущего состояния форсунок без снятия их с двигателя и оценки состояния плунжерных пар и нагнетательных клапанов ТНВД. Можно сделать экспресс диагностику всех форсунок на двигателе, а потом снять выявленные проблемные и основательно продиагностировать их, установив МТА-2 на верстак. При установке на верстак превращается в стационарный прибор типа ДД-2110, S-60H. Zeca 470/600B.

Прибор
ДД-2115 (ПО-9691)

Прибор для оценки технического состояния плунжерных пар снятых с ТНВД или приобретенных для замены.

Компрессометр дизельный для отечественных и импортных грузовых автомобилей КЭ-003

Принцип работы: При прокручивании коленвала пусковым устройством клапан индикатора фиксирует максимальное давление сжатия (компрессию) проверяемого цилиндра.
Зафиксированная манометром величина максимального давления свидетельствует о наличии или частичной потере пневмоплотности цилиндра. Последнее является следствием появления неисправностей (отказов) компрессионных колец, поршня, гильзы, клапанного механизма. При этом необходимо учитывать, что индикатор не может различать причины потери пневмоплотности.

Перед проведением замера компрессии следует отключить подачу топлива в дизельных двигателях. Нужно либо отжать вниз рычаг отсечки, расположенный на насосе высокого давления, либо обесточить электромагнитный клапан прекращения подачи топлива, расположенный на топливной магистрали.

Подключение компрессометра к камере сгорания осуществляется через отверстия для вворачивания форсунок или свечей накаливания (в зависимости от удобства доступа или рекомендаций «Руководства по ремонту…»).

Величина компрессии дизеля:

37-45 — компрессия отличная;
32-36 — компрессия хорошая;
30-32 — компрессия нормальная;
28-30 — компрессия удовлетворительная;
менее 28 — компрессия слабая, обычно при таких значениях двигатель с трудом запускается.

Запуск дизеля. Соотношение компрессии и температуры

Зависимость возможности запуска дизельного двигателя при различных температурах, в зависимости от компрессии в цилиндрах (замер компрессии на остывшем двигателе при температуре около 20С):
менее 18 атм — не заводится даже на горячую;
22-23 атм — горячий, теплый двигатель заводится без проблем; после длительной стоянки заводится только в теплом боксе;
25 атм — горячий, теплый двигатель заводится без проблем; после длительной стоянки заводится до температуры -10С;
28 атм- горячий, теплый двигатель заводится без проблем; после длительной стоянки заводится до температуры -15С;
32 атм — горячий, теплый двигатель заводится без проблем; после длительной стоянки заводится до температуры -25С;
36 атм — -горячий, теплый двигатель заводится без проблем; после длительной стоянки заводится до температуры -30С;
40 атм — горячий, теплый двигатель заводится без проблем; после длительной стоянки заводится до температуры -35С.
При условии, что остальные системы исправны, и двигатель заводится от штатного аккумулятора. Для отдельных видов двигателей возможны отклонения значений + — 5 градусов.

Проверка свечей накала (подогрева) дизеля

Также стоит проверить работоспособность свечей накаливания. Это можно сделать с помощью Тестера свечи накаливания ADD280. Диагностика производится прямо на двигателе, без его запуска и позволяет оценить состояние свеч накаливания (стальных или керамических).

Проверка технического состояния ЦПГ дизеля

Комплект «Стандарт–дизель» артикул СТ-ДР ДД-4100, Комплект «Стандарт–дизель» артикул СТ-ДР, анализатор герметичности цилиндров отечественных автомобилей.
В основе работы АГЦ (АГЦ-2) лежит вакуумный метод оценки пневмоплотности цилиндропоршневой группы. Диагностика двигателя при помощи АГЦ включает в себя замер следующих параметров:
Р1 – значение полного вакуума в цилиндре
Р2 – значение остаточного вакуума в цилиндре
Замеры параметров Р1, Р2 проводятся прибором через форсуночные отверстия в процессе вращения двигателя стартером КВ (3–4 сек.). По величине значения полного вакуума в цилиндре Р1 оценивается степень износа гильзы цилиндра, а та же плотность закрытия клапанов. По величине значения остаточного вакуума Р2 оценивается состояние износа поршневых, выявляется закоксовка поршневых колец, поломка колец или перегородок в кольцевой канавке поршня.

Компоненты системы впрыска топлива

Компоненты системы впрыска топлива

Ханну Яэскеляйнен, Магди К. Хаир

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Систему впрыска топлива можно разделить на стороны низкого и высокого давления. Компоненты низкого давления включают топливный бак, топливный насос и топливный фильтр. Компоненты стороны высокого давления включают насос высокого давления, аккумулятор, топливную форсунку и форсунку топливной форсунки. Для использования с различными типами систем впрыска топлива было разработано несколько конструкций форсунок и различные методы приведения в действие.

Компоненты стороны низкого давления

Обзор

Чтобы система впрыска топлива выполняла свое предназначение, топливо должно подаваться в нее из топливного бака. Это роль компонентов топливной системы низкого давления.Сторона низкого давления топливной системы состоит из ряда компонентов, включая топливный бак, один или несколько насосов подачи топлива и один или несколько топливных фильтров. Кроме того, многие топливные системы содержат охладители и / или нагреватели для лучшего контроля температуры топлива. На рисунке 1 показаны два примера схем топливных систем низкого давления: один для грузовика с дизельным двигателем большой грузоподъемности, а другой - для легкового легкового автомобиля с дизельным двигателем [1590] [1814] .

Рисунок 1 . Примеры топливных систем низкого давления для тяжелых и легких дизельных автомобилей

Топливный бак и топливный насос

Топливный бак - это резервуар, в котором хранится запас топлива и который помогает поддерживать его температуру на уровне ниже точки воспламенения.Топливный бак также служит важным средством отвода тепла от топлива, которое возвращается из двигателя [528] . Топливный бак должен быть устойчивым к коррозии и герметичным при давлении не менее 30 кПа. Он также должен использовать некоторые средства для предотвращения чрезмерного накопления давления, такие как выпускной или предохранительный клапан.

Насос подачи топлива, часто называемый подъемным насосом, отвечает за всасывание топлива из бака и его подачу в насос высокого давления. Современные топливные насосы могут иметь электрический или механический привод от двигателя. Использование топливного насоса с электрическим приводом позволяет разместить насос в любом месте топливной системы, в том числе внутри топливного бака. Насосы с приводом от двигателя прикреплены к двигателю. Некоторые топливные насосы могут быть встроены в блоки, выполняющие другие функции. Например, так называемые тандемные насосы представляют собой агрегаты, в состав которых входят топливный насос и вакуумный насос для усилителя тормозов. Некоторые топливные системы, например системы, основанные на насосе распределительного типа, включают в себя подающий насос с механическим приводом и насос высокого давления в одном блоке.

Топливные насосы обычно рассчитаны на подачу большего количества топлива, чем потребляется двигателем в любой конкретной операционной системе. Этот дополнительный поток топлива может выполнять ряд важных функций, включая подачу дополнительного топлива для охлаждения форсунок, насосов и других компонентов двигателя и поддержание более постоянной температуры топлива во всей топливной системе. Кроме того, избыточное топливо, которое нагревается при контакте с горячими компонентами двигателя, может быть возвращено в бак или топливный фильтр для улучшения работоспособности автомобиля при низких температурах.

Топливный фильтр

Безотказная работа дизельной системы впрыска возможна только на фильтрованном топливе. Топливные фильтры помогают уменьшить повреждение и преждевременный износ от загрязнений, задерживая очень мелкие частицы и воду, чтобы предотвратить их попадание в систему впрыска топлива. Как показано на рисунке 1, топливные системы могут содержать одну или несколько ступеней фильтрации. Во многих случаях экран курса также расположен на входе топлива, расположенном в топливном баке.

В двухступенчатой ​​системе фильтрации обычно используется первичный фильтр на впускной стороне топливоперекачивающего насоса и вторичный фильтр на выпускной стороне.Первичный фильтр необходим для удаления более крупных частиц. Вторичный фильтр необходим, чтобы выдерживать более высокое давление и удалять более мелкие частицы, которые могут повредить компоненты двигателя. Одноступенчатые системы удаляют более крупные и мелкие частицы в одном фильтре.

Фильтры могут быть коробчатого типа или сменного элемента, как показано на рисунке 2. Фильтр коробчатого типа может быть полностью заменен по мере необходимости и не требует очистки. Фильтры со сменным элементом должны быть тщательно очищены при замене элементов, и необходимо соблюдать осторожность, чтобы избежать любых остатков грязи, которые могут мигрировать к сложным частям системы впрыска топлива.Фильтры могут быть изготовлены из металла или пластика.

Рисунок 2 . Два типа топливных фильтров

(а) Коробчатого типа; (b) Тип элемента

Обычными материалами для современных топливных фильтрующих элементов являются синтетические волокна и / или целлюлоза. Также можно использовать микроволокна, но из-за риска миграции мелких кусочков стекловолокна, отколовшихся от основного элемента, в критические компоненты топливной системы, их использование в некоторых приложениях не допускается [2046] . В прошлом также использовались гофрированная бумага, упакованная хлопковая нить, древесная щепа, смесь упакованной хлопковой нити и древесных волокон и намотанный хлопок [529] .

Требуемая степень фильтрации зависит от конкретного применения. Обычно, когда два фильтра используются последовательно, первичный фильтр задерживает частицы размером примерно 10–30 мкм, в то время как вторичный фильтр способен задерживать частицы размером более 2–10 мкм. По мере развития топливных систем зазоры и нагрузки на компоненты высокого давления увеличиваются, и потребность в чистом топливе становится все более острой. Для развития [2048] потребовались как способность топливных фильтров соответствовать требованиям к более чистому топливу [2047] , так и методы количественной оценки приемлемых уровней загрязнения топлива.

Помимо предотвращения попадания твердых частиц в оборудование для подачи топлива и впрыска, необходимо также предотвратить попадание воды в топливе в важные компоненты системы впрыска топлива. Свободная вода может повредить смазываемые топливом компоненты системы впрыска топлива. Вода также может замерзнуть в условиях низких температур, а лед может заблокировать небольшие проходы системы впрыска топлива, тем самым перекрыв подачу топлива к остальной части системы впрыска топлива.

Удалить воду из топлива можно двумя способами.Поступающее топливо может подвергаться центробежным силам, которые отделяют более плотную воду от топлива. Гораздо более высокая эффективность удаления может быть достигнута с помощью фильтрующего материала, который отделяет воду. На рис. 3 показан фильтр, использующий комбинацию средового и центробежного подходов.

Рисунок 3 . Топливный фильтр с водоотделителем

Различные водоразделительные среды работают по разным принципам. Гидрофобная барьерная среда , такая как обработанная силиконом целлюлоза, отталкивает воду и заставляет ее подниматься на поверхность выше по потоку.По мере того, как бусинки становятся больше, они под действием силы тяжести стекают по лицевой стороне элемента в чашу. Гидрофильная коалесцирующая среда , такая как стеклянное микроволокно, имеет высокое сродство к воде. Вода в топливе связывается со стеклянными волокнами, и со временем, когда все больше воды поступает со стороны входа, образуются массивные капли. Вода проходит через фильтр с топливом и на выходе из потока топлива выпадает в сборный стакан.

Более широкое использование поверхностно-активных добавок к топливу и компонентов топлива, таких как биодизель, сделало обычные разделяющие среды менее эффективными, и производителям фильтров пришлось разработать новые подходы, такие как композитные среды и коалесцирующие среды со сверхвысокой площадью поверхности [2049] [2050] [2051] . Также были затронуты методы количественной оценки эффективности отделения топлива от воды [2052] .

Топливные фильтры также могут содержать дополнительные элементы, такие как подогреватели топлива, тепловые переключающие клапаны, деаэраторы, датчики воды в топливе, индикаторы замены фильтров.

Подогреватель топлива помогает минимизировать накопление кристаллов парафина, которые могут образовываться в топливе при его охлаждении до низких температур. В обычных методах отопления используются электрические нагреватели, охлаждающая жидкость двигателя или рециркулируемое топливо. На рисунке 1 показаны два подхода, в которых для нагрева поступающего топлива используется теплое возвращаемое топливо.

Перелив топлива и утечка топлива, возвращающегося в бак, также переносят воздух и пары топлива. Присутствие газообразных веществ в топливе может вызвать затруднения при запуске, а также нормальной работе двигателя в условиях высоких температур. Таким образом, выпускные клапаны и деаэраторы используются для удаления паров и воздуха из системы подачи топлива и обеспечения бесперебойной работы двигателя.

###

форсунок дизельного топлива

форсунок дизельного топлива

Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием.Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Форсунка топливной форсунки имеет решающее значение для производительности и выбросов дизельных двигателей. Некоторые из важных параметров сопла форсунки, включая детали седла форсунки, мешка форсунки, размер и геометрию отверстия форсунки, влияют на характеристики сгорания дизельного двигателя, а также на стабильность выбросов и производительность в течение всего срока службы двигателя. и механическая прочность инжектора.

Введение

Конструкция форсунки дизельного топлива имеет решающее значение для производительности и выбросов современных дизельных двигателей. Некоторые из важных конструктивных параметров форсунки включают детали седла форсунки, мешка форсунки, а также размер и форму отверстия форсунки. Эти особенности не только влияют на характеристики сгорания дизельного двигателя, они также могут влиять на стабильность выбросов и производительность в течение всего срока службы двигателя, а также на механическую прочность форсунки.

Все форсунки должны производить распыление топлива, которое соответствует требованиям к рабочим характеристикам и целям выбросов на рынке, для которого производится двигатель, независимо от деталей конструкции топливной системы (т.е. , насос-агрегат или насос-линия-форсунка). Кроме того, особые требования к форсункам могут также зависеть от типа топливной системы [2200] :

.
  • Common Rail - форсунка работает в более жестких трибологических условиях и должна быть лучше спроектирована для предотвращения утечки.
  • Насос-форсунка / насос - режим пульсации давления предъявляет более высокие требования к усталостной прочности.
  • Насос-форсунка - гидравлический мертвый объем должен быть минимизирован.
Рисунок 1 . Форсунка базового дизельного двигателя с одинарным коническим седлом

На рис. 1 показан общий вид основных компонентов форсунки [2197] дизельного топлива. Некоторые из этих компонентов подробно обсуждаются в следующих разделах. Читатели также должны ознакомиться с введением к форсункам, приведенным в разделе «Компоненты системы впрыска топлива».

###

Как работает система впрыска топлива

Для двигатель для бесперебойной и эффективной работы он должен быть обеспечен нужным количеством топливо / воздушная смесь в соответствии с ее широким спектром требований.

Система впрыска топлива

В автомобилях с бензиновым двигателем используется непрямой впрыск топлива. Топливный насос отправляет бензин в моторный отсек, а затем он впрыскивается во впускной коллектор с помощью инжектора. Есть либо отдельный инжектор для каждого цилиндра, либо одна или две форсунки во впускной коллектор.

Обычно топливно-воздушная смесь регулируется карбюратор , инструмент, который отнюдь не идеален.

Его основным недостатком является то, что один карбюратор питает четыре цилиндр двигатель не может подавать в каждый цилиндр точно такую ​​же топливно-воздушную смесь, потому что некоторые цилиндры находятся дальше от карбюратора, чем другие.

Одно из решений - поместиться сдвоенные карбюраторы, но их трудно правильно настроить.Вместо этого многие автомобили теперь оснащаются двигателями с впрыском топлива, в которых топливо подается точными порциями. Двигатели, оборудованные таким образом, обычно более эффективны и мощнее карбюраторных, а также могут быть более экономичными и менее ядовитыми. выбросы .

Впрыск дизельного топлива

В впрыск топлива система в автомобилях с бензиновым двигателем всегда косвенная, бензин впрыскивается во впускной патрубок многообразие или впускной порт, а не непосредственно в камеры сгорания .Это обеспечивает хорошее смешивание топлива с воздухом перед тем, как попасть в камеру.

Много дизельные двигатели Однако используется прямой впрыск, при котором дизельное топливо впрыскивается непосредственно в цилиндр, заполненный сжатым воздухом. В других используется непрямой впрыск, при котором дизельное топливо впрыскивается в камеру предварительного сгорания специальной формы, которая имеет узкий канал, соединяющий ее с камерой сгорания. крышка цилиндра .

В цилиндр втягивается только воздух. Он так сильно нагревается сжатие распыленное топливо, впрыскиваемое в конце ход сжатия самовоспламеняется.

Базовая инъекция

Во всех современных системах впрыска бензина используется непрямой впрыск. Специальный насос отправляет топливо под давление из топливный бак в моторный отсек, где, все еще находясь под давлением, он распределяется индивидуально по каждому цилиндру.

В зависимости от конкретной системы топливо подается во впускной коллектор или впускной канал через инжектор . Это работает так же, как спрей сопло из шланг , убедившись, что топливо выходит в виде мелкого тумана.Топливо смешивается с воздухом, проходящим через впускной коллектор или канал, и топливно-воздушная смесь поступает в горение камера.

Некоторые автомобили имеют многоточечный впрыск топлива, при котором каждый цилиндр получает питание от собственной форсунки. Это сложно и может быть дорого. Чаще используется одноточечный впрыск, когда один инжектор питает все цилиндры, или один инжектор на каждые два цилиндра.

Форсунки

Форсунки, через которые распыляется топливо, ввинчиваются форсункой вперед либо во впускной коллектор, либо в головку блока цилиндров и расположены под углом, так что струя топлива направляется к впускному отверстию. клапан .

Форсунки бывают одного из двух типов, в зависимости от системы впрыска. Первая система использует непрерывный впрыск где топливо впрыскивается во впускное отверстие все время работы двигателя. Форсунка просто действует как распылительная форсунка, разбивая топливо на мелкие брызги - на самом деле он не контролирует поток топлива. Количество распыляемого топлива увеличивается или уменьшается с помощью механического или электрического блока управления - другими словами, это похоже на включение и выключение крана.

Другая популярная система - впрыск по времени (импульсный впрыск) где топливо доставляется пакетами, чтобы совпасть с индукция Инсульт цилиндра. Как и в случае непрерывного впрыска, впрыском по времени также можно управлять механически или электронно.

Самые ранние системы управлялись механически. Их часто называют впрыском бензина (сокращенно PI), и поток топлива регулируется механическим регулятором. Эти системы страдают от недостатков механической сложности и плохой реакции на нажатие педали газа.

Механические системы в настоящее время в значительной степени вытеснены электронный впрыск топлива (сокращенно EFi). Это происходит благодаря повышению надежности и снижению затрат на электронные системы управления.

Типы топливных форсунок

Форсунка механическая

Могут быть установлены два основных типа инжектора, в зависимости от того, управляется ли система впрыска механически или электронно.В механической системе инжектор подпружиненный в закрытое положение и открывается давлением топлива.

Электронный инжектор

Форсунка в электронной системе также удерживается закрытой пружиной, но открывается с помощью электромагнит встроен в корпус инжектора. В электронный блок управления определяет, как долго инжектор остается открытым.

Механический впрыск топлива

Lucas с механической системой впрыска топлива

В системе Lucas топливо из бака под высоким давлением перекачивается в топливный аккумулятор.Оттуда он попадает в распределитель топлива, который посылает порцию топлива в каждую форсунку, откуда оно попадает во впускное отверстие. Воздушный поток регулируется заслонкой, которая открывается при нажатии на педаль акселератора. По мере увеличения потока воздуха распределитель топлива автоматически увеличивает поток топлива к форсункам для поддержания правильного баланса топливно-воздушной смеси. Для холодного запуска используется воздушная заслонка на приборной панели или, на более поздних моделях, микропроцессорный блок управления приводит в действие специальный инжектор холодного запуска, который впрыскивает дополнительное топливо для создания более богатой смеси.Как только двигатель прогреется до определенной температуры, термовыключатель автоматически отключает форсунку холодного пуска.

Механический впрыск топлива использовался в 1960-х и 1970-х годах многими производителями на своих высокопроизводительных спортивных автомобилях и спортивных седанах. Одним типом, установленным на многих британских автомобилях, включая Triumph TR6 PI и 2500 PI, была система Lucas PI, которая представляет собой систему с таймером.

А высокого давления электрический топливный насос установлен рядом с топливным баком, нагнетает топливо под давлением 100 фунтов на квадратный дюйм до уровня топлива аккумулятор .Это в основном краткосрочный резервуар который поддерживает постоянное давление подачи топлива, а также сглаживает импульсы топлива, поступающего из насоса.

Из аккумулятор , топливо проходит через бумагу элемент фильтр а затем подается в блок управления дозатором топлива, также известный как распределитель топлива . Этот агрегат приводится в движение распредвал и его задача, как следует из названия, состоит в том, чтобы распределять топливо по каждому цилиндру в нужное время и в нужных количествах.

Количество впрыскиваемого топлива регулируется заслонкой, расположенной в воздухозаборнике двигателя.Заслонка находится под блоком управления и поднимается и опускается в ответ на воздушный поток - когда вы открываете дроссельную заслонку, «всасывание» из цилиндров увеличивает воздушный поток, и заслонка поднимается. Это изменяет положение челночного клапана в блоке управления дозированием, чтобы позволить большему количеству топлива впрыскиваться в цилиндры.

От дозатора топливо по очереди подается к каждой из форсунок. Затем топливо впрыскивается во впускное отверстие в головке блока цилиндров. Каждый инжектор содержит подпружиненный клапан, который удерживается закрытым за счет давления пружины.Клапан открывается только при впрыскивании топлива.

При холодном запуске вы не можете просто перекрыть часть воздушного потока, чтобы обогатить топливно-воздушную смесь, как в случае с карбюратором. Вместо этого ручное управление на приборной панели (напоминающее ручку воздушной заслонки) или, на более поздних моделях, data-term-id = "1915"> микропроцессор

Пружины топливных форсунок

- пружины рабочих характеристик Melling

Melling Performance Springs - ведущий дизайнер, разработчик и производитель высококачественных прецизионных пружин топливных форсунок в Великобритании.Область применения варьируется от коммерческого дизельного топлива до крупнейших в мире круизных лайнеров и двигателей для выработки электроэнергии.

Пружины топливной форсунки


На заказ для:
  • Автомобильные двигатели
  • Коммерческие дизельные двигатели
  • Двигатели для грузовиков и автобусов
  • Двигатели для внедорожников
  • Двигатели для оборонных машин
  • Двигатели железнодорожных локомотивов
  • Энергетические двигатели
  • Судовые и судовые двигатели

Производственный ряд

  • Параллельные, конические, с переменным шагом и демпфированные формы

Высококачественные материалы

Мы отбираем лучшие в мире материалы…

  • Большие запасы специализированной проволоки из сплавов SiCr, SiCrV, SiCrV + Ni
  • Поперечное сечение круглой и яйцевидной проволоки
  • Диапазон размеров проволоки 0.2 мм - 19,0 мм
  • Материалы, испытанные на вихревых токах
  • Закалка в масле и индукционная закалка
  • Доступны спецификации для Европы и Америки
  • Подстриженные, очищенные, сверхчистые и высокопрочные варианты

Закаленное кремний-хром-ванадиевое масло и кремний-хром-ванадий + никелевое закаленное масло

Диаметр проволоки от 1,5 до 6 мм

  • Фирменные специальные провода
  • ASTM877B

Кремний-хромовое закаленное масло

0.Диаметр проволоки от 5 до 14 мм

  • EN10270 / 2 VD SiCr
  • DIN 17225 VDSiCr
  • ASTM A877
  • BS2803 685A55 HD2
  • AS33A
  • SWOSC-V

Кремний-хромовая закалка и отпуск

Диаметр проволоки от 10,0 до 19,5 мм

  • EN10089 1. 7106 (шлифованный и нешлифованный)
  • BS1429 685A55 ND2 и HD2
  • DIN17223 / 2 67SiCr5
  • AS33A и ASS33B

Хром-ванадий, закаленный и отпущенный

10.Диаметр проволоки от 0 до 19,5 мм

  • EN10089 1.8159 (шлифованный и нешлифованный)
  • BS 1429 735A50 ND и HD
  • DIN 17225 50CrV4
  • ASTM A231

Производственные мощности

  • Намотка с ЧПУ от 0,2 мм до 19 мм
  • Внутренняя дробеструйная обработка
  • Предварительное горячее напряжение
  • Прогрессивное шлифование и снятие фасок
  • Установки комплексной термообработки
  • Центр полного контроля и испытаний

Дизайн-сервис

  • Новейшее программное обеспечение для автоматизированного проектирования
  • Опытные дизайнеры
  • Прогнозирование усталостной долговечности с помощью диаграмм Гудмана
  • Предсказание графика релаксации
  • Выбор материалов

Контроль динамики и резонанса пружины

Performance Springs Ltd является лидером в области методов демпфирования пружин сжатия и использует различные методы для уменьшения нежелательных гармонических и динамических эффектов: -

  • Стандартные змеевики демпфера
  • Демпферные змеевики прогрессивного типа (с переменной скоростью)

Узнайте больше о наших покрытиях

Вся деятельность осуществляется на основе:

  • Быстрое время выполнения работ, когда требует доступность
  • Высокое качество в соответствии со стандартами OEM и выше
  • Комплексное техническое обслуживание и поддержка продаж

Благодаря большим инвестициям в рабочую силу и производственные мощности, Performance Springs Ltd находится на переднем крае в области пружинных технологий и инноваций, что делает их лучшим выбором для приложений, требующих высокой усталости и критических с точки зрения безопасности.

Оптимизация пружины форсунки

У вас есть проблемы в любой из следующих областей?

  • Резонанс, усталость пружины и отказы, долговечность и релаксация
  • Выбросы, экономия топлива, характеристики двигателя
  • Удовлетворение потребности в уменьшенных и легких двигателях
  • Разработка новой низкоуглеродной технологии

Melling Performance Springs может помочь советом экспертов о том, как решить такие проблемы с пружиной и снизить риск.Мы предоставляем нашим клиентам специальные знания, чтобы дать им конкурентное преимущество на рынке.

Узнайте больше об оптимизации пружины форсунки

Сравнение усталости материала проволоки с 25 x 10

6 циклов

Сравнение прочности на растяжение проволоки диаметром 4 мм

Топливные форсунки - Engineer-Educators.com

Каждый цилиндр имеет топливную форсунку, предназначенную для дозирования и впрыска топлива в цилиндр в нужный момент.Для выполнения этой функции форсунки приводятся в действие распределительным валом двигателя. Распределительный вал обеспечивает синхронизацию и накачивающее действие, используемое форсункой для впрыска топлива. Форсунки измеряют количество топлива, впрыскиваемого в цилиндр при каждом такте. Количество топлива, впрыскиваемого каждой форсункой, устанавливается механической связью, называемой топливной рейкой. Положение топливной рейки контролируется регулятором двигателя. Регулятор определяет количество топлива, необходимое для поддержания желаемых оборотов двигателя, и регулирует количество, которое необходимо впрыскивать, регулируя положение топливной рейки.

Каждая форсунка работает следующим образом. Как показано на Рисунке 26, топливо под давлением поступает в форсунку через крышку фильтра форсунки и фильтрующий элемент. От фильтрующего элемента топливо проходит вниз в камеру подачи (область между втулкой плунжера и отражателем разлива). Плунжер перемещается вверх и вниз во втулке, отверстие которой открыто для подачи топлива в камеру подачи двумя отверстиями в форме воронки во втулке плунжера.

Рисунок 26 Топливная форсунка в разрезе

Движение коромысла форсунки (не показано) передается на плунжер толкателем форсунки, который упирается в пружину толкателя.Когда плунжер движется вниз под давлением коромысла форсунки, часть топлива, захваченного под плунжером, перемещается в камеру подачи через нижний порт, пока порт не закроется нижним концом поршня. Топливо, захваченное под плунжером, затем выталкивается вверх через центральное отверстие плунжера и обратно через верхнее отверстие до тех пор, пока верхнее отверстие не будет закрыто движением плунжера вниз. Когда верхний и нижний порты закрыты, оставшееся под плунжером топливо подвергается увеличению давления за счет движения плунжера вниз.

Когда создается достаточное давление, клапан форсунки поднимается со своего седла, и топливо подается через небольшие отверстия в распылительном наконечнике и распыляется в камеру сгорания. Обратный клапан, установленный в распылительном наконечнике, предотвращает попадание воздуха из камеры сгорания обратно в топливную форсунку. Плунжер затем возвращается в исходное положение пружиной толкателя форсунки.

При обратном движении плунжера вверх цилиндр высокого давления внутри втулки снова заполняется свежим топливным маслом через отверстия.Постоянная циркуляция свежего холодного топлива через форсунку возобновляет подачу топлива в камеру и помогает охлаждать форсунку. Поток топлива также эффективно удаляет все следы воздуха, которые в противном случае могли бы скопиться в системе.

Выпускное отверстие топливной форсунки, через которое избыток топлива возвращается в коллектор возврата топлива, а затем обратно в топливный бак, примыкает к впускному отверстию и содержит фильтрующий элемент, точно такой же, как и на стороне впуска топлива.

Помимо возвратно-поступательного движения плунжера, плунжер может вращаться во время работы вокруг своей оси с помощью шестерни, которая входит в зацепление с топливной рейкой. Для дозирования топлива в нижней части плунжера обрабатываются верхняя спираль и нижняя спираль. Отношение спиралей к двум портам втулки форсунки изменяется при вращении плунжера.

Изменение положения спиралей путем вращения плунжера замедляет или ускоряет закрытие отверстий, а также начало и окончание периода впрыска. В то же время он увеличивает или уменьшает количество топлива, впрыскиваемого в цилиндр. На рисунке 27 показаны различные положения плунжера от БЕЗ НАГРУЗКИ до ПОЛНОЙ НАГРУЗКИ.При полностью вытянутой стойке управления (без впрыска) верхний порт не закрывается спиралью до тех пор, пока не откроется нижний порт. Следовательно, когда рейка находится в этом положении, все топливо возвращается в камеру подачи, и впрыск топлива не происходит. Когда рейка управления вдвинута до упора (полный впрыск), верхнее отверстие закрывается вскоре после того, как было закрыто нижнее отверстие, что обеспечивает максимальный эффективный ход и максимальный впрыск топлива. От этого положения без впрыска к положению полного впрыска (полное движение рейки) контур верхней спирали способствует закрытию отверстий и началу впрыска.

Рисунок 27 Поршень топливной форсунки

Форсунки дизельных форсунок и уход за ними

Если бы вы поговорили с производителями дизельного топлива, они бы сказали, что большая часть стоимости двигателя приходится на топливную систему. На дизельном топливе с механическим впрыском он состоит из ТНВД и форсунок. Эти компоненты являются сердцем дизеля. Они не только критичны для его работы, но и чрезвычайно дороги в замене в случае отказа.

Многие называют деталь, подающую топливо в цилиндр, форсункой.Однако для дизельного эксперта форсунка - это узел держателя форсунки. Со временем его стали использовать для описания фактического сопла. Это неправильное название усложнилось тем фактом, что существуют различные конструкции топливных систем, которые включают в себя форсунки с механическими агрегатами, инжекторы с электронными агрегатами и инжекторы с электронными агрегатами с гидравлическим приводом. Существуют также разновидности форсунок от производителей, но основные функции форсунок, их процедуры обслуживания и советы по техническому обслуживанию применимы.

Чтобы усложнить ситуацию в категории механических устройств, существует множество различных конструкций, и они, как правило, имеют общие рабочие характеристики. (Я говорю «в целом», потому что эти общие характеристики не всегда применимы.) Сравните это с гидравлическими форсунками, которые обычно классифицируются по конструкции сопла, включая:

  • Тарелка

  • Пинтл

  • Многоотверстие

  • Электрогидравлический

В каждой категории дизайна часто есть подмножества стилей, например, те, которые используются исключительно в приложениях с непрямым или прямым впрыском.Независимо от конструкции механический инжектор, не содержащий электронных деталей, подлежит ремонту и требует обслуживания. С другой стороны, форсунки с электронным усилением для легких условий эксплуатации традиционно не обслуживаются и должны заменяться как единое целое.

Есть три термина, относящихся к тестированию и обслуживанию форсунок. Это давление открытия форсунки (NOP), обратная утечка и прямая утечка.

Форсунку можно рассматривать как гидравлический переключатель. Одним из элементов его дизайна является давление, при котором он открывается.Обычно это устанавливается либо с помощью регулировки натяжения пружины, либо, на некоторых моделях, с помощью прокладок. Термины «давление открытия» и «давление открытия» также используются вместо «давление открытия форсунки».

Все о давлении

Какой бы термин ни использовался, он описывает величину давления, которое должно быть создано топливным насосом, прежде чем форсунка подаст топливо в цилиндр.

Каждая модель двигателя и конструкция сопла имеют собственное значение NOP, которое обычно варьируется от 1000 до 5880 фунтов на квадратный дюйм.

В некоторых форсунках используется внутренний открывающийся клапан, который возвращает неиспользованное топливо в бак. Внутренняя утечка является результатом зазора между клапаном форсунки и корпусом форсунки. Он измеряется во время стендовых испытаний в течение 10 секунд и регистрируется как обратная утечка.

Прямая утечка - это способность форсунки не капать и не протекать до тех пор, пока не будет реализовано NOP. Подтверждает герметичность сопла. Для проверки прямой утечки на стенде создается давление примерно на 150 фунтов на квадратный дюйм ниже NOP.Никаких видимых капель не допускается.

Сервисные форсунки

Для правильного обслуживания форсунки ее необходимо снять с двигателя и доставить в учреждение, специализирующееся на этих процедурах. Эти магазины традиционно называются инжекторными насосами и форсунками.

В цехе форсунки разбираются, а затем очищаются ультразвуком. Изнашиваемые детали заменяются и собираются заново. Затем форсунки возвращаются на испытательную арматуру, где устанавливаются критические давления и повторно оценивается форма распыления.

Что такое топливная форсунка? Как чистить топливные форсунки?

Часто задаваемые вопросы


Что такое топливная форсунка? Как чистить топливные форсунки?

Проще говоря; топливная форсунка - это клапан с электронным управлением, который полностью открыт или полностью закрыт. Период полного открытия клапана измеряется в миллионных долях секунды.

Форсунки

имеют лучшие допуски по сравнению с любой механической частью двигателя.

Из чего состоят основные внутренние рабочие части топливной форсунки?

Большинство топливных форсунок состоят из корпуса, в котором размещена электромагнитная катушка и уплотнительный механизм, такой как игла, шар или диск.Эти уплотнительные механизмы обычно удерживаются закрытыми с помощью пружины.

Форсунки полностью открыты или полностью закрыты. Количество впрыскиваемого топлива определяется тем, как долго форсунка открыта или как долго игла, диск или шарик вынимаются из гнезда.

Как работает топливная форсунка?

Топливо под давлением распыляется очень мелким туманом из наконечника форсунки. Для этого через инжектор должен протекать ток. Вопреки распространенному мнению, это делается НЕ путем подачи питания на инжектор.Топливные форсунки обычно получают питание всякий раз, когда ключ зажигания включен, но цепь не замкнута, и, следовательно, форсунка все еще замкнута. Компьютер контролирует заземление цепи. Когда компьютер заземляет форсунку, цепь замыкается, и ток проходит через форсунку. Это возбуждает электромагнитную катушку внутри инжектора, которая оттягивает уплотнительный механизм, такой как игла, шарик или диск, от своего гнезда. Это позволяет топливу течь через форсунку в двигатель.Когда компьютер удаляет электрическое заземление форсунки, электромагнитная катушка размагничивается, и пружина заставляет штифт, шар или диск закрыться, чтобы перекрыть поток топлива. Даже при частоте вращения двигателя всего 1000 об / мин это происходит сотни раз в минуту.

Что такое рабочий цикл форсунки?

Чтобы контролировать количество топлива, которое поступает в двигатель, форсунки включаются и выключаются или очень быстро пульсируют. Время, в течение которого форсунка включена для подачи топлива, называется рабочим циклом.Это измеряется в процентах, поэтому 50% рабочего цикла означает, что форсунка остается открытой и закрытой в течение равного времени. Когда двигателю требуется больше топлива, время, в течение которого форсунка остается включенной (ее рабочий цикл), увеличивается, так что в двигатель может поступать больше топлива. Если форсунка остается включенной все время, она считается статической (полностью открытая или 100% рабочий цикл).

Что означает термин «статический»?

Если форсунка работает все время, при 100% рабочем цикле, она считается статической.Форсунки ни в коем случае не должны становиться статичными, потому что теряется контроль за подачей топлива, и это может вызвать катастрофический отказ двигателя. Статические форсунки или 100% IDC обычно указывают на то, что форсунка слишком мала для двигателя. Рабочий цикл форсунки обычно не должен превышать 80%. После достижения 80% IDC следует установить инжектор большего размера.

В некоторых случаях низкое давление топлива или отказ топливного насоса могут привести к статическому электричеству форсунок. С другой стороны, есть некоторые форсунки, которые станут статичными, если давление топлива будет слишком высоким.

Что такое статический расход инжектора?

Производители оценивают топливные форсунки по максимальному количеству топлива, которое они могут пропустить за заданный промежуток времени при заданном давлении. Это измерение известно как статический расход и обычно выполняется при 100% рабочем цикле и давлении топлива 43,5 фунта на квадратный дюйм.

Пример: При 100% рабочем цикле форсунка в 55 фунтов (фунт) при давлении топлива 43,5 фунт / кв.дюйм будет пропускать 55 фунтов в час.

Расход инжектора выражается в фунтах в час (фунт / час) или кубических сантиметрах в минуту (см3 / мин).При таком же давлении 1 фунт / час = 10,5 куб. См / мин.

Чтобы преобразовать фунт / час в куб.см / мин, умножьте на 10,5
Иногда скорость потока инжектора выражается в миллилитрах в минуту (мл / мин)
1 мл = 1 куб.см

Пример: инжектор 220 см3 = инжектор 220 мл

Что такое импеданс?

Импеданс измеряет, насколько легко цепь проводит ток, когда через нее проходит напряжение. Импеданс, измеряемый в омах, показывает, какая часть напряжения, подаваемого на одном конце, действительно дойдет до другого.Импеданс зависит от других качеств электричества, таких как сопротивление, реактивное сопротивление, индуктивность и емкость.
Большинство форсунок делятся на две категории: с высоким или низким импедансом

Высокое сопротивление.

Они имеют типичное сопротивление катушки от 12 до 16 Ом и являются наиболее часто используемыми. Схема привода для этого типа инжектора проста и иногда называется насыщенной схемой драйвера.

Низкое сопротивление.

Инжекторы с низким импедансом

обычно имеют сопротивление катушки 4 Ом или меньше и обычно используются в инжекторах большего размера или в высокопроизводительных инжекторах.Схема драйвера для этих типов называется типом с удержанием пика, и она более сложна и стоит дороже, чем тип с насыщением.
В системе удержания пикового значения схема драйвера пропускает высокий ток в течение короткого времени, чтобы помочь быстро включить инжектор. Затем ток снижается до меньшего значения, чтобы форсунка оставалась открытой. Пиковый ток может составлять 4 ампера для открытия форсунки. После открытия ток может быть уменьшен до 0,75 ампер.
При более низком сопротивлении катушки давление внутренней пружины, удерживающей стержень в закрытом состоянии, может быть увеличено для более быстрого закрытия форсунки.Это позволяет сократить время открытия и закрытия и упростить настройку больших форсунок. Системы удержания пиковой нагрузки
снижают энергопотребление катушки форсунки, тем самым предохраняя катушки от перегрева.

Что предохраняет инжектор от перегрева?

Топливо, протекающее через форсунку, помогает охладить форсунку и в большинстве случаев предотвращает ее перегрев.

Каковы симптомы форсунок, требующих обслуживания?

• Неисправные выбросы
• Потеря производительности
• Повышенный расход топлива
• Плохой холостой ход
• Повышенная вибрация при слабом дросселе
• Дым из выхлопной трубы
• Детонация, которая может привести к катастрофическому отказу двигателя
• Загрязнение

Негерметичные форсунки вызывают:

• Повышенный расход топлива
• Плохой режим холостого хода
• Запах топлива внутри и вокруг автомобиля
• Жесткий запуск
• Низкий уровень выбросов
• Разжижение масла, которое может привести к катастрофическому отказу двигателя
• Гидравлическая блокировка
Утечка из внешней форсунки является опасностью пожара и не может быть исправлено. Форсунки с внешними утечками подлежат замене.

Почему топливные форсунки нуждаются в чистке?

Углеводороды и присадки, входящие в состав современного топлива, испаряются при разных температурах. Небольшое количество бензина остается на кончике форсунок каждый раз, когда двигатель останавливается. Летучие соединения в топливе испаряются, в то время как другие остаются на наконечнике форсунки и в конечном итоге образуют твердые частицы. Эти твердые частицы накапливаются и в конечном итоге начинают влиять на форму распыления и распределение топлива, что, в свою очередь, может оказывать пагубное влияние на общее состояние двигателя.

Более высокие рабочие температуры двигателей с турбонаддувом и двигателей с наддувом очень плохо сказываются на форсунках, особенно из-за более высоких температур на впуске и иногда реверсирования. То же самое верно и для двигателей с высокими рабочими характеристиками с кулачками большой продолжительности.

Многие высокоэффективные воздушные фильтры недостаточно очищают воздух и способствуют загрязнению форсунок. Грязные топливные фильтры и несвоевременная их замена также являются причиной

.

Влага в топливном баке может в конечном итоге привести к отложению ржавчины под фильтром форсунки и может вызвать катастрофический отказ не только форсунки, но в некоторых случаях двигателя.

Двигатели с изношенными кольцами и направляющими клапана сильно способствуют засорению топливных форсунок.

Какой метод очистки инжектора самый лучший и почему?

В баке очистители.

Преимущества:

• Недорого.
• Проста в использовании, это может сделать каждый.

Недостатки:

• Возможно повреждение форсунок, уплотнений, датчиков O2 и каталитических нейтрализаторов из-за агрессивных химикатов. Есть автопроизводители, которые не рекомендуют использовать такие продукты.
• Засоренные или частично забитые корзины фильтров, негерметичные форсунки, слабые пружины, плохая форма распыления и другие возможные проблемы не могут быть идентифицированы.
• Невозможно точно узнать, были ли очищены некоторые или все форсунки или насколько хорошо работает каждая из них.
• Такие детали, как уплотнительные кольца, корзины фильтров и крышки игл, не подлежат замене
___________________________________________________________

О чистке автомобилей.

• Этот метод используется некоторыми дилерами, ремонтными мастерскими и центрами быстрой замены масла. Раствор для очистки подается в топливную рампу для очистки форсунок при работающем двигателе.

Преимущества:

• Более быстрые результаты, чем при использовании очистителей резервуаров.

Недостатки:

• Из-за более высокой концентрации агрессивных химикатов повышается риск повреждения форсунок, уплотнений, датчиков O2, каталитических нейтрализаторов и других электронных компонентов.
• Может вытеснять частицы, скапливающиеся под фильтром, и позволять им забивать наконечник инжектора.
• Засоренные или частично забитые корзины фильтров, негерметичные форсунки, слабые пружины, плохая форма распыления и другие возможные проблемы не могут быть идентифицированы.
• Невозможно точно узнать, были ли очищены форсунки и насколько хорошо работает каждая из них.
• Такие детали, как уплотнительные кольца, корзины фильтров и крышки игл, не подлежат замене
_____________________________________________________________

Профессиональная чистка автомобилей.

Преимущества:

• Форсунки проверяются на сопротивление змеевика, герметичность, форму распыления и расход.
• Форсунки тестируются бок о бок, что позволяет точно сравнивать потоки.
• Надлежащая форма распыления проверяется и подтверждается визуально.
• Чистящие растворы безопасны, биоразлагаемы и никогда не попадают в двигатель.
• Метод очистки не должен повредить компоненты форсунки.
• Новые детали, такие как; Установлены уплотнительные кольца, фильтры и колпачки штырей.
• Предоставляются паспорта до и после.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *