Работа датчика кислорода: Кислородный датчик (лямбда-зонд): устройство и принцип работы

Содержание

Принцип работы датчика Лямбда зонд

Любознательные автолюбители давно уже слышали о таких системах, как антиблокировочная тормозная система (ABS) или стабилизация курсовой устойчивости (ESP), да и о других тоже. Сегодня поговорим о датчике Лямбда зонд, рассмотрим принцип работы датчика Лямбда зонд, узнаем для чего надо датчик Лямбда зонд, за что он отвечает и так далее.

С каждым годом человечество все больше задумывается о сохранении окружающей среды, ведь не мало было упущено в прошлом, надо подумать и о будущем. Узаконивание жестких экологических норм относительно автомобилей, привело к разработке и применению новых устройств, таких как каталитические нейтрализаторы.

Каталитический нейтрализатор

 

Каталитический нейтрализатор – это устройство, назначение которого является снижение вредных выбросов в окружающую среду. Катализатор очень полезная вещь, только для его корректной работы следует соблюдать некоторые условия.

Огромное влияние на работу катализатора оказывает состав топливно-воздушной смеси. Именно от качества топливно-воздушной смеси и зависит ресурс работы катализатора. Поэтому и был разработан датчик Лямбда зонд, который отвечает за контроль состава этой же топливно-воздушной смеси. В просто народе его называют датчик кислорода.

Что такое Лямбда зонд икак выглядит датчик Лямбда зонд?

Не секрет, что свое название датчик получил от обозначения коэффициента избытка воздуха, который обозначается греческой буквой Лямбда. Лямбда зонд применяется для измерения состава отработавших газов и содействует в дальнейшем для поддержания оптимального состава смеси топлива и воздуха. Оптимальное соотношение топливно-воздушной смеси обеспечит качественное сгорание, что уменьшит выброс вредных веществ в атмосферу.

Оптимальный состав топливно-воздушной смеси это когда на 14,7 частей воздуха приходится 1 часть топлива, при этом Лямбда равняется одному.

На старых советских двигателях такого сложно было добиться. А в современных автомобилях для этого используют системы питания с электронным впрыском топлива, которая взаимодействует с датчиком Лямбда-зонд.

Как измеряется избыток воздуха в топливно-воздушной смеси?

Избыток воздуха в топливно-воздушной смеси измеряется путем определения в отработавших газах содержания остаточного кислорода (О2). Этим объясняется и расположение датчика в выпускном коллекторе непосредственно перед катализатором.

Для считывания сигнала с Лямбда датчика используется электронный блок управления системы впрыска топлива (ЭБУ), который отвечает за оптимизацию состава топливно-воздушной смеси, то уменьшая, то увеличивая подачу топлива в цилиндры двигателя.

Некоторые производители автомобилей пошли еще дальше, и начали устанавливать по два Лямбда датчика в выхлопной системе, перед катализатором и после него. Два датчика Лямбда устанавливали для того, чтобы увеличить точность приготовления горючей смеси и улучшить работу катализатора.


Принцип работы лямбда-зонда

Схема датчика кислорода лямбда зонда на основе диоксида циркония: 1 – твердый электролит; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – сигнальный контакт; 6 – выхлопная труба.

Наиболее качественное измерение выхлопных газов Лямбда датчиком обеспечивается при температуре 300-400 градусов Цельсия. При такой температуре Циркониевый электролит становиться более проводимым, вследствие чего на электродах датчика появляются выходное напряжение.

Поэтому при запуске и прогреве двигателя датчик не используется. На этих режимах работы двигателя контроль качества топливно-воздушной смеси осуществляют датчики положения дроссельной заслонки, датчик температуры охлаждающей жидкости, датчик количества оборотов коленчатого вала.


На схеме представлена зависимость напряжения лямбда-зонда от коэффициента избытка воздуха при 500-800°С температуре датчика.

Для качественной работы датчика при низких температурах применяют принудительные нагревательные элементы.

Что будет если не работает датчик Лямбда?

Если не работает датчик лямбда зонд, тогда ЭБУ выбирает средние параметры работы, считывая данные с своей памяти. Параметры топливно-воздушной смеси будут разниться от идеальной.

К чему приведет поломка Лямбда датчика?

Поломка Лямбда датчика приведет к повышению расхода топлива, на холостом ходу двигатель будет работать неравномерно, в выхлопных газах будет содержаться повышенный уровень СО, упадет мощность двигателя, но автомобиль будет на ходу.

Самому проверить Лямбда датчик достаточно сложно, поэтому лучше проконсультироваться с специалистами.

Какой срок службы Лямбда датчика?

Срок службы Лямбда датчика зависит от качества заливаемого топлива. Бывает так, что достаточно нескольких заправок некачественным бензином и датчик приходит в негодность. Средний срок службы Лямбда датчика составляет от 40 до 80 тыс. км пробега.

Датчик кислорода. Устройство и принцип работы :: Avto.Tatar

  Датчик кислорода — это часть двигателя, отвечающая за смесь воздуха с топливом. Воздушно-топливная смесь снижает расход топлива без потери мощности.

Общеизвестно, что бензиновые двигатели производят очень токсичную отработку. Она содержит целый букет химических элементов, а самые ядовитые из них — окись углерода (CO), углеводороды (CH) и окись азота (NOx). Для нейтрализации их вреда система выпуска была модифицирована каталитическим нейтрализатором. Данное устройство снижает токсичность газов и делает их почти безопасными.

Для эффективной работы нейтрализатора состав газов, подаваемых на него, должен соответствовать определенным стехиометрическим стандартом воздушно-топливной смеси. Коэффициент избытка воздуха — основная характеристика свойственная этой смеси. Его значение колеблется вокруг единицы (1.0). Если оно опускается ниже 1.0, то смесь считается обогащенной. Показатель выше 1.0 указывает на обеднение. Если значение коэффициента избытка воздуха стремится к единице, то такая смесь называется стехиометрической.

Для достижения максимальной эффективности (порядка 80%) состав рабочей смеси в двигателе не должен отступать от стехиометрического значения больше чем на 1%. Но каким образом смешивание газообразного и жидкого вещества может происходить с такой высокой точностью? На выручку пришли современные технологии. Была разработана специальная система регулировки подачи воздуха и топлива, называемая лямбда-зондом. Это высокоточный датчик обратной связи, являющийся одним из самых важных элементов.


Строение датчика кислорода

Современные автомобили используют два разных вида датчиков кислорода: титановые и циркониевые. Несмотря на некоторые различия в строении, принцип работы у них одинаковый. В кислородном датчике имеется элемент измерения, опыленный платиной с наружной и внутренней стороны. Внутри находится керамический твердый электролит.

Принцип работы схож с гальваническим элементом. Минимальная температура, необходимая для функционирования датчика — 300–350 градусов Цельсия. По ее достижении керамический элемент становится проводником ионов кислорода. Максимальная безопасная температура — в пределах 950–1000 градусов Цельсия. Более интенсивный нагрев может привести к поломке.


Принцип работы

Кислородные ионы приводятся в движение за счет разных концентраций масс во внутренней и наружной части системы выпуска. Таким образом, своей работой двигатель создает разность потенциалов, необходимую для подачи сигнала. Если температура датчика ниже 300 градусов Цельсия, то он находится в нерабочем состоянии.

В зависимости от температуры датчика происходит реакция на разные смеси: при высоких температурах — на богатые, при низких на бедные. Разница между реакциями на богатые и бедные смеси весьма высока, но если температура падает ниже 300 градусов Цельсия, разница уменьшается, а датчик переходит в нерабочее состояние.

Для того чтобы решить данную проблему, лямбду пытаются разместить поближе к двигателю, сохраняя при этом ограничение температурного режима во избежание повреждений датчика. Наибольшая опасность возникает при «выжимании» высоких мощностей из мотора.

В современном автомобилестроении датчики кислорода оснащены спиральными нагревательными элементами. Управляется подогрев электроникой двигателя. Помимо этого, электронный блок отвечает еще и за стабильность работы цепи нагревания.  

Датчик кислорода:назначение,виды,устройство,фото,принцип работы

Кислородный датчик — устройство, предназначенное для фиксирования количества оставшегося кислорода в отработавших газах двигателя автомобиля. Он расположен в выпускной системе вблизи катализатора. На основе данных, полученных кислородником, электронный блок управления двигателем (ЭБУ) корректирует расчет оптимальной пропорции топливовоздушной смеси. Коэффициент избытка воздуха в ее составе обозначается в автомобилестроении греческой буквой 

лямбда (λ), благодаря чему датчик получил второе название — лямбда-зонд.

Типы датчиков кислорода

Циркониевый датчик стоит впереди катализатора и сам генерирует напряжение, либо отрицательное, либо положительное. Опорное напряжение такого датчика составляет 0,45 В, которое отклоняется либо до 0,9 В, либо до 0,1 В. Главное отличие такого датчика от титанового является именно тот факт, что циркониевый самостоятельно генерирует напряжение.

При ремонте стоить помнить, что к такому датчику ни в коему случае нельзя припаивать какие попало провода, потому что именно в изоляции проложены каналы для прохождения эталонного воздуха. Если такового не будет, то датчик попросту не будет правильно работать.

Широкополосный датчик – это новейшая конструкция лямбда-зонда на данный момент. Его устройство позволяет не просто определять бедную или богатую смесь на входе в цилиндры, но так же и определять степень отклонения. Именно такие параметры сделали его более точным, в то же время широкополосный кислородный датчик быстрее реагирует на изменения состава выхлопных газов.

Всем известно, что любой кислородный датчик начинает работать только после 350 градусов. Здесь же для более быстрого достижения рабочей температуры устанавливается нагревательных элемент.

Циркониевый

Одна из наиболее распространённых моделей. Создана на основе диоксида циркония (ZrO2).

Циркониевый датчик кислорода действует по принципу гальванического элемента с твёрдым электролитом в виде керамики из диоксида циркония (ZrO2)

Керамический наконечник с диоксидом циркония с обеих сторон покрыт защитными экранами из токопроводящих пористых платиновых электродов. Свойства электролита, пропускающего ионы кислорода, проявляются при нагреве ZrO2 выше 350°C. Лямбда-зонд не будет работать, не прогревшись до нужной температуры. Быстрый нагрев осуществляется за счёт встроенного в корпус нагревательного элемента с керамическим изолятором.

Выхлопные газы поступают к наружной части наконечника через специальные просветы в защитном кожухе. Атмосферный воздух попадает внутрь датчика через отверстие в корпусе или пористую водонепроницаемую уплотнительную крышку (манжету) проводов.

Разница потенциалов образуется за счёт передвижения ионов кислорода по электролиту между наружным и внутренним платиновыми электродами. Напряжение, образующееся на электродах, обратно пропорционально количеству О2 в выхлопной системе.

Напряжение, которое образуется на двух электродах, обратно пропорционально количеству кислорода

Относительно сигнала, поступающего от датчика, блок управления регулирует состав ТВС, стараясь приблизить её к стехиометрической. Напряжение, поступающее от лямбда-зонда, ежесекундно меняется по несколько раз. Это даёт возможность регулировать состав топливной смеси независимо от режима работы ДВС.

По количеству проводов можно выделить несколько типов циркониевых устройств:

  1. В однопроводном датчике существует единственный сигнальный провод. Контакт на массу осуществляется через корпус.
  2. Двухпроводное устройство оснащено сигнальным и заземляющим проводами.
  3. Трёх- и четырёхпроводные датчики снабжены системой нагрева, управляющим и заземляющим проводами к ней.

Циркониевые лямбда-зонды в свою очередь разделяются на одно-, двух-, трёх- и четырёхпроводные датчики

Титановый

Визуально похож на циркониевый. Чувствительный элемент датчика создан из диоксида титана. В зависимости от количества кислорода в выхлопных газах скачкообразно меняется объёмное сопротивление датчика: от 1 кОм при богатой смеси до более 20 кОм при бедной. Соответственно, меняется проводимость элемента, о чём датчик сигнализирует блоку управления. Рабочая температура титанового датчика — 700°C, поэтому наличие нагревательного элемента обязательно. Эталонный воздух отсутствует.

Из-за своей сложной конструкции, дороговизны и привередливости к перепадам температуры большое распространение датчик не получил.

Кроме циркониевых, существуют также кислородные датчики на основе двуокиси титана (TiO2)

Широкополосный

Конструктивно отличается от предыдущих 2 камерами (ячейками):

  • Измерительной;
  • Насосной.

В камере для измерений с использованием электронной схемы модуляции напряжения поддерживается состав газов, соответствующий λ=1. Насосная ячейка при работающем моторе на обеднённой смеси устраняет лишний кислород из диффузионного зазора в атмосферу, при богатой смеси — пополняет диффузионное отверстие недостающими ионами кислорода из внешнего мира. Направление тока для перемещения кислорода в разные стороны меняется, а его величина пропорциональна количеству О2. Именно значение тока и служит детектором λ выхлопных газов.

Температура, необходимая для работы (не менее 600°C), достигается за счёт работы нагревательного элемента в датчике.

Широкополосные датчики кислорода детектируют лямбду от 0,7 до 1,6

Основные положения и функции Кислородного датчика :
Теория.

Жесткие экологические нормы во многих странах мира, стали диктовать количество выбросов вредных веществ, тем самым узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе – катализаторы) – устройств, способствующих снижению содержания вредных веществ в выхлопных газах автомобилей с двигателем внутреннего сгорания. Катализатор — нужный и ответственный узел автомобиля, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси катализатор умрёт ( потеряет свои основные свойства и функции) очень быстро – для того чтобы, как можно дольше продлить его жизнь и приходит на помощь датчик кислорода, он же О2-датчик, он же лямбда-зонд (ЛЗ).

Название датчика происходит от греческой буквы L (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива (речь идет о объемном соотношении величин), L равна 1 (график 1). «Окно» эффективной работы катализатора очень узкое: L=1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда. Таким образом, Лямбда зонд создан и поставлен инженерами для информирования компьютера, инжекторного автомобиля об отклонении от нормы соотношения топливно воздушной смеси.

График 1. Зависимость мощности двигателя (P) и расхода топлива (Q) от коэффициента избытка воздуха (L)

Избыток воздуха в смеси измеряется весьма оригинальным способом ( причем этот способ не является обходным путем, а дает уверенно точные показания ) – определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором.

Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. Таким образом, происходит регулировка не воздуха, а именно топлива, относительно воздуха, тем самым достигается максимальный процент сгорания топлива в цилиндрах, максимально эффективная работа катализатора, и как следствие максимальный крутящий момент двигателя автомобиля.

Причем на большинстве современных моделях автомобилей имеется еще один лямбда-зонд, так же возможна установка дополнительных датчиков работающих в связке (например датчик температуры катализатора, расположен он на выходе катализатора). Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора (рис. 1).

Рис. 1. Схема L-коррекции с одним и двумя датчиками кислорода двигателя 1 – впускной коллектор; 2 – двигатель; 3 – блок управления двигателем; 4 – топливная форсунка; 5 – основной лямбда-зонд; 6 – дополнительный лямбда-зонд; 7 – каталитический нейтрализатор.

Конструкция и принцип работы кислородного датчика

Конструкция кислородного датчика

Существует несколько видов лямбда-зондов, применяемых на современных автомобилях. Рассмотрим конструкцию и принцип работы наиболее популярного из них — датчика кислорода на основе диоксида циркония (ZrO2). Датчик состоит из следующих основных элементов:

  • Наружный электрод — осуществляет контакт с выхлопными газами.
  • Внутренний электрод — контактирует с атмосферой.
  • Нагревательный элемент — используется для подогрева кислородного датчика и более быстрого вывода его на рабочую температуру (около 300 °C).
  • Твердый электролит — расположен между двумя электродами (диоксид циркония).
  • Корпус.
  • Защитный кожух наконечника — имеет специальные отверстия (перфорацию) для проникновения отработавших газов.
Устройство наконечника лямбда-зонда

Внешний и внутренний электроды покрыты платиновым напылением. Принцип работы такого лямбда зонда основан на возникновении разности потенциалов между слоями платины (электроды), которые чувствительны к кислороду. Она возникает при нагревании электролита, когда через него происходит движение ионов кислорода от атмосферного воздуха и выхлопных газов. Напряжение, возникающее на электродах датчика, зависит от концентрации кислорода в отработавших газах. Чем она выше, тем ниже напряжение. Диапазон напряжений сигнала кислородного датчика находится в пределах от 100 до 900 мВ. Сигнал имеет синусоидальную форму, у которой выделяются три области: от 100 до 450 мВ — бедная смесь, от 450 до 900 мВ — богатая смесь, значение 450 мВ соответствует стехиометрическому составу топливовоздушной смеси.

Принцип работы кислородного датчика на языке автомобилистов ( основные моменты):

Кислород содержит отрицательно заряженные ионы, которые собираются на платиновых электродах, и когда датчик достигает температуры около 400°C, любая разность потенциалов образует электрическое напряжение. В случае если смесь бедная, содержание кислорода в отработавших газах высокое. При сравнении с содержанием кислорода в атмосфере существует только очень маленькая разность потенциалов, и, как следствие, возникает небольшое напряжение (около 0,2–0,3 В).

В случае если смесь богатая, то содержание кислорода в отработавших газах низкое. Создается большая разность потенциалов, поэтому возникает относительно более высокое напряжение (0,7–0,9 В). Система управления двигателем будет непрерывно подстраивать длительность импульсного сигнала под форсунки с целью выйти на среднее напряжение, составляющее около 0,4–0,6 В при значении лямбда около 1.0. Поскольку в процессе движения режимы работы двигателя постоянно изменяются, значение напряжения колеблется в обе стороны от среднего значения.

Поэтому данный датчик в силу своей неспособности определить небольшие изменения в содержании кислорода известен как узкополосный. Датчик, установленный после каталитического нейтрализатора отработавших газов, действует по тому же способу, что и датчик перед ним, но с одним очень большим отличием. После того, как газы были обработаны каталитическим нейтрализатором, содержание кислорода в них остается на неизменном уровне. Это обеспечивает постоянное напряжение около 0,4–0,6 В. Теперь система управления двигателем может эффективно отслеживать работу каталитического нейтрализатора отработавших газов.

Распространённые причины неисправностей лямбда зонда и способы их устранения

Датчики содержания кислорода в топливовоздушной смеси со временем выходят из строя, что можно определить по нестабильной работе двигателя и увеличенному расходу горючего. Причины неисправности лямбда — это заправка топлива низкого качества, неполадки системы приготовления и подачи горючего, попадание на датчик спецжидкостей. Неполадки проявляется следующими признаками:

  • резкий рост оборотов до максимальных значений и мгновенное отключение мотора;
  • ухудшение качества подаваемой в цилиндры смеси, снижение полноты сгорания;
  • колебания оборотов холостого хода;
  • значительное снижение мощности при увеличении оборотов;
  • сбои в работе электронных блоков из-за задержек в подаче сигналов с датчика;
  • движение автомобиля рывками;
  • появление в двигательном отсеке звуков, которые нехарактерны при нормальной работе мотора;
  • поздний впрыск при нажатии педали.

Для восстановления работоспособности электроники и системы впрыска понадобится замена или правильная очистка лямбда зонда. При очистке нужно снять керамический наконечник и удалить загрязнения при помощи химических средств.

Электронная проверка лямбда зонда

Узнать о состоянии лямбда зонда можно путем его проверки на профессиональном оборудовании. Для этого используется электронный осциллограф. Некоторые специалисты определяют работоспособность кислородного датчика при помощи мультиметра, однако, он способен только констатировать или же опровергнуть факт его поломки.

Проверяется устройство во время полноценной работы двигателя, так как в состоянии покоя датчик не сможет полностью передать картину своей работоспособности. В случае даже незначительного отхождения от нормы, лямбда зонд рекомендуется заменить.

Замена лямбда зонда

В большинстве случаев такая деталь, как лямбда зонд не подлежит ремонту, о чем свидетельствуют утверждения о невозможности произведения ремонта от многих автомобильных производителей. Однако, завышенная стоимость такого узла у официальных дилеров отбивает всякую охоту его приобретения. Оптимальным выходом из сложившейся ситуации может стать универсальный датчик, который стоит гораздо дешевле родного аналога и подходит практически всем автомобильным маркам. Также в качестве альтернативы можно приобрети датчик бывший в использовании, но с продолжительностью гарантийного периода или же полностью выпускной коллектор с установленным в него лямбда зондом.

Однако, бывают случаи, когда лямбда зонд функционирует с определенной погрешностью из-за сильного загрязнения в результате оседания на нем продуктов сгорания. Для того чтобы убедиться, что это действительно так, датчик необходимо проверить у специалистов. После того как проверка лямбда зонда состоялась и подтвержден факт его полной работоспособности, его нужно снять, почистить и установить обратно.

Для того чтобы демонтировать датчик уровня кислорода, необходимо прогреть его поверхность до 50 градусов. После снятия, с него снимается защитный колпачок и только после этого можно приступать к очистке. В качестве высокоэффективного очищающего средства рекомендуется использовать ортофосфорную кислоту, которая с легкостью справляется даже с самыми стойкими горючими отложениями. По окончании процедуры отмачивания, лямбда зонд ополаскивается в чистой воде, тщательно просушивается и устанавливается на место. При этом не стоит забывать о смазке резьбы специальным герметиком, который обеспечить полную герметичность.

Устройство автомобиля очень сложное, поэтому он нуждается в постоянной поддержке работоспособности и проведении своевременных профилактических работ. Поэтому в случае возникновения подозрений о неисправности лямбда зонда, необходимо незамедлительно произвести диагностику его работоспособности и в случае подтверждения факта выхода из строя, заменить лямбда зонд. Таким образом, все важнейшие функции транспортного средства будут сохранены на прежнем уровне, что станет гарантом отсутствия дальнейших проблем с двигателем и прочими важными элементами автомобиля.

Вопрос — ответ

В: Чем отличаются специальные и универсальные датчики?
O: Эти датчики имеют разные способы установки. Специальные датчики уже имеют контактный разъем в комплекте и готовы к установке. Универсальные датчики могут не комплектоваться разъемом, поэтому нужно использовать разъем старого датчика.

B: Что произойдет, если выйдет из строя датчик кислорода?
O: В случае выхода из строя датчика кислорода ЭБУ не получит сигнала о соотношении топлива и воздуха в смеси, поэтому он будет задавать количество подачи топлива произвольно. Это может привести к менее эффективному использованию топлива и, как следствие, увеличению его расхода. Это также может стать причиной снижения эффективности катализатора и повышения уровня токсичности выбросов.

B: Как часто необходимо менять датчик кислорода?
O: DENSO рекомендует заменять датчик согласно указаниям автопроизводителя. Тем не менее следует проверять эффективность работы датчика кислорода при каждом техобслуживании автомобиля. Для двигателей с длительным сроком эксплуатации или при наличии признаков повышенного расхода масла интервалы между заменами датчика следует сократить.

Ассортимент кислородных датчиков

• 412 каталожных номеров покрывают 5394 применения, что соответствует 68 % европейского автопарка.
• Кислородные датчики с подогревом и без (переключаемого типа), датчики соотношения «воздух — топливо» (линейного типа), датчики обедненной смеси и титановые датчики; двух типов: универсальные и специальные.
• Регулирующие датчики (устанавливаемые перед катализатором) и диагностические (устанавливаемые после катализатора).
• Лазерная сварка и многоэтапный контроль гарантируют точное соответствие всех характеристик спецификациям оригинального оборудования, что позволяет обеспечить эффективность работы и надежность при длительной эксплуатации.

В DENSO решили проблему качества топлива!

Вы знаете о том, что некачественное или загрязненное топливо может сократить срок службы и ухудшить эффективность работы кислородного датчика? Топливо может быть загрязнено присадками для моторных масел, присадками для бензина, герметиком на деталях двигателя и нефтяными отложениями после десульфуризации.

При нагреве свыше 700 °C загрязненное топливо выделяет вредные для датчика пары. Они влияют на работу датчика, образуя отложения или разрушая его электроды, что является распространенной причиной выхода датчика из строя. DENSO предлагает решение этой проблемы: керамический элемент датчиков DENSO покрыт уникальным защитным слоем оксида алюминия, который защищает датчик от некачественного топлива, продлевая срок его службы и сохраняя его рабочие характеристики на необходимом уровне.

В: Почему на некоторых автомобилях устанавливаются два кислородных датчика?
O: Многие современные автомобили дополнительно кроме датчика кислорода, расположенного перед катализатором, оснащаются и вторым датчиком, установленным после него. Первый датчик является основным и помогает электронному блоку управления регулировать состав топливовоздушной смеси. Второй датчик, установленный после катализатора, контролирует эффективность работы катализатора, измеряя содержание кислорода в выхлопных газах на выходе. Если весь кислород поглощается химической реакцией, происходящей между кислородом и вредными веществами, то датчик выдает сигнал высокого напряжения. Это означает, что катализатор работает нормально. По мере износа каталитического нейтрализатора некоторое количество вредных газов и кислорода перестает участвовать в реакции и выходит из него без изменений, что отражается на сигнале напряжения. Когда сигналы станут одинаковыми, это будет указывать на выход из строя катализатора.

В: Почему состав топливовоздушной смеси нужно постоянно регулировать?
O: Соотношение «воздух — топливо» крайне важно, поскольку оно влияет на эффективность работы каталитического нейтрализатора, который снижает содержание оксида углерода (CO), несгоревших углеводородов (CH) и оксида азота (NOx) в выхлопных газах. Для его эффективной работы необходимо наличие определенного количества кислорода в выхлопных газах. Датчик кислорода помогает ЭБУ определить точное соотношение «воздух — топливо» в смеси, поступающей в двигатель, передавая в ЭБУ быстроизменяющийся сигнал напряжения, который меняется в соответствии с содержанием кислорода в смеси: слишком высокого (бедная смесь) или слишком низкого (богатая смесь).

ЭБУ реагирует на сигнал и изменяет состав топливовоздушной смеси, поступающей в двигатель. Когда смесь слишком богатая, впрыск топлива уменьшается. Когда смесь слишком бедная — увеличивается. Оптимальное соотношение «воздух — топливо» обеспечивает полное сгорание топлива и использует почти весь кислород из воздуха. Оставшийся кислород вступает в химическую реакцию с токсичными газами, в результате которой из нейтрализатора выходят уже безвредные газы.

Устройство и принцип работы современного гидротрансформатора:описание,фото
Подвеска МакФерсон (McPherson): устройство,описание,назначение,фото
Датчик детонации:описание,виды,устройство,принцип работы
Вариатор:описание,фото,принцип работы,устройство,виды

ПОХОЖИЕ СТАТЬИ:

  • В РФ на вторичном рынке наблюдается дефицит автомобилей
  • Как получить права после лишения: порядок возврата водительского удостоверения, что требуется и где забрать
  • Маслосъемные кольца: описание,виды,функции,износ,конструкция.
  • Шкода Суперб 2021: комплектации,цены,фото,характеристики,старт продаж
  • Технология fsi прямой впрыск топлива в двигатель
  • Бмв е21 обзор,история,характеристики,модификации,дизайн,фото.
  • Дворники Bosch на 1-м и 2-м месте в тесте ADAC
  • Пуско зарядное устройство: виды,применение,фото,функции
  • В Сети рассказали, почему не стоит покупать авто из каршеринга
  • Важность технического обслуживания автомобиля перед поездкой
  • Купе BMW M2 описание,характеристики,модификации,фото,видео.
  • Топ 20 забавных фотографий автомобилей

Датчик кислорода — волшебство?

Как работает датчик кислорода? По-другому он называется лямбда-зондом. Датчик кислорода помогает двигателю развивать максимальную мощность, экономить топливо, обеспечивает полное сгорание топливо-воздушной смеси, путем ее коррекции к оптимальному соотношению воздух/топливо.Как работает датчик кислорода? По-другому он называется лямбда-зондом. Датчик кислорода помогает двигателю развивать максимальную мощность, экономить топливо, обеспечивает полное сгорание топливо-воздушной смеси, путем ее коррекции к оптимальному соотношению воздух/топливо.

Содержание статьи:


Различные датчики в автомобиле помогают водителю и бортовому компьютеру видеть состояние автомобиля и отдельных его узлов. Одним из примеров таких датчиков можно считать кислородный. Рассмотрим принцип работы и для чего он предназначен.

Что такое лямда-зонд

Со временем автомобили становятся все более и более сложными. Разработано устройство, которое образует сложный химический оборот: оно входит в систему выброса отработанных газов, где на датчике образуется напряжение, которое подается на блок управления. Необходимо, чтобы лямбда-зонд подавал сигнал на компьютер автомобиля и определял, какое количество кислорода содержится в выхлопе, иначе ЭБУ будет неверно дозировать топливо, а это приведет к повышенному расходу топлива, а так же к потере мощности.

Блок управления регулирует количество топлива, используя сигналы устройства, чем обогащает или обедняет смесь. Это происходит одним циклом и постоянно, в закрытом контуре.

Если лямбда-зонд не подает никаких признаков жизни, то блок управления переходит в режим работы по таблицам, которые заложены, своего рода, аварийный режим. Блок подает обогащенную смесь, вызывает большой расход топлива и сильную токсичность выхлопа.

Типы датчиков кислорода

Циркониевый датчик стоит впереди катализатора и сам генерирует напряжение, либо отрицательное, либо положительное. Опорное напряжение такого датчика составляет 0,45 В, которое отклоняется либо до 0,9 В, либо до 0,1 В. Главное отличие такого датчика от титанового является именно тот факт, что циркониевый самостоятельно генерирует напряжение.

При ремонте стоить помнить, что к такому датчику ни в коему случае нельзя припаивать какие попало провода, потому что именно в изоляции проложены каналы для прохождения эталонного воздуха. Если такового не будет, то датчик попросту не будет правильно работать.

Широкополосный датчик – это новейшая конструкция лямбда-зонда на данный момент. Его устройство позволяет не просто определять бедную или богатую смесь на входе в цилиндры, но так же и определять степень отклонения. Именно такие параметры сделали его более точным, в то же время широкополосный кислородный датчик быстрее реагирует на изменения состава выхлопных газов.

Всем известно, что любой кислородный датчик начинает работать только после 350 градусов. Здесь же для более быстрого достижения рабочей температуры устанавливается нагревательных элемент.

Как устроен датчик кислорода

Датчик состоит из керамической трубки, покрытой платиной, внутрь вставлены два электрода. Корпус трубки расположен в системе горячих отработанных газов, а другая часть соединяется корпусом с атмосферой. В новейших датчиках системы отверстия отсутствуют, кислород в них проникает через изоляцию кабелей.

Получается, что обе стороны лямбда-зонда расположены в различных средах. Первая среда – это выхлопные газы, вторая – атмосфера. Когда кислород сгорает в отработанных газах, а в атмосфере он, конечно, имеется, датчик выдает напряжение, высчитывая разницу в содержании в газах и в атмосфере.


Чем выше разница у выхлопных газов и кислорода в объёме атмосферы, тем большее количество напряжения вырабатывает датчик. Высокий уровень напряжения – 0,9 Вольт, средний – 0,4 5Вольт и бедный уровень – 0,1 Вольт. Скорость немедленного переключения от бедной смеси к обогащенной зависит от устройства системы подачи топлива. Скорость реакции системы подачи топлива на сигналы датчика кислорода зависит, прежде всего, именно от конструкции самой системы. Так, например, наименьшая скорость реакции у центрального впрыска? Дальше идет распределенный впрыск, ну а самым чувствительным, естественно, является непосредственный впрыск.

Датчик кислорода включается, когда температура его достигает 350градусов. Внутри встроен элемент нагрева. Он не остывает и не отключается при работе автомобиля на холостом ходу. В новых современных моделях автомобилей стоит уже не по одному датчику, а от 2 до 4 штук. Датчик кислорода работает в высокой температуре выхлопных газов. Со временем грязь накапливается на корпусе датчика и приводит его к уменьшению работоспособности.

Загрязнители бывают различные: сера, масло, остатки топлива. Наружная поверхность лямбда-зонда также подвержена повреждениям: жидкостью, маслом, землёй, солью дорожной.

Диагностируем датчик кислорода

Лямбда-зонд проверяют специальным сканером, осциллографом для записи амплитудных и временных параметров или вольтметром. На вольтметре показания быстро меняются, и считать данные очень трудно. При диагностике многоконтактным осциллографом или сканером на экране появляются диаграммы, на них показаны все переходы постоянного напряжения. Программа показывает напряжение работающего датчика в виде волнистой линии. Оно высвечивается в форме амплитуды и демонстрирует переход от богатого состояния к бедному. Если датчик новый, он должен хорошо работать во время холостых оборотов.

Напряжение в этот момент изменяется от минимального показания (0,1 В) к максимальному (0,9 В). При обрыве или замыкании цепи датчика загорается лампочка на панели приборов. При поломке или неисправности датчик необходимо заменить. Этим самым уменьшится расход бензина и токсические выхлопы, также продлевается работа катализатора. Датчики, имеющие один или два провода, заменяются через каждые 50 тысяч километров, с тремя или четырьмя проводами – через 70 тысяч километров.

Видео — как проверить датчик кислорода:

Разбираем устройство и принцип работы датчика кислорода.

Датчик кислорода является одним из важнейших компонентов выхлопной системы транспортного средства, от которого в немалой степени зависит продуктивность двигателя. Рассмотрим составляющие датчика и принцип его функционирования, для проведения самостоятельной диагностики выхлопной системы.

Датчик кислорода, расположен в системе выпуска отработанных газов.В зависимости от особенностей двигательной системы и совокупности выпуска газов, количество датчиков кислорода может различаться. Как правило, в составе выхлопной системы современного транспортного средства устанавливаются от одного до пары анализаторов. Первый лямбда-зонд, как правило, монтируется сразу после коллектора выпуска газов. Таким образом, выходящие из выхлопной системы газы попадают на действующую поверхность устройства. В случае если транспортное средство оснащено вторым датчиком кислорода, как правило, он останавливается за катализатором.
Каждый современный автомобиль в обязательном порядке оснащается датчиком кислорода – лямбда-зонд. Датчик получил широкое распространение в автомобилестроении, благодаря введенным нормам экологии. Как известно, выхлопные газы содержат определённое количество вредных веществ, попадающих в атмосферу. Сегодня, во всём мире предусмотрен предельно допустимый порог вредных веществ, содержащийся в выхлопных газах. В некоторых странах Европы, разрешается эксплуатация автомобиля, только при оснащении высоко экологичным двигателем. В нашей стране, нормы экологии менее суровы, но всё же основные меры по снижению примесей в отработанных газах предусмотрены на каждом авто.

Помимо анализатора — Лямбда зонд, выхлопная система современного транспортного средства имеет в своем составе катализатор, который также служит для уменьшения уровня токсичности выходящих газов. Как известно для продуктивной работы катализатора требуются определенные условия. Катализатор позволяет эффективно снизить показатели токсичности выхлопной смеси, при соответствующем контроле за совокупностью топлива и воздуха. В другом случае катализатор стремительно снижает свою продуктивность и в этот момент совокупность выпуска газов использует анализатор кислорода.
L – лямбда, которая входит в состав названия кислородного датчика обозначает показатель превышения потока воздуха в рабочей смеси. Определение лишней части потока воздуха в рабочем составе происходит следующим образом. Лямбда зонд, анализирует остаток воздуха при выходе отработанных газов. При правильном составе рабочей смеси, полученный показатель составляет: четырнадцать и семь воздушного потока на одну часть топлива, соответственно лямбда при этом равна единице.

Промежуток продуктивной функции катализатора достаточно узкий. В данном случае лямбда равна единица. Для поддержания правильности работы, необходима правильная и продуктивная работы системы обеспечения с электронным впуском смеси. При этом обратный цикл предусматривает анализатор воздуха. Именно для того, чтобы обеспечить продуктивную работу выхлопной совокупности, Лямбда зонд монтируется перед началом катализатора.

Анализатор воздуха – лямбда-зонд, вырабатывает специальный сигнал, который в дальнейшем передается ЭБУ системы формирования смеси. После того как электронный блок управления совокупности формирования смеси принимают электронный сигнал от анализатора воздуха, он регулирует топливо-воздушную смесь путём изменения подаваемого в цилиндры состава. Как известно, некоторые модели машин оснащаются вторым анализатором кислорода, установленным на выходе катализатора. Такое устройство выхлопной системы позволяет эффективно увеличить правильность создания топливовоздушной смеси. Также дополнительный анализатор позволяет контролировать функцию катализатора, для того чтобы он смог эффективно выполнять свою роль и сокращать объем вредных примесей в отработанных газах.

Большинство современных производителей, изготавливают анализатор кислорода из сплава циркония. Также в составе элемента предусмотрена керамическая часть, которая является источником тока, изменяющим заряд в зависимости от показателей температуры и кислорода. Поверхность датчика кислорода, взаимодействует с воздухом и газами внутри системы. Исходя из показателей насыщенности выходящей смеси кислородом, анализатор формирует определенный сигнал. Контрольное устройство принимает сигнал анализатора и сопоставляет его с допустимым показателем, заложенным в прошивке. В случае если полученный параметр отличается от необходимого, электронный блок контроля за топливной смесью изменяет насыщенность состава в необходимую сторону. Благодаря данному принципу, возникает обратная связь между блоком управления и анализатором. Точная настройка топливовоздушной смеси, способствуют правильной функции двигателя, снижению токсинов в отработанных газах и правильному потреблению топлива.

В ходе эксплуатации транспортного средства, лямбда-зонд функционирует в сложных условиях. В связи с этим, как и любое устройство автомобиля он подвержен постоянному износу и нередко приходит в неисправность. Нарушение функции анализатора кислорода в значительной мере влияет на продуктивность двигательной системы и способствует увеличению расхода бензина. В связи с этим выхлопная система требует своевременной диагностики и регулярного обслуживания.

Рассмотрим возможные причины поломки анализатора кислорода.

Как правило, к нарушению функции датчика кислорода переводит ряд совокупностей, среди которых наиболее распространены:

  • Использование топливной смеси низкого качества. Бензин плохого качества содержит в своем составе ряд примесей, которые способствуют преждевременному износу компонентов выходной системы. В частности, железо и свинец нарушают структуру платиновых электродов, уже при нескольких заправках мало-качественной смесью.
  • Неправильная настройка системы зажигания. При нарушении угла опережения системы зажигания, может произойти перегрев корпуса анализатора.
  • Избыточное обогащение смеси, также приводит к перегреву корпуса лямбда-датчика.
  • Образование масла в выхлопной системе, полученное в результате изношенности масло-съемных элементов.
  • Различные нарушения в работе системы зажигания, посторонние звуки в глушителе, все это приводит к разрушению уязвимой керамической структуры.
  • Механические повреждения датчика полученные в ходе эксплуатации транспортного средства.
  • Множественные попытки завести автомобиль через короткий промежуток времени способствует скоплению не отработанной смеси в проводниках выпуска. При образовании ударной волной состав воспламеняется, что неизбежно приводит к нарушению структуры датчика лямбда.
  • Попадание на рабочую поверхность анализатора посторонних жидкостей (масло, ОЖ или обычное моющие средство), в таком случае лямбда-зонд также утрачивает свою продуктивность.
  • Если при монтаже анализатора использовались герметичные составы, которые имеют в основе силикон, то такая смесь может нарушить свою структуру в ходе эксплуатации транспортного средства и поспособствовать преждевременному износу датчика.
  • Обрыв проводников датчика, нарушение их герметичности или замыкание цепи, также способствуют нарушению функции лямбда-анализатора.

Как правило, для выявления неисправностей лямбда-анализатора не требуется проведение дорогостоящей диагностики и обращения в специализированной сервис. Дело в том, что несмотря на свои небольшие габариты, датчик кислорода выполняет довольно важную функцию и при нарушении его структуры в значительной мере нарушается работа двигательной системы. Поэтому, на неисправность лямбда-анализатора указывают вполне заметные признаки.

Обратить внимание на состояние лямбда-зонд, нужно при возникновении следующих неисправностей:

  • Некорректная работа движка при небольших оборотах.
  • Ухудшение динамики разгона транспортного средства.
  • Значительно увеличенный расход бензина.
  • Перегрев нейтрализатора или значительное повышение его рабочей температуры.
  • Возникновение постороннего звукового сопровождения после остановки транспортного средства.
  • Увеличение показателей токсичности выхлопных газов.

Диагностика лямбда-зонд.

Для проведения диагностики, нам потребуется: оригинальная инструкция завода изготовителя, цифровой вольтметр, осциллограф. Перед проведением диагностики анализатора кислорода, двигатель автомобиля необходимо прогреть. Рассмотрим основные этапы проверки устройства.

1. Первым шагом, необходимо ознакомиться с оригинальной инструкцией завода-изготовителя. Производитель укажет месторасположение контрольного устройства, а также его основные параметры.

2. Далее, необходимо проверить все показатели, которые могут повлиять на неправильную работу анализатора: напряжение в сети транспортного средства, угол опережения зажигания, функция системы топливной подачи. Помимо этого, необходимо обратить свое внимание на герметичность проводников и провести визуальную диагностику внешних механизмов.

3. Теперь находим анализатор кислорода, согласно инструкции производителя. После этого, необходимо провести визуальную диагностику измерительного прибора.В случае если керамическая часть анализатора имеет нагар, то датчик подлежит обязательной замене. К образованию налёта на керамической части анализатора, чаще всего приводит использование топливной смеси низкого качества. Если визуальная диагностика показала приемлемое состояние анализатора, необходимо продолжить проверку.

4. Следующим этапом, отключаем анализатор и подключаем его проводники к электроизмерительному прибору. Далее, запускаем автомобиль и нажимаем на педаль газа до достижения оборотов: две с половиной тысячи в минуту. Теперь, при помощи устройства для насыщения состава снижаем показатели оборотов до двухсот в минуту.

5. В случае если транспортное средство оснащено электронным контролем топливной системы, удаляем в окно трубку регулятора давления и обращаем внимание на показатели измерительного прибора. Если показатели вольтметра приближены к отметке 0, 9 Вт, то анализатор кислорода исправен. На неисправность лямбда-датчика, укажет отсутствие реакции измерительного прибора или показатель ниже 0,8 Вт.

6. Следующим этапом необходимо проверить насыщенность топливовоздушной смеси. Используя вакуумную трубку, необходимо обеспечить подсос воздуха. В случае если анализатор работает правильно, показания измерительного прибора не будут превышать отметки 0, 2 Вт.

7. Завершающим этапом, необходимо проверить работу анализатора на практике. Для этого подключаем устройство к разъему подачи топлива и параллельно устанавливаем электроизмерительные приборы. При этом необходимо увеличить оборот задержки до 1500 минуту. Об исправности контрольного устройства, сообщат показатели прибора — 0, 5 Вт. При иных показателях, лямбда-зонд подлежит обязательной смене.

Выхлопная система играет важную роль в работе транспортного средства. Для поддержания должной продуктивности двигателя, а также для увеличения срока эксплуатации ДВС, необходимо своевременно диагностировать и обслуживать совокупность выпуска отработанных газов. Лямбда анализатор, сравнительно простое и небольшое устройство, при этом выполняющее ответственную функцию в формировании рабочей смеси. Поддержание работоспособности датчика, позволит сохранить функцию ДВС и сохранить оптимальный расход бензина. Проверить и заменить анализатор достаточно просто своими руками, при этом данная процедура позволит сэкономить на ремонте важнейшей системы авто.

Удачной диагностики!

Поиск и устранение неисправностей лямбда зонда (датчика кислорода)

Признаки неисправного датчика кислорода.

В первую очередь важно понимать, что код неисправности OBD2 сам по себе не является признаком неисправного датчика кислорода. Данные коды являются только информационными сообщениями о работе датчиков. К примеру, датчик кислорода обнаружил признак обедненной топливной смеси и, естественно, будет сформирован соответствующий код. Следовательно, данный датчик выполняет свою работу и не нуждается в замене.

Однако, существует несколько OBD2 кодов, которые информируют о неисправностях или выходе из строя именно датчика кислорода, читать далее… В свою очередь определенная работа двигателя будет же будет свидетельствовать о том, что датчик не функционирует должным образом.

Увеличение расхода топлива может быть одним из признаков, что датчик кислорода не работает, как следует и топливная смесь слишком «бедная» или слишком «богатая». Такое изменение состава топливной смеси является признаком неисправности датчика кислорода, расположенного сразу за выхлопным коллектором, т.е верхнего по течению потоков выхлопа.

Датчики, расположенные за катализатором, являются диагностическими, предназначены только для контроля параметров выхлопных газов и не могут вызвать изменения параметров топливной смеси.

Другие типичные признаки неисправности датчика кислорода — это нарушения работы двигателя в режиме холодного хода и быстрых динамических режимах.

Однако следует иметь в виду, что проблемы в работе двигателя могут иметь совершенно другие причины, не имеющие ни какого отношения к неисправности датчика кислорода. Поэтому для выяснения причин часто требуются провести комплексные мероприятия, связанные с анализом OBD2 кодов, проверкой топливной системы двигателя, а так же физического осмотра датчика кислорода и его проверки.

Общие причины выхода из строя датчика кислорода.

Неисправность датчика кислорода может быть вызвана одной из трех причин: длительная эксплуатация, работа двигателя на некачественном топливе (отравление) или проблемы по электрической части.

Одно или двухпроводные датчики без нагревательного элемента должны проверятся или быть заменены каждые 50 000 км. Данные датчики располагаются в непосредственной близости или на коллекторе выхлопных газов, в зоне высоких температур, и требуют более пристального внимания, чем датчики с внутренним нагревателем.

Датчики кислорода с нагревательным элементом менее подвержены отравлению, так как они обычно размещаются намного дальше вниз по потоку, чем не обогреваемые датчики. Данные датчики должны быть проверены или заменены каждые 100 000 км. Однако выход из строя нагревательного элемента может стать дополнительным источником кодов неисправности OBD2.

Нужно понимать, что все датчики кислорода находятся в зоне высоких температур, высоких скоростей потока выхлопных газов и их чувствительность с течением времени будет неуклонно снижаться.

 

Черный нагар из богатой топливной смеси является частой причиной неправильной работы датчиков кислорода. Есть много возможных причин данного явления: засорение воздушного фильтра, дефекты топливных форсунок. Попадание антифриза или силиконовых герметиков в результате ошибок ремонта будут иметь тот же эффект. Данный датчик был отравлен и должен быть заменен.

 

 

Антифриз может быть очень вредным для датчика кислорода при попадании в камеру сгорания. Это может произойти в случае трещины или деформации головки блока цилиндров, дефектной прокладкой головки блока цилиндров или утечек впускного коллектора.

 

 

Силиконовое отравление, как показано на рисунке слева, может окрасить головку кислородного датчика в белый цвет. Наиболее распространенной причиной этого состояния является использование ненадежного герметика силиконовой прокладки.

 

 

Использование этилированного бензина может повредить кислородный датчик. Хотя это редкое явление, полезно знать, как выглядит дефектный датчик кислорода после работы на этилированном бензине.

Как заменить лямбда зонд, читать далее…


Полезные статьи по автодиагностике — Школа Пахомова

На написание этого материала натолкнуло обилие вопросов на интернет-форуме, связанных с непониманием (или недопониманием) принципа работы датчика кислорода, или лямбда-зонда.

Датчик кислорода: от общего к частному

Прежде всего, нужно идти от общего к частному и понимать работу системы в целом. Только тогда сложится правильное понимание работы этого весьма важного элемента ЭСУД и станут понятны методы диагностики.

Чтоб не углубляться в дебри и не перегружать читателя информацией, поведу речь о циркониевом лямбда-зонде, используемом на автомобилях ВАЗ. Желающие разобраться более глубоко могут самостоятельно найти и прочитать материалы про титановые датчики, про широкополосные датчики кислорода (ШДК) и придумать методы их проверки. Мы же поговорим о самом распространенном датчике, знакомом большинству диагностов.

Когда-то очень давно датчик кислорода представлял собой только лишь чувствительный элемент, без какого-либо подогревателя. Нагрев датчика осуществлялся отработанными газами и занимал весьма продолжительное время. Жесткие нормы токсичности требовали быстрого вступления датчика в полноценную работу, вследствие чего лямбда-зонд обзавелся встроенным подогревателем. Поэтому датчик кислорода ВАЗ имеет 4 вывода: два из них — подогреватель, один — масса, еще один — сигнал.

Из всех этих выводов нас интересует только сигнальный.

Форму напряжения на нем можно увидеть двумя способами:

  • сканером
  • мотортестером, подключив щупы и запустив самописец

Второй вариант предпочтительнее. Почему? Потому, что мотортестер дает возможность оценить не только текущие и пиковые значения, но и форму сигнала, и скорость его изменения. Скорость изменения — это как раз и есть характеристика исправности датчика.

Итак, главное: датчик кислорода реагирует на кислород. Не на состав смеси. Не на угол опережения зажигания. Не на что-либо еще. Только на кислород. Это нужно осознать обязательно.

О физическом принципе работы датчика рассказано во многих книгах, посвященных электронным системам управления двигателем, и мы на нем останавливаться не будем.

На сигнальный вывод датчика с ЭБУ подается опорное напряжение 0.45 В. Чтобы быть полностью уверенным, можно отключить разъем датчика и проверить это напряжение мультиметром или сканером. Все в порядке? Тогда подключаем датчик обратно.

К слову, на старых иномарках опорное напряжение «уплывает», и в итоге нормальная работа зонда и всей системы нарушается. Чаще всего опорное напряжение при отключенном датчике бывает выше необходимых 0.45 В. Проблема решается путем подбора и установки резистора, подтягивающего напряжение к «массе», тем самым возвращая опорное напряжение на необходимый уровень.

Дальше схема работы датчика проста. Если кислорода в газах, омывающих датчик, много, то напряжение на нем упадет ниже опорного 0.45 В, примерно до 0.1В. Если кислорода мало, напряжение станет выше, около 0.8-0.9 В. Прелесть циркониевого датчика в том, что он «перепрыгивает» с низкого на высокое напряжение при таком содержании кислорода в отработанных газах, которое соответствует стехиометрической смеси. Это замечательное его свойство используется для поддержания состава смеси на стехиометрическом уровне.

Методика проверки датчика кислорода

Поняв, как работает датчик кислорода, легко понять методику его проверки.

Предположим, ЭБУ выдает ошибку, связанную с этим датчиком. Например, Р0131 «Низкий уровень сигнала датчика кислорода 1». Нужно понимать, что датчик отображает состояние системы, и если смесь действительно бедная, то он это отразит. И замена его абсолютно бессмысленна.

Как нам выяснить, в чем кроется проблема — в датчике или в системе? Очень просто. Смоделируем ту или иную ситуацию.

  1. Например, при жалобе на бедную смесь и низком напряжении на сигнально выводе датчика увеличим подачу топлива, пережав шланг обратного слива. Или, при его отсутствии, брызнув во впускной коллектор бензина из шприца. Как отреагировал датчик? Показал ли обогащенную смесь? Если да — то нет никакого смысла его менять, нужно искать причину, почему система подает недостаточное количество топлива.
  2. Если же смесь богатая, и зонд это отображает, попробуйте создать искусственный подсос, сняв какой-нибудь вакуумный шланг. Напряжение на датчике упало? Значит, он абсолютно исправен.
  3. Третий вариант (достаточно редкий, но имеющий место). Создаем подсос, пережимаем «обратку» — а сигнал на датчике не меняется, так и висит на уровне 0.45 В, либо меняется, но очень медленно и в небольших пределах. Все, датчик умер. Ибо он должен чутко реагировать на изменения состава смеси, быстро меняя напряжение на сигнальном выводе.

Для более глубокого понимания добавлю, что при наличии небольшого опыта легко установить степень изношенности датчика. Это делается по крутизне фронтов перехода с богатой смеси на бедную и обратно. Хороший, исправный датчик реагирует быстро, переход почти что вертикальный (смотреть, само собой, мотортестером). Отравленный либо просто изношенный датчик реагирует медленно, фронты переходов пологие. Такой датчик требует замены.

Понимая, что датчик реагирует на кислород, можно легко уяснить еще один распространенный момент. При пропусках воспламенения, когда из цилиндра в выпускной тракт выбрасывается смесь атмосферного воздуха и бензина, лямбда-зонд отреагирует на большое количество кислорода, содержащееся в этой смеси. Поэтому при пропусках воспламенения очень возможно возникновение ошибки, указывающей на бедную топливно-воздушную смесь.

Хочется обратить внимание еще на один важный момент: возможный подсос атмосферного воздуха в выпускной тракт перед лямбда-зондом.

Мы упоминали, что датчик реагирует на кислород. Что же будет, если в выпуске будет свищ до него? Датчик отреагирует на большое содержание кислорода, что эквивалентно бедной смеси.

Обратите внимание: эквивалентно

Смесь при этом может быть (и будет) богатой, а сигнал зонда ошибочно воспринимается системой как наличие бедной смеси. И ЭБУ ее обогатит! В итоге имеем парадоксальную ситуацию: ошибка «бедная смесь», а газоанализатор показывает, что она богатая. Кстати сказать, газоанализатор в данном случае — очень хороший помощник диагноста.

Как пользоваться извлекаемой с его помощью информацией, рассказано в статье «Газоанализ и диагностика».

Датчик кислорода: выводы
  1. Нужно совершенно четко отличать неисправность ЭСУД от неисправности лямбда-зонда.
  2. Проверить зонд можно, контролируя напряжение на его сигнальном выводе сканером или подключив к сигнальному выводу мотортестер.
  3. Искусственно смоделировав обедненную или, наоборот, обогащенную смесь и отследив реакцию зонда, можно сделать достоверный вывод о его исправности.
  4. По крутизне перехода напряжения от состояния «богато» к состоянию «бедно» и наоборот легко сделать вывод о состоянии лямбда-зонда и его остаточном ресурсе.
  5. Наличие ошибки, указывающей на дефект лямбда-зонда, отнюдь не является поводом для его замены.

Что необходимо знать домашнему механику о датчиках O2

Скачать PDF

Современные компьютеризированные системы управления двигателем полагаются на входные данные от различных датчиков для регулирования характеристик двигателя, выбросов и других важных функций. Датчики должны предоставлять точную информацию, в противном случае могут возникнуть проблемы с управляемостью, повышенный расход топлива и сбои в выбросах.

Одним из ключевых датчиков в этой системе является датчик кислорода. Его часто называют датчиком «O2», потому что O2 — это химическая формула кислорода (атомы кислорода всегда перемещаются парами, а не поодиночке).

Первый датчик O2 был представлен в 1976 году на Volvo 240. Следующим в Калифорнии автомобили получили их в 1980 году, когда калифорнийские правила выбросов требовали снижения выбросов. Федеральные законы о выбросах сделали датчики O2 практически обязательными для всех автомобилей и легких грузовиков, построенных с 1981 года. И теперь, когда действуют правила OBD-II (автомобили 1996 года и новее), многие автомобили теперь оснащены несколькими датчиками O2, некоторые из которых целых четыре!

Датчик O2 установлен в выпускном коллекторе для контроля количества несгоревшего кислорода в выхлопных газах, когда выхлопные газы выходят из двигателя.Контроль уровня кислорода в выхлопных газах — это способ измерения топливной смеси. Он сообщает компьютеру, является ли топливная смесь богатой (меньше кислорода) или бедной (больше кислорода).

На относительную насыщенность или обедненную смесь топливной смеси может влиять множество факторов, включая температуру воздуха, температуру охлаждающей жидкости двигателя, барометрическое давление, положение дроссельной заслонки, расход воздуха и нагрузку на двигатель. Есть и другие датчики, которые отслеживают эти факторы, но датчик O2 является главным монитором того, что происходит с топливной смесью.Следовательно, любые проблемы с датчиком O2 могут вывести из строя всю систему.

Петли

Компьютер использует вход кислородного датчика для регулирования топливной смеси, что называется топливным «контуром управления с обратной связью». Компьютер ориентируется на датчик O2 и реагирует изменением топливной смеси. Это приводит к соответствующему изменению показаний датчика O2. Это называется работой «замкнутого контура», потому что компьютер использует вход датчика O2 для регулирования топливной смеси.Результатом является постоянное переключение от богатой к обедненной смеси, что позволяет каталитическому нейтрализатору работать с максимальной эффективностью, сохраняя при этом среднюю общую топливную смесь в надлежащем балансе для минимизации выбросов. Это сложная установка, но она работает.

Когда от датчика O2 не поступает сигнал, как в случае, когда холодный двигатель запускается впервые (или выходит из строя датчик 02), компьютер заказывает фиксированную (неизменную) богатую топливную смесь. Это называется операцией «разомкнутого контура», потому что никакой входной сигнал от датчика O2 не используется для регулирования топливной смеси.Если двигатель не переходит в замкнутый цикл, когда датчик O2 достигает рабочей температуры, или выходит из замкнутого цикла из-за потери сигнала датчика O2, двигатель будет работать на слишком богатой смеси, что приведет к увеличению расхода топлива и выбросов. Неисправный датчик охлаждающей жидкости также может предотвратить переход системы в замкнутый контур, потому что компьютер также учитывает температуру охлаждающей жидкости двигателя при принятии решения о переходе в замкнутый цикл.

Как это работает

Датчик O2 работает как миниатюрный генератор и вырабатывает собственное напряжение, когда нагревается.Внутри вентилируемой крышки на конце датчика, который ввинчивается в выпускной коллектор, находится циркониевая керамическая колба. Колба снаружи покрыта пористым слоем платины. Внутри колбы находятся две платиновые полоски, которые служат электродами или контактами.

Наружная часть колбы подвергается воздействию горячих газов в выхлопе, в то время как внутренняя часть колбы выходит изнутри через корпус датчика во внешнюю атмосферу. Кислородные датчики старого образца на самом деле имеют небольшое отверстие в корпусе, чтобы воздух мог попасть в датчик, но датчики O2 нового типа «дышат» через свои проводные разъемы и не имеют вентиляционного отверстия.В это трудно поверить, но небольшое пространство между изоляцией и проводом обеспечивает достаточно места для проникновения воздуха в датчик (по этой причине никогда не следует наносить смазку на разъемы датчика O2, поскольку она может блокировать поток воздуха). Проветривание датчика через провода, а не через отверстие в корпусе, снижает риск загрязнения датчика изнутри и его выхода из строя. Разница в уровнях кислорода между выхлопным и наружным воздухом внутри датчика вызывает прохождение напряжения через керамическую грушу.Чем больше разница, тем выше значение напряжения.

Датчик кислорода обычно генерирует напряжение до 0,9 вольт, когда топливная смесь богатая и в выхлопных газах мало несгоревшего кислорода. Когда смесь бедная, выходное напряжение датчика упадет примерно до 0,1 вольт. Когда топливно-воздушная смесь сбалансирована или находится в точке равновесия около 14,7 к 1, датчик будет показывать около 0,45 вольт.

Когда компьютер получает сигнал обогащения (высокое напряжение) от датчика O2, он понижает топливную смесь, чтобы уменьшить показания датчика.Когда показания датчика O2 становятся бедными (низкое напряжение), компьютер снова меняет направление, заставляя топливную смесь обогащаться. Это постоянное переключение топливной смеси вперед и назад происходит с разными скоростями в зависимости от топливной системы. Скорость перехода самая низкая на двигателях с карбюраторами с обратной связью, обычно один раз в секунду при 2500 об / мин. Двигатели с впрыском в корпус дроссельной заслонки несколько быстрее (2–3 раза в секунду при 2500 об / мин), а двигатели с многоточечным впрыском являются самыми быстрыми (5–7 раз в секунду при 2500 об / мин).

Датчик кислорода должен быть горячим (около 600 градусов или выше), прежде чем он начнет генерировать сигнал напряжения, поэтому многие датчики кислорода имеют внутри небольшой нагревательный элемент, чтобы помочь им быстрее достичь рабочей температуры. Нагревательный элемент также может предотвратить слишком сильное охлаждение датчика во время длительного холостого хода, что может привести к возврату системы к разомкнутому контуру.

Датчики O2 с подогревом используются в основном в новых автомобилях и обычно имеют 3 или 4 провода.Старые однопроводные датчики O2 не имеют нагревателей. При замене датчика O2 убедитесь, что он того же типа, что и оригинальный (с подогревом или без него).

Новая роль датчиков O2 с OBDII

Начиная с нескольких автомобилей в 1994 и 1995 годах и всех автомобилей 1996 года и новее, количество кислородных датчиков на каждый двигатель увеличилось вдвое. Второй кислородный датчик теперь используется после каталитического нейтрализатора для контроля его эффективности. На двигателях V6 или V8 с двойным выхлопом это означает, что можно использовать до четырех датчиков O2 (по одному для каждого ряда цилиндров и по одному после каждого преобразователя).

Система OBDII предназначена для контроля выбросов двигателя. Это включает в себя наблюдение за всем, что может вызвать увеличение выбросов. Система OBDII сравнивает показания уровня кислорода датчиков O2 до и после преобразователя, чтобы увидеть, снижает ли преобразователь загрязняющие вещества в выхлопных газах. Если он видит незначительные изменения в показаниях уровня кислорода или совсем не видит их, это означает, что преобразователь не работает должным образом. Это приведет к включению контрольной лампы неисправности (MIL).

Диагностика датчика
Датчики

O2 невероятно надежны, учитывая условия эксплуатации, в которых они живут. Но датчики O2 изнашиваются и в конечном итоге должны быть заменены. Характеристики датчика O2 имеют тенденцию к снижению с возрастом, поскольку загрязнения накапливаются на наконечнике датчика и постепенно снижают его способность производить напряжение. Такое ухудшение может быть вызвано различными веществами, попадающими в выхлопные газы, такими как свинец, силикон, сера, масляная зола и даже некоторые топливные присадки.Датчик также может быть поврежден факторами окружающей среды, такими как вода, брызги дорожной соли, масло и грязь.

По мере того, как датчик стареет и становится вялым, время, необходимое для реакции на изменения в топливно-воздушной смеси, замедляется, что приводит к увеличению выбросов. Это происходит потому, что колебания топливной смеси замедляются, что снижает эффективность преобразователя. Эффект более заметен на двигателях с многоточечным впрыском топлива (MFI), чем с электронной карбюрацией или впрыском через корпус дроссельной заслонки, потому что соотношение топлива изменяется намного быстрее в приложениях MFI.Если датчик полностью умирает, результатом может быть фиксированная богатая топливная смесь. По умолчанию для большинства применений с впрыском топлива средний диапазон составляет три минуты. Это вызывает большой скачок расхода топлива, а также выбросов. А если преобразователь перегреется из-за богатой смеси, он может выйти из строя. Одно исследование EPA показало, что 70% автомобилей, не прошедших испытание на выбросы I / M 240, нуждались в новом датчике O2.

Единственный способ узнать, выполняет ли датчик O2 свою работу, — это регулярно его проверять.Вот почему на некоторых автомобилях (в основном импортных) есть сигнальная лампа с напоминанием о техническом обслуживании датчика. Хорошее время для проверки датчика — замена свечей зажигания.

Вы можете прочитать выходные данные датчика O2 с помощью сканирующего прибора или цифрового вольтметра, но переходы трудно увидеть, потому что числа сильно меняются. Вот где действительно сияет инструмент сканирования на базе ПК, такой как AutoTap. Вы можете использовать функции построения графиков, чтобы наблюдать за изменениями напряжения датчиков O2. Программное обеспечение отобразит выходное напряжение датчика в виде волнистой линии, которая показывает как его амплитуду (минимальное и максимальное напряжение), так и его частоту (скорость перехода от богатого к бедному).

Хороший датчик O2 должен выдавать колеблющуюся форму волны на холостом ходу, при которой напряжение изменяется от почти минимального (0,1 В) до почти максимального (0,9 В). Искусственное обогащение топливной смеси путем подачи пропана во впускной коллектор должно привести к тому, что датчик среагирует почти немедленно (в течение 100 миллисекунд) и перейдет на максимальный (0,9 В) выходной сигнал. Создание обедненной смеси путем открытия вакуумной линии должно привести к падению выходного сигнала датчика до минимального (0,1 В) значения. Если датчик не переключается вперед и назад достаточно быстро, это может указывать на необходимость замены.

Если цепь датчика O2 разомкнута, закорочена или выходит за пределы допустимого диапазона, она может установить код неисправности и загореться контрольной лампой проверки двигателя или неисправности. Если дополнительная диагностика выявляет неисправность датчика, требуется его замена. Но многие датчики O2, которые сильно повреждены, продолжают работать достаточно хорошо, чтобы не устанавливать код неисправности, но недостаточно хорошо, чтобы предотвратить увеличение выбросов и расхода топлива. Таким образом, отсутствие кода неисправности или контрольной лампы не означает, что датчик O2 работает правильно.

Замена датчика

Очевидно, что неисправный датчик O2 требует замены. Но также может быть полезно периодически заменять датчик O2 для профилактического обслуживания. Замена стареющего датчика O2, который стал медленно работать, может восстановить максимальную топливную эффективность, минимизировать выбросы выхлопных газов и продлить срок службы преобразователя.

Необогреваемые одно- или двухпроводные датчики O2 на автомобилях с 1976 по начало 1990-х годов можно заменять каждые 30 000–50 000 миль.Подогреваемые 3- и 4-проводные датчики O2 в приложениях с середины 1980-х до середины 1990-х годов можно менять каждые 60 000 миль. На автомобилях, оборудованных OBDII (1996 г. и новее), рекомендуется интервал замены 100 000 миль.

Разбираемся с датчиками: датчик кислорода

Датчик кислорода, также известный как датчик O2, выполняет то, что предполагает его название — он измеряет количество кислорода в выхлопных газах. Хотя это может показаться довольно скромной задачей, датчик O2 на самом деле является одним из самых важных датчиков на любом транспортном средстве, отвечающим за поддержание правильного баланса между воздухом и топливом для оптимальных выбросов.Из-за этого вы захотите знать, что он делает, почему выходит из строя, и, что важно, как его заменить, когда это произойдет.

Как работает датчик O2?

Большинство автомобилей имеют по крайней мере два кислородных датчика, расположенных по всей выхлопной системе; по крайней мере, один перед каталитическим нейтрализатором и один или несколько после каталитического нейтрализатора. Датчик предварительной очистки регулирует подачу топлива, а датчик ниже по потоку измеряет эффективность каталитического нейтрализатора.

Датчики

O2 обычно можно разделить на узкополосные или широкополосные.Чувствительный элемент находится внутри датчика в стальном корпусе. Молекулы кислорода из выхлопных газов проходят через крошечные щели или отверстия в стальной оболочке датчика, чтобы достичь чувствительного элемента или нервной ячейки. На другой стороне нервной ячейки кислород из воздуха за пределами выхлопной трубы проходит вниз по датчику O2 и вступает в контакт. Разница в количестве кислорода между кислородом в наружном воздухе и в выхлопных газах способствует потоку ионов кислорода и создает напряжение.

Если смесь выхлопных газов слишком богата и в выхлопе слишком мало кислорода, в электронный блок управления двигателя (ЭБУ) отправляется сигнал для уменьшения количества топлива, добавляемого в цилиндр. Если смесь выхлопных газов слишком бедная, то отправляется сигнал об увеличении количества топлива, используемого в двигателе. Слишком много топлива производит углеводороды и окись углерода. Слишком мало топлива производит загрязняющие вещества в виде оксидов азота. Сигнал датчика помогает поддерживать правильную смесь. Датчики O2 с широким диапазоном имеют дополнительную ячейку откачки O2 для регулирования количества кислорода, присутствующего в чувствительном элементе.Это позволяет измерять гораздо более широкое соотношение воздух / топливо.

Почему датчики O2 выходят из строя?

Поскольку датчик кислорода находится в потоке выхлопных газов, он может быть загрязнен. Общие источники загрязнения включают чрезмерно богатую топливную смесь или прорыв масла в старом двигателе и охлаждающую жидкость двигателя, сгорающую в камере сгорания в результате утечки через прокладку двигателя. Он также подвергается воздействию чрезвычайно высоких температур и, как и любой другой компонент, со временем изнашивается. Все это может повлиять на характеристики отклика датчика кислорода, что приведет к увеличению времени отклика или сдвигу кривой напряжения датчика и, в конечном итоге, к снижению характеристик датчика.

На что обращать внимание при выходе из строя датчика O2

Когда датчик кислорода выходит из строя, компьютер больше не может определять соотношение воздух / топливо, поэтому в конечном итоге он делает предположения. По этой причине есть несколько контрольных признаков, на которые следует обратить внимание:

  • Индикатор проверки двигателя: хотя индикатор проверки двигателя может гореть по многим причинам, обычно это связано с проблемой, связанной с выбросами.
  • Низкая экономия топлива: неисправный кислородный датчик преобразует воздух в топливную смесь, что приводит к увеличению расхода топлива.
  • Неровная работа двигателя на холостом ходу или пропуски зажигания: поскольку выходной сигнал датчика кислорода помогает управлять синхронизацией двигателя, интервалами сгорания и соотношением воздуха к топливу, неисправный датчик может привести к неровной работе автомобиля.
  • Низкая работа двигателя.

Поиск и устранение неисправностей датчика O2

Чтобы определить источник неисправности датчика O2, выполните следующие действия:

  • Считайте все коды неисправностей с помощью диагностического прибора. Обратите внимание, что при проблемах с датчиками O2 часто возникает несколько кодов неисправностей.
  • Лямбда-зонд имеет внутренний нагреватель, поэтому проверьте сопротивление нагревателя — обычно оно будет довольно низким.
  • Проверьте подачу питания на ТЭН — часто эти провода одного цвета.
  • Осмотрите электрический разъем на предмет повреждений или грязи.
  • Проверьте выпускной коллектор и топливные форсунки на предмет утечек, а также на состояние компонентов системы зажигания — они могут повлиять на работу датчика.
  • Проверьте правильность показаний датчика O2, подтвердив значение O2 с помощью четырех или пяти анализаторов выбросов газов.
  • С помощью осциллографа проверьте сигнал как на холостом ходу, так и на прибл. Скорость двигателя 2500 об / мин.
  • Используйте данные в реальном времени, чтобы проверить наличие сигнала, если проводка датчика труднодоступна.
  • Проверьте состояние защитной трубки элемента зонда на предмет повреждений и загрязнения.

Общие коды неисправностей

Общие коды неисправностей и причины включают:

  • P0135 : Датчик кислорода перед катализатором 1, цепь подогрева / обрыв
  • P0175 : слишком богатая система (банк 2)
  • P0713 : Неисправность топливной отделки (банк 2)
  • P0171 : слишком бедная система (банк 1)
  • P0162 : Неисправность цепи датчика O2 (bank 2, датчик 3)

Как заменить датчик O2

Перед заменой датчика необходимо диагностировать проблему.Подключите диагностический прибор, такой как Delphi DS, выберите правильный автомобиль и прочтите код (ы) неисправности. Подтвердите код неисправности, выбрав данные в реальном времени и сравнив значение подозрительного неисправного датчика со значением известного исправного датчика. При необходимости обратитесь к данным производителя транспортного средства, чтобы найти правильное значение для сравнения. Другие инструменты или оборудование могут потребоваться, чтобы определить, является ли именно датчик, а не проводка, которая является причиной проблемы.

  • Поскольку многие автомобили последних моделей имеют несколько кислородных датчиков, убедитесь, что вы правильно определили неисправный датчик, чтобы по ошибке не заменить неправильный.Производители автомобилей идентифицируют позиции «банк1» и «банк2» и «перед / зад» и «до / после» по-разному, поэтому следует позаботиться о том, чтобы убедиться, что вы определили правильный (проблемный) датчик. Лучший способ сделать это — просмотреть данные в реальном времени с помощью диагностического инструмента.
  • Затем отключите проводное соединение.
  • Затем с помощью гаечного ключа или специального торцевого ключа для O2 открутите датчик от гнезда. После откручивания выбросьте старый датчик и замените его новым.
  • Большинство кислородных датчиков поставляются со специальным электропроводящим противозадирным составом, нанесенным на резьбу, поэтому нужно просто вставить новый датчик в пустоту, оставленную старым.
  • Чтобы защитить датчик от приваривания к резьбе, датчики Delphi поставляются с противозадирными составами, нанесенными заранее или включенными в комплект. При необходимости нанесите состав на новый датчик перед повторной установкой. Будьте осторожны, чтобы не нанести чрезмерное количество противозадирного средства на нитки, так как это может загрязнить чувствительную область.
  • Затяните датчик с рекомендованным крутящим моментом.
  • После того, как датчик будет на месте, вставьте электронный разъем.
  • Теперь снова подключите диагностический прибор и удалите все связанные коды неисправностей.
  • Наконец, включите зажигание и убедитесь, что индикатор проверки двигателя погас, затем выполните дорожное испытание.

Как работает кислородный датчик в автомобиле?

Каждый новый автомобиль и большинство автомобилей, выпущенных после 1980 года, имеют кислородный датчик .Датчик является частью системы контроля выбросов и передает данные в компьютер управления двигателем. Цель датчика — помочь двигателю работать с максимальной эффективностью, а также производить как можно меньше выбросов.

Бензиновый двигатель сжигает бензин в присутствии кислорода (подробные сведения см. В разделе «Как работают автомобильные двигатели»). Оказывается, существует определенное «идеальное» соотношение воздуха и бензина, и это соотношение составляет 14,7: 1 (разные виды топлива имеют разные идеальные соотношения — соотношение зависит от количества водорода и углерода, присутствующих в данном количестве. топлива).Если воздуха меньше, чем это идеальное соотношение, то после сгорания останется топливо. Это называется смесью rich . Богатые смеси плохи, потому что несгоревшее топливо создает загрязнение. Если воздуха больше, чем это идеальное соотношение, значит, имеется избыток кислорода. Это называется смесью обедненной смеси . Бедная смесь имеет тенденцию производить больше загрязняющих веществ оксидами азота, и в некоторых случаях это может вызвать снижение производительности и даже повреждение двигателя.

Датчик кислорода расположен в выхлопной трубе и может обнаруживать богатые и бедные смеси.Механизм в большинстве датчиков включает химическую реакцию, которая генерирует напряжение (подробности см. В патентах ниже). Компьютер двигателя смотрит на напряжение, чтобы определить, является ли смесь богатой или бедной, и соответственно регулирует количество топлива, поступающего в двигатель.

Причина, по которой двигателю нужен кислородный датчик, заключается в том, что количество кислорода, которое может потреблять двигатель, зависит от всех факторов, таких как высота, температура воздуха, температура двигателя, барометрическое давление. , нагрузка на двигатель и т. д.

Когда датчик кислорода выходит из строя, компьютер больше не может определять соотношение воздух / топливо, поэтому он в конечном итоге угадывает. Ваша машина плохо работает и расходует больше топлива, чем нужно.

КАК ДИАГНОСТИРОВАТЬ И ЗАМЕНИТЬ

Компьютеризированные системы управления двигателем полагаются на входные данные от различных датчиков для регулирования характеристик двигателя, выбросов и других важных функций. Датчики должны предоставлять точную информацию, в противном случае могут возникнуть проблемы с управляемостью, повышенный расход топлива и сбои в выбросах.

Датчик кислорода — один из ключевых датчиков в этой системе. Его часто называют датчиком «O2», потому что O2 — это химическая формула кислорода (атомы кислорода всегда перемещаются парами, а не поодиночке). Его также можно назвать датчиком h3O2 для подогреваемого кислородного датчика, поскольку он имеет внутреннюю цепь нагревателя, которая доводит датчик до рабочей температуры после холодного запуска.

Первый датчик O2 был представлен в 1976 году на Volvo 240. Следующие автомобили в Калифорнии получили их в 1980 году, когда правила Калифорнии по выбросам требовали более низких выбросов.Федеральные законы о выбросах сделали датчики O2 практически обязательными для всех автомобилей и легких грузовиков, построенных с 1981 года. И теперь, когда действуют правила OBD-II (автомобили 1996 года и новее), многие автомобили теперь оснащены несколькими датчиками O2, некоторые из которых целых четыре!

Датчик O2 установлен в выпускном коллекторе для контроля количества несгоревшего кислорода в выхлопных газах, когда выхлопные газы выходят из двигателя. Контроль уровня кислорода в выхлопных газах — это способ измерения топливной смеси. Он сообщает компьютеру, является ли топливная смесь богатой (меньше кислорода) или бедной (больше кислорода).

На относительную насыщенность или обедненную смесь топливной смеси может влиять множество факторов, включая температуру воздуха, температуру охлаждающей жидкости двигателя, барометрическое давление, положение дроссельной заслонки, расход воздуха и нагрузку на двигатель. Существуют и другие датчики для отслеживания этих факторов, но датчик O2 является главным монитором того, что происходит с топливной смесью. Следовательно, любые проблемы с датчиком O2 могут вывести из строя всю систему.

ЦЕПЬ УПРАВЛЕНИЯ ОБРАТНОЙ СВЯЗЬЮ ТОПЛИВНОЙ СМЕСИ

Компьютер использует вход датчика кислорода для регулирования топливной смеси, что называется контуром управления обратной связью по топливу.»Компьютер ориентируется на датчик O2 и реагирует изменением топливной смеси. Это приводит к соответствующему изменению показаний датчика O2. Это называется работой» замкнутого контура «, потому что компьютер использует вход датчика O2 для регулирования Результатом является постоянное переключение от богатой к обедненной смеси, что позволяет каталитическому нейтрализатору работать с максимальной эффективностью, сохраняя при этом средний общий баланс топливной смеси для минимизации выбросов.Это сложная установка, но она работает.

Когда сигнал от датчика O2 не поступает, как в случае, когда холодный двигатель запускается впервые (или выходит из строя датчик 02), компьютер заказывает фиксированную (неизменную) богатую топливную смесь. Это называется операцией «разомкнутого контура», потому что никакой входной сигнал от датчика O2 не используется для регулирования топливной смеси.

Если двигатель не переходит в замкнутый цикл, когда датчик O2 достигает рабочей температуры, или выходит из замкнутого цикла из-за потери сигнала датчика O2, двигатель будет работать на слишком богатой смеси, что приведет к увеличению расхода топлива и выбросов.Неисправный датчик охлаждающей жидкости также может предотвратить переход системы в замкнутый контур, потому что компьютер также учитывает температуру охлаждающей жидкости двигателя при принятии решения о переходе в замкнутый цикл.

КАК РАБОТАЕТ КИСЛОРОДНЫЙ ДАТЧИК

Датчик O2 работает как миниатюрный генератор и вырабатывает собственное напряжение, когда нагревается. Внутри вентилируемой крышки на конце датчика, который ввинчивается в выпускной коллектор, находится циркониевая керамическая колба. Колба снаружи покрыта пористым слоем платины.Внутри колбы находятся две платиновые полоски, которые служат электродами или контактами.

Наружная часть колбы подвергается воздействию горячих газов в выхлопных газах, в то время как внутренняя часть колбы выходит изнутри через корпус датчика во внешнюю атмосферу. Кислородные датчики старого образца на самом деле имеют небольшое отверстие в корпусе, чтобы воздух мог попасть в датчик, но датчики O2 нового типа «дышат» через свои проводные разъемы и не имеют вентиляционного отверстия. Трудно поверить, но небольшое пространство между изоляцией и проводом обеспечивает достаточно места для проникновения воздуха в датчик (по этой причине никогда не следует наносить смазку на разъемы датчика O2, поскольку она может блокировать поток воздуха). .Проветривание датчика через провода, а не через отверстие в корпусе, снижает риск попадания грязи или воды, которые могут засорить датчик изнутри и вызвать его выход из строя.

Разница в уровнях кислорода между выхлопным и наружным воздухом внутри датчика вызывает прохождение напряжения через керамическую грушу. Чем больше разница, тем выше значение напряжения.

Датчик кислорода обычно вырабатывает примерно до 0,9 вольт, когда топливная смесь богатая и в выхлопе мало несгоревшего кислорода.Когда смесь обеднена, выходное напряжение датчика упадет примерно до 0,2 В или меньше. Когда топливно-воздушная смесь сбалансирована или находится в точке равновесия около 14,7: 1, датчик будет показывать около 0,45 вольт.


Когда компьютер получает сигнал обогащения (высокое напряжение) от датчика O2, он понижает топливную смесь, чтобы уменьшить напряжение обратной связи датчика. Когда показания датчика O2 становятся бедными (низкое напряжение), компьютер снова меняет направление, заставляя топливную смесь обогащаться. Это постоянное колебание топливной смеси вперед и назад происходит с разными скоростями в зависимости от топливной системы.Скорость перехода самая низкая на двигателях с карбюраторами с обратной связью, обычно один раз в секунду при 2500 об / мин. Двигатели с впрыском в корпус дроссельной заслонки несколько быстрее (2–3 раза в секунду при 2500 об / мин), а двигатели с многоточечным впрыском являются самыми быстрыми (5–7 раз в секунду при 2500 об / мин).

Датчик кислорода должен быть горячим (около 600 градусов или выше), прежде чем он начнет генерировать сигнал напряжения, поэтому многие датчики кислорода имеют внутри небольшой нагревательный элемент, чтобы помочь им быстрее достичь рабочей температуры.Нагревательный элемент также может предотвратить слишком сильное охлаждение датчика во время длительного холостого хода, что может привести к возврату системы к разомкнутому контуру.

Датчики O2 с подогревом используются в основном в новых автомобилях и обычно имеют 3 или 4 провода. Старые однопроводные датчики O2 не имеют нагревателей. При замене датчика O2 убедитесь, что он того же типа, что и оригинальный (с подогревом или без подогрева). кислородных датчиков на двигатель увеличилось вдвое.Второй датчик кислорода теперь используется после каталитического нейтрализатора для контроля его эффективности. На двигателях V6 или V8 с двойным выхлопом это означает, что можно использовать до четырех датчиков O2 (по одному для каждого ряда цилиндров и по одному после каждого преобразователя).


Система управления подачей топлива с обратной связью EFI использует входные сигналы датчика O2 для управления топливной смесью.

Система OBD II предназначена для контроля выбросов двигателя. Это включает в себя наблюдение за всем, что может вызвать увеличение выбросов.Система OBD II сравнивает показания уровня кислорода датчиков O2 до и после преобразователя, чтобы увидеть, снижает ли преобразователь загрязняющие вещества в выхлопных газах. Если он не видит изменений в показаниях уровня кислорода, это означает, что преобразователь не работает должным образом. Это приведет к включению контрольной лампы неисправности (MIL).


ДИАГНОСТИКА ДАТЧИКА КИСЛОРОДА

Датчики O2 невероятно прочны, учитывая условия эксплуатации, в которых они живут. Но датчики O2 изнашиваются и в конечном итоге должны быть заменены.

Характеристики датчика O2 имеют тенденцию к снижению с возрастом, поскольку загрязнения накапливаются на наконечнике датчика и постепенно снижают его способность генерировать напряжение. Такое ухудшение может быть вызвано различными веществами, попадающими в выхлопные газы, такими как свинец, силикон, сера, масляная зола и даже некоторые присадки к топливу. Датчик также может быть поврежден факторами окружающей среды, такими как вода, брызги дорожной соли, масла и грязи.

По мере того, как датчик стареет и становится вялым, время, необходимое для реакции на изменения в топливно-воздушной смеси, замедляется, что приводит к увеличению выбросов.Это происходит потому, что колебания топливной смеси замедляются, что снижает эффективность преобразователя. Эффект более заметен на двигателях с многоточечным впрыском топлива (MFI), чем с электронной карбюрацией или впрыском через корпус дроссельной заслонки, потому что соотношение топлива изменяется намного быстрее в приложениях MFI.

Если датчик полностью умирает, результатом может быть фиксированная богатая топливная смесь. По умолчанию для большинства применений с впрыском топлива средний диапазон составляет три минуты. Это вызывает большой скачок расхода топлива, а также выбросов.А если преобразователь перегреется из-за богатой смеси, он может выйти из строя.

Одно исследование EPA показало, что 70% автомобилей, не прошедших испытание на выбросы I / M 240, нуждались в новом датчике O2.

Большинство проблем с датчиком O2 приводят к тому, что система OBD II устанавливает один или несколько диагностических кодов неисправности (DTC) и включает световой индикатор Check Engine. Это коды OBD, связанные с неисправностями датчика O2:

КОДЫ НЕИСПРАВНОСТЕЙ ДАТЧИКА КИСЛОРОДА

P0030 …. Цепь управления нагревателем HO2S, ряд 1, датчик 1
P0031…. Цепь управления нагревателем HO2S, ряд 1, датчик 1
P0032 …. Цепь управления нагревателем HO2S, ряд 1, датчик 1
P0033 …. Цепь управления перепускным клапаном турбонагнетателя
P0034 …. Управление перепускным клапаном турбонагнетателя Низкий уровень цепи
P0035 …. Высокий уровень цепи управления перепускным клапаном турбонагнетателя
P0036 …. Цепь управления нагревателем HO2S, ряд 1, датчик 2
P0037 …. Низкий уровень цепи управления нагревателем HO2S, ряд 1, датчик 2
P0038 …. Цепь управления нагревателем HO2S, ряд 1, датчик 2
P0042 …. Цепь управления нагревателем HO2S, ряд 1, датчик 3
P0043…. Цепь управления нагревателем HO2S, ряд 1, датчик 3
P0044 …. Цепь управления нагревателем HO2S, ряд 1, датчик 3
P0050 …. Цепь управления нагревателем HO2S, ряд 2, датчик 1
P0051 …. Управление нагревателем HO2S Цепь низкого уровня, ряд 2, датчик 1
P0052 …. Цепь управления нагревателем HO2S, высокий уровень, ряд 2, датчик 1
P0056 …. Цепь управления нагревателем HO2S, ряд 2, датчик 2
P0057 …. Цепь управления нагревателем HO2S, ряд 2, датчик 2
P0058 …. Цепь управления нагревателем HO2S, высокий ряд 2, датчик 2
P0062 ….HO2S Цепь управления нагревателем, ряд 2, датчик 3
P0063 …. Цепь управления нагревателем HO2S, ряд 2, датчик 3
P0064 …. Цепь управления нагревателем HO2S, ряд 2, датчик 3
P0130 …. Цепь датчика O2, ряд 1 Датчик 1
P0131 …. Низкое напряжение цепи датчика O2, ряд 1 Датчик 1
P0132 …. Высокое напряжение цепи датчика O2, ряд 1, датчик 1
P0133 …. Цепь датчика O2 медленная реакция, ряд 1, датчик 1
P0134. … Нет активности в цепи датчика O2, датчик 1, ряд 1
P0135 …. Цепь нагревателя датчика O2, ряд 1, датчик 1
P0136…. Неисправность цепи датчика О2, ряд 1, датчик 2
P0137 …. Цепь датчика О2, низкое напряжение, ряд 1, датчик 2
P0138 …. Цепь датчика О2, высокое напряжение, ряд 1, датчик 2
P0139 …. Цепь датчика О2 Медленный отклик, блок 1, датчик 2
P0140 …. Не обнаружена активность в цепи датчика O2, банк 1, датчик 2
P0141 …. O2 Sensor Heater Circuit Bank 1 Sensor 2
P0142 …. O2 Sensor Circuit Malfunction Bank 1 Sensor 3
P0143 …. Низкое напряжение цепи датчика O2, ряд 1, датчик 3
P0144 … Высокое напряжение цепи датчика O2, ряд 1, датчик 3
P0145…. Цепь датчика O2 с медленным откликом, ряд 1, датчик 3
P0146 …. Цепь датчика O2 не обнаружена, блок 1, датчик 3
P0147 …. Цепь нагревателя датчика O2, ряд 1, датчик 3

Если датчик O2 работает незначительно вялый или слегка предвзятый, богатый или худой, он может не устанавливать код неисправности. Единственный способ узнать, нормально ли работает датчик O2, — это проверить его реакцию на изменения в топливно-воздушной смеси. Вы можете прочитать выходное напряжение датчика O2 с помощью сканирующего прибора или цифрового вольтметра, но переходы трудно увидеть, потому что числа сильно меняются.Лучше всего наблюдать за изменениями выходного напряжения датчика O2 с помощью цифрового запоминающего осциллографа (DSO). Осциллограф отобразит выходное напряжение датчика в виде волнистой линии, которая показывает как его амплитуду (минимальное и максимальное напряжение), так и его частоту (скорость перехода от богатого к обедненному).


Образцы осциллографа датчика кислорода.

Хороший датчик O2 должен выдавать колеблющуюся форму волны на холостом ходу, при которой напряжение изменяется от почти минимального (0,1 В) до почти максимального (0,9 В). Искусственное обогащение топливной смеси путем подачи пропана во впускной коллектор должно привести к тому, что датчик среагирует почти немедленно (в течение 100 миллисекунд) и достигнет максимума (0.9в) выход. Создание обедненной смеси путем открытия вакуумной линии должно привести к падению выходного сигнала датчика до минимального (0,1 В) значения. Если датчик не переключается вперед и назад достаточно быстро, это может указывать на необходимость замены.


Если цепь датчика O2 разомкнута, закорочена или выходит за пределы допустимого диапазона, он может установить код неисправности и загореться контрольной лампой проверки двигателя или неисправности. Если дополнительная диагностика обнаруживает неисправность датчика, требуется его замена. Но многие датчики O2, которые сильно повреждены, продолжают работать достаточно хорошо, чтобы не устанавливать код неисправности, но недостаточно хорошо, чтобы предотвратить увеличение выбросов и расхода топлива.Таким образом, отсутствие кода неисправности или контрольной лампы не означает, что датчик O2 работает правильно. Датчик может быть ленивым, или смещенным, богатым или бедным.

Компания под названием Lenehan Research производит портативный тестер датчика O2, который проверяет время отклика датчика O2, чтобы определить, хорошее оно или плохое. Тестер требует, чтобы датчик кислорода перескочил с уровня ниже 175 мВ до уровня выше 800 мВ менее чем за 100 мс, когда дроссельная заслонка открыта. — отрезал. Если датчик не реагирует достаточно быстро, тест не проходит.Тестер также показывает работу с обратной связью на быстром, сверхъярком цветном 10-светодиодном дисплее и проверяет управление PCM системой управления с обратной связью по топливу.


ЗАМЕНА ДАТЧИКА КИСЛОРОДА

Очевидно, что любой неисправный датчик O2 требует замены. Но также может быть полезно периодически заменять датчик O2 для профилактического обслуживания. Замена стареющего датчика O2, который стал медленно работать, может восстановить максимальную топливную эффективность, минимизировать выбросы выхлопных газов и продлить срок службы преобразователя.

Необогреваемые одно- или двухпроводные датчики O2 на автомобилях с 1976 по начало 1990-х годов можно заменять каждые 30 000–50 000 миль. Подогреваемые 3- и 4-проводные датчики O2 в приложениях с середины 1980-х до середины 1990-х годов можно менять каждые 60 000 миль. На автомобилях, оборудованных OBD ​​II (1996 и новее), можно рекомендовать интервал замены 100 000 миль.

Датчик кислорода можно снять с выпускного коллектора с помощью специального гнезда датчика кислорода (в котором есть вырез для очистки проводов) или гнезда 22 мм.Датчик выйдет легче, если двигатель немного теплый, но не горячий на ощупь. Поместите гнездо на датчик и поверните против часовой стрелки, чтобы ослабить его. Если он замерз, нанесите проникающее масло и нагрейте основание датчика.

При установке нового кислородного датчика прямого подключения или штатного кислородного датчика разъем проводки нового датчика вставляется в разъем без каких-либо изменений. Но если вы устанавливаете «универсальный» кислородный датчик, исходный разъем проводки придется отрезать, чтобы провода на новом датчике можно было соединить с проводами, идущими к разъему.В 4-проводных датчиках один провод является сигнальным, один — заземлением, а два других — для цепи нагревателя. Провода имеют цветовую кодировку, но цвета на универсальном датчике, вероятно, не будут совпадать с цветами на исходном датчике. См. Таблицу ниже с цветовой кодировкой, используемой на датчиках кислорода различных марок:


Типичные цветовые коды проводки датчика кислорода.

Датчик кислорода, вопросы и ответы

Сколько датчиков кислорода установлено на современных двигателях?

Зависит от года выпуска и типа двигателя.На большинстве четырех- и рядных шестицилиндровых двигателей обычно установлен единственный кислородный датчик, установленный в выпускном коллекторе. На двигателях V6, V8 и V10 обычно есть два датчика кислорода, по одному в каждом выпускном коллекторе. Это позволяет компьютеру контролировать воздушно-топливную смесь из каждого ряда цилиндров.

На более поздних моделях автомобилей с OBD II (некоторые модели 1993 и 94 года, а также все модели 1995 года и новее) один или два дополнительных кислородных датчика также устанавливаются в каталитическом нейтрализаторе или за ним для контроля эффективности преобразователя.Они называются датчиками O2, расположенными ниже по потоку, и будут по одному для каждого преобразователя, если двигатель имеет двойные выхлопы с отдельными преобразователями.

Как кислородные датчики идентифицируются на диагностическом приборе?

При отображении на сканирующем приборе правый и левый верхние кислородные датчики обычно обозначаются Bank 1, Sensor 1 и Bank 2, Sensor 1. Датчик Bank 1 всегда будет находиться на той же стороне двигателя V6 или V8, что и цилиндр номер один.

На сканирующем приборе нижний датчик на четырех- или рядном шестицилиндровом двигателе с одним выхлопом обычно обозначается «Банк 1, датчик 2».На двигателях V6, V8 или V10 нижний датчик O2 может быть помечен как банк 1 или банк 2, датчик 2. Если двигатель V6, V8 или V10 имеет двойной выхлоп с двойными преобразователями, нижние датчики O2 будут обозначены как банк 1, Датчик 2 и ряд 2, датчик 2. Или нижний кислородный датчик может быть помечен как блок 1 Датчик 3, если у двигателя есть два верхних кислородных датчика в выпускном коллекторе (некоторые делают для более точного контроля выбросов).

Важно знать, как идентифицируются датчики O2, потому что диагностический код неисправности, указывающий на неисправный датчик O2, требует замены определенного датчика.Блок 1 Датчик 1 может быть задним датчиком O2 на поперечном V6 или датчиком на переднем выпускном коллекторе. Более того, датчики O2 на поперечном двигателе могут быть помечены иначе, чем датчики на заднем приводе. От одного производителя транспортного средства к другому не так много единообразия в том, как маркируются датчики O2, поэтому всегда обращайтесь к документации OEM по обслуживанию, чтобы узнать, какой датчик является датчиком 1 банка 1, а какой датчиком 1 банка 2. информацию бывает трудно найти.Некоторые OEM-производители четко определяют, какой датчик O2 является каким, а другие — нет. В случае сомнений позвоните дилеру и спросите кого-нибудь в сервисной службе.

Чтобы узнать, где находится датчик кислорода, щелкните здесь.

Как датчик O2 ниже по потоку контролирует эффективность преобразователя?

Нижний кислородный датчик в каталитическом нейтрализаторе или за ним работает точно так же, как верхний кислородный датчик в выпускном коллекторе. Датчик вырабатывает напряжение, которое изменяется при изменении количества несгоревшего кислорода в выхлопных газах.Если датчик O2 является традиционным датчиком циркониевого типа, выходное напряжение падает примерно до 0,2 В при обедненной топливной смеси (больше кислорода в выхлопе). Когда топливная смесь богатая (меньше кислорода в выхлопе), выходной сигнал датчика подскакивает до максимума около 0,9 вольт. Сигнал высокого или низкого напряжения сообщает PCM, что топливная смесь богатая или бедная.

На некоторых новых автомобилях используется новый тип датчика топлива с широким соотношением сторон (WRAF). Вместо того, чтобы генерировать сигнал высокого или низкого напряжения, сигнал изменяется прямо пропорционально количеству кислорода в выхлопных газах.Это обеспечивает более точное измерение для лучшего контроля топлива. Эти датчики также называются широкополосными датчиками кислорода, поскольку они могут считывать очень бедные топливно-воздушные смеси.

Система OBD II контролирует эффективность преобразователя, сравнивая сигналы верхнего и нижнего кислородных датчиков. Если преобразователь выполняет свою работу и снижает количество загрязняющих веществ в выхлопных газах, нижний кислородный датчик должен показывать небольшую активность (несколько переходов от обедненной к богатой, которые также называются «перекрестным подсчетом»).Показание напряжения датчика также должно быть довольно стабильным (не повышаться или понижаться) и составлять в среднем 0,45 В или выше.

Если сигнал нижнего кислородного датчика начинает отражать сигнал верхнего кислородного датчика (ов), это означает, что эффективность преобразователя снизилась и преобразователь не очищает загрязняющие вещества в выхлопных газах. Пороговое значение для установки диагностического кода неисправности (DTC) и включения контрольной лампы неисправности (MIL) — это когда выбросы, по оценкам, превышают федеральные ограничения на 1.5 раз. См. Раздел «Поиск и устранение неисправностей кода катализатора P0420» для получения дополнительной информации о проблемах преобразователя.

Если эффективность преобразователя снизилась до точки, при которой транспортное средство может превышать предел загрязнения, PCM включит контрольную лампу неисправности (MIL) и установит диагностический код неисправности. В этот момент может потребоваться дополнительная диагностика для подтверждения неисправного преобразователя. Если датчики O2 на входе и выходе работают нормально и показывают снижение эффективности преобразователя, преобразователь необходимо заменить, чтобы восстановить соответствие требованиям по выбросам.Автомобиль не пройдет тест на выбросы OBD II, если в PCM есть коды преобразователя.

В чем разница между «подогреваемым» и «ненагреваемым» кислородным датчиком?

Подогреваемые кислородные датчики имеют внутреннюю цепь нагревателя, которая доводит датчик до рабочей температуры быстрее, чем ненагреваемый датчик. Кислородный датчик должен быть горячим (примерно от 600 до 650 градусов по Фаренгейту), прежде чем он сгенерирует сигнал напряжения. Горячий выхлоп двигателя будет обеспечивать достаточно тепла, чтобы довести датчик O2 до рабочей температуры, но это может занять несколько минут в зависимости от температуры окружающей среды, нагрузки двигателя и скорости.В это время система управления с обратной связью по топливу остается в «разомкнутом контуре» и не использует сигнал датчика O2 для регулировки топливной смеси. Обычно это приводит к богатой топливной смеси, потраченному впустую топливу и более высоким выбросам.

Путем добавления цепи внутреннего нагревателя к датчику кислорода можно направить напряжение через нагреватель, как только двигатель начнет нагревать датчик. Нагревательный элемент представляет собой резистор, который накаляется докрасна, когда через него проходит ток. Нагреватель доводит датчик до рабочей температуры в течение от 20 до 60 секунд в зависимости от датчика, а также поддерживает датчик кислорода в горячем состоянии, даже когда двигатель работает на холостом ходу в течение длительного периода времени.

Датчики O2 с подогревом обычно имеют два-три или четыре провода (дополнительные провода предназначены для цепи нагревателя). Примечание. Сменные датчики O2 должны иметь такое же количество проводов, что и исходные, и иметь такое же внутреннее сопротивление.

Система OBD II также контролирует цепь нагревателя и устанавливает код неисправности, если цепь нагревателя внутри датчика O2 неисправна. Нагреватель является частью датчика и не может быть заменен отдельно, поэтому, если цепь нагревателя разомкнута или закорочена и проблема не во внешней проводке или разъеме датчика, датчик O2 необходимо заменить.

НАЖМИТЕ ЗДЕСЬ, чтобы просмотреть или загрузить эту статью в виде PDF-файла.





Щелкните здесь, чтобы узнать больше о руководстве по датчикам. Определение проблем с выбросами (датчики O2)

Анализ датчиков двигателя

Общие сведения о системах управления двигателем

Модули управления трансмиссией (PCM)

Все о бортовой диагностике II (OBD II)

Обнуление диагностики OBD II

OBD Монитор не готов

Каталитические преобразователи

Поиск и устранение неисправностей каталитического нейтрализатора P0420 Код

Низкая экономия топлива (причины)

Щелкните здесь, чтобы увидеть больше технических статей Carley Automotive

Нужна информация из руководства по техническому обслуживанию вашего автомобиля?

Mitchell 1 DIY eautorepair manuals

Когда следует заменять датчик кислорода? | Новости

АВТО.COM — Современные системы управления двигателями автомобилей полагаются на входные данные от нескольких датчиков для регулирования производительности двигателя, а также его выбросов и других жизненно важных функций. Когда эти датчики не могут предоставить точную информацию, водитель может испытывать повышенный расход топлива, проблемы с управляемостью, сбои в выбросах и другие проблемы.

Одним из самых важных датчиков в современных автомобилях является датчик кислорода. Также известный как датчик O2, поскольку O2 — это химическая формула кислорода, датчик кислорода отслеживает, сколько несгоревшего кислорода присутствует в выхлопных газах, когда выхлопные газы выходят из двигателя.Контролируя уровень кислорода, датчик обеспечивает средство измерения топливной смеси. Датчик O2 сообщает компьютеру, является ли топливная смесь богатой (недостаточно кислорода) или бедной (слишком много кислорода). Знание соотношения топлива и воздуха позволяет двигателю вашего автомобиля вносить любые необходимые изменения, чтобы ваша машина работала должным образом.

Связано: Почему гремит мой глушитель?

Датчики

O2 являются обязательными для всех автомобилей, произведенных с 1981 года. Из-за правил ODB-II, которые применяются к автомобилям, произведенным в 1996 году и позже, многие новые автомобили имеют несколько датчиков O2.Фактически, в некоторых автомобилях есть целых четыре датчика кислорода. Автомобили, выпущенные в 1996 году и позже, должны иметь второй кислородный датчик, расположенный под каталитическим нейтрализатором. Этот датчик O2 контролирует эффективность работы каталитического нейтрализатора.

Если датчик после каталитического нейтрализатора показывает минимальные отклонения от показаний первого кислородного датчика, это означает, что каталитический нейтрализатор не работает должным образом. Современные автомобили с двигателями V-6 или V-8 могут иметь до четырех датчиков O2 — по одному в каждом ряду цилиндров и по одному после каждого каталитического нейтрализатора.Если либо датчик кислорода в блоке цилиндров, либо датчик каталитического нейтрализатора выходит из строя, ваш автомобиль может столкнуться с серьезными проблемами с двигателем.

Поскольку кислородные датчики играют жизненно важную роль в работе вашего двигателя и контроле за выбросами, вы можете задаться вопросом, когда следует подумать о замене.

Когда следует заменять датчик O2?

Кислородные датчики

не относятся к элементам технического обслуживания, которые необходимо регулярно заменять, например масляным и воздушным фильтрам, поэтому их обычно заменяют только в случае их выхода из строя.

Датчики кислорода являются важным компонентом топливной системы и систем выбросов, поскольку они контролируют количество кислорода в выхлопных газах и передают эту информацию в компьютер двигателя, который соответствующим образом регулирует соотношение воздуха и топлива. Если датчик кислорода выходит из строя, компьютер двигателя не сможет правильно установить соотношение воздух-топливо, что может привести к снижению расхода топлива, увеличению выбросов и повреждению других компонентов, таких как перегретый каталитический нейтрализатор.

Ни одно транспортное средство, о котором мы знаем, не имеет сигнальной лампы, которая сигнализирует о выходе из строя датчика кислорода, поэтому вы должны полагаться на другие жизненно важные признаки, чтобы предупредить вас, когда у вас неисправный датчик кислорода, который вам необходимо заменить, например световой индикатор проверки двигателя на приборной панели загорается и увеличивает расход топлива.

Признаки того, что вам нужен новый датчик O2

Светящаяся лампочка проверки двигателя может быть признаком более серьезной проблемы, например, с каталитическим нейтрализатором, или чего-то столь же незначительного, как незакрепленная крышка бензобака, поэтому всегда требуется дальнейшее расследование. Однако это может указывать на проблему с датчиком O2 или даже с другой частью вашей выхлопной или выхлопной системы. Любая ремонтная мастерская должна иметь возможность узнать, что привело к срабатыванию индикатора проверки двигателя, а механик или магазин автозапчастей может выполнить эту услугу бесплатно.

Другие признаки того, что вам нужен новый кислородный датчик, включают грубый холостой ход, пропуски зажигания в свечах зажигания, отсутствие мощности, остановку двигателя или значительное увеличение расхода топлива. Эти симптомы также могут указывать на другие проблемы, но EPA заявляет, что замена неисправного кислородного датчика может улучшить экономию топлива на целых 40 процентов, поэтому очевидно, что это одно место, где можно посмотреть, не разовьется ли у вашего автомобиля большая тяга к газу. Если ваш автомобиль не прошел тест на выбросы, в этом также может быть виноват неисправный датчик O2.

Новый кислородный датчик может стоить от менее 100 долларов на одних моделях до 300 долларов и более на других, но это не включает оплату труда, которая может сильно варьироваться в зависимости от автомобиля из-за того, где расположены датчики. В результате полная стоимость замены кислородного датчика может сильно различаться в зависимости от типа автомобиля, которым вы управляете.

Редакционный отдел Cars.com — ваш источник автомобильных новостей и обзоров. В соответствии с давней политикой этики Cars.com редакторы и рецензенты не принимают подарки или бесплатные поездки от автопроизводителей.Редакционный отдел не зависит от отделов рекламы, продаж и спонсируемого контента Cars.com.

Как работает датчик кислорода в двигателе?

Что такое датчик кислорода?

Технически кислород очень важен для двигателя. Он определяет правильную работу двигателя. Поэтому для достижения правильного соотношения воздух-топливо производители используют кислородные датчики в выхлопных системах. Кроме того, кислородный датчик выхлопных газов также известен как «лямбда-зонд».Он расположен перед каталитическим нейтрализатором в выхлопной трубе. Датчик генерирует напряжение в отношении количества кислорода в выхлопных газах. Таким образом, он обеспечивает обратную связь в режиме реального времени с системой управления двигателем о составе смеси.

Датчик O2 Bosch

Кроме того, откалибрована система управления двигателем (EMS). Он обеспечивает оптимальную мощность двигателя, выбросы и экономичность во всем рабочем диапазоне двигателя. Датчик кислорода помогает EMS контролировать оптимальные выбросы в выхлопной системе.Таким образом достигается идеальное соотношение воздух-топливо 14,7: 1.

Дизайн:

Кроме того, кислородный датчик состоит из «гальванической батареи». Датчик содержит два пористых платиновых электрода. Кроме того, между ними находится керамический электролит (диоксид циркония). Датчик кислорода генерирует напряжение. Он колеблется от 100 мВ (0,1 В) до 900 мВ (0,9 В). Это зависит от уровня кислорода в выхлопных газах. Датчик кислорода сравнивает атмосферный кислород, обычно 21% прибл., к количеству кислорода в выхлопе.

Датчик O2 (любезно предоставлен Denso)

Обычно богатая смесь содержит больше топлива на одну часть кислорода. Это означает, что в нем 0% кислорода. Таким образом, датчик выдает высокое напряжение около 900 мВ. Бедная смесь содержит меньше топлива на часть кислорода. Он может содержать от 3% до 4% кислорода. Итак, датчик выдает низкое напряжение 100 мВ. Однако среднее напряжение датчика составляет ~ 450 мВ, что дает идеальное соотношение смеси 14,7: 1.

Критерии:

Rich Mixture — большая разница между уровнями кислорода в атмосфере и выхлопных газах.Это приводит к высокой проводимости между электродами. Следовательно, выходное напряжение высокое — около 900 мВ.

Lean Mixture — меньшая разница между уровнями кислорода. Это приводит к меньшей проводимости и меньшему выходному напряжению, обычно около 100 мВ.

Нормальная смесь — когда уровень смеси составляет примерно 14,7: 1. Тогда выходной сигнал кислородного датчика будет около 450 мВ.

Датчики кислорода Характеристики:

  1. Имеет проволоку из нержавеющей стали.Он обеспечивает лучшую устойчивость к коррозии и термическим нагрузкам.
  2. Производители используют позолоченные клеммы на контактах сигнального и опорного разъемов. Кроме того, он обеспечивает превосходный контакт даже для минутных сигналов напряжения / тока.
  3. Корпус датчика с двойной лазерной сваркой предотвращает попадание влаги на чувствительный элемент / нагреватель.
  4. Производители проводят функциональную проверку качества датчиков O2 при 1000 ° C.
  5. Производители также испытывают давление в керамической гильзе 420 бар, чтобы убедиться в целостности.
  6. Измерительный элемент кислородного датчика при изготовлении проходит испытания на «газопроницаемость».
Датчик O2 Hitachi

Датчик O2 Функция:

Кроме того, кислород очень важен для человеческого организма. Точно так же важно запустить двигатель и получить лучшую производительность. Датчик кислорода помогает поддерживать «идеальное» соотношение воздух / топливо 14,7: 1 или лямбда 1. Он обеспечивает значение лямбда, равное 1, для различных условий работы двигателя. Кроме того, он сравнивает количество кислорода в выхлопных газах с количеством кислорода в атмосфере.При таком разном количестве кислорода кислородный датчик вырабатывает и отправляет выходное напряжение в систему управления топливом двигателя.

Кроме того, AC Delco, Bosch, Denso и Hitachi являются одними из ведущих производителей датчиков O2 в мире.

Примечание: изображения (любезно предоставлены соответствующими производителями)

Смотреть Датчик кислорода в действии:

Подробнее: Как работают датчики двигателя? >>

О CarBikeTech

CarBikeTech — это технический блог.Его члены имеют опыт работы в автомобильной сфере более 20 лет. CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.

Посмотреть все сообщения CarBikeTech

Что делает датчик кислорода?

Как владелец транспортного средства, последнее, что вы хотите видеть, — это горящий ярко-оранжевый индикатор «Check Engine». Это предупреждение почти всегда является результатом срабатывания датчика кислорода, также известного как O2. Еще одним предупреждающим знаком может быть сообщение на компьютере вашего автомобиля о неисправности цепи обогревателя.Когда вы видите индикатор проверки двигателя (CEL) или сообщение о неисправности цепи нагревателя, это может означать, что ваш датчик O2 просто вышел из строя. Конечно, это также может означать, что ваш автомобиль не работает должным образом, что приводит к чрезмерному выбросу вредных веществ. В любом случае, сдача вашего автомобиля на настройку — лучший способ убедиться, что датчик O2 в вашем автомобиле работает на высшем уровне.

Что такое датчик кислорода?

Кислородный датчик, также известный как лямбда-зонд, был разработан в конце 1960-х гг.Гюнтер Бауман для компании Robert Bosch GmbH. Этот датчик представляет собой электронное устройство, используемое для измерения пропорционального количества кислорода в жидкости или газе. Оригинальный датчик кислорода был изготовлен из оксида циркония и платины с керамическим покрытием. Чтобы сделать датчик O2 более пригодным для массового производства, были разработаны планарные датчики кислорода. Этот модернизированный датчик O2 был разработан NTK в 1990 году для использования в Honda Civic и Accord. Изготовленный с использованием слоев зеленых лент из высокотемпературной керамики (HTCC), нынешний тип датчика стал более эффективным, чем датчики оригинального стиля.

Мы можем починить ваш контрольный свет двигателя! Найти магазин Meineke поблизости

Что делает датчик кислорода в автомобиле?

Все автомобили, выпущенные после 1980 года, оснащены кислородным датчиком. Он расположен в системе контроля выбросов. Во время работы датчик O2 отправляет данные в управляющий компьютер, расположенный внутри двигателя. В вашем автомобиле работающий датчик O2 гарантирует, что ваш двигатель работает с максимальной производительностью. Кроме того, этот датчик контролирует выбросы и предупреждает о чрезмерных выбросах.В штатах, где есть программы техосмотра автомобилей для регулирования выбросов, использование индикаторов CEL и O2 предупредит чиновников о любых чрезмерных выбросах. В результате, если один или несколько ваших кислородных датчиков неисправны во время проверки выбросов для вашего автомобиля, вы, скорее всего, не пройдете проверку.

Сколько датчиков кислорода в машине?

Автомобили с датчиками O2 имеют как минимум один датчик перед каталитическим нейтрализатором, а также по одному датчику в каждом выпускном коллекторе автомобиля.Фактическое количество кислородных датчиков в автомобиле зависит от года выпуска, марки, модели и двигателя. Однако большинство более поздних моделей автомобилей имеют четыре кислородных датчика. Обратите внимание на следующие автомобили с четырьмя датчиками кислорода:

  • 2013 Honda Civic 1.8L 4 цилиндра
  • 2010 Chevrolet Tahoe 6.0 L 8 цилиндров
  • 2004 Jeep Wrangler 4.0L 6 цилиндров
  • 2000 Toyota Land Cruiser 4.7L 8 цилиндров

Количество датчиков зависит от типа двигателя:

  • Традиционные V6 и V8 имеют три кислородных датчика, включая левый и правый датчик перед и нижний датчик O2.
  • 4-цилиндровый поперечный с датчиком O2 на входе и на выходе
  • V6 и V8 поперечные имеют четыре кислородных датчика, включая левый или передний передний ряд; правый или задний берег вверх по течению; задняя часть двигателя; и нижний датчик
  • 4- и 6-цилиндровые рядные имеют три кислородных датчика, включая передний и задний ряд перед и датчик после него.

Что делают датчики кислорода?

Когда бензиновый двигатель сжигает бензин, в нем присутствует кислород.Кислород в двигателе является результатом ряда факторов, включая температуру воздуха, высоту, температуру двигателя, нагрузку на двигатель и атмосферное давление. Идеальное соотношение кислорода и бензина — 14,7: 1, которое незначительно варьируется в зависимости от типа газа. В том случае, когда присутствует меньше кислорода, топливо останется после сгорания, которое называется богатой смесью. С другой стороны, если присутствует больше кислорода, это называется бедной смесью. И богатая, и бедная смеси вредны для вашего автомобиля, а также для окружающей среды.Богатая смесь приводит к тому, что топливо не сгорает, что создает загрязнение. Бедная смесь выделяет оксиды азота, загрязняющие окружающую среду, что может привести к снижению производительности автомобиля и повреждению двигателя. Датчики кислорода расположены рядом с точками в выхлопной системе, чтобы определить, есть ли в вашем автомобиле богатая или бедная смесь.

Обычно датчик O2 создает напряжение из-за химической реакции в результате несбалансированного отношения бензина к кислороду. Большинство автомобильных двигателей могут определить, сколько топлива нужно израсходовать в двигатель, на основе напряжения датчика O2.Если ваш кислородный датчик не работает должным образом, ваш компьютер управления двигателем не может определить соотношение воздух-топливо. Таким образом, двигатель вынужден угадывать, сколько бензина использовать, что приводит к загрязнению двигателя и плохому функционированию автомобиля.

Как проверить датчик кислорода

Чтобы проверить датчик кислорода, вы можете оставить его прикрепленным к автомобилю или снять для проверки. Для тестирования требуются два инструмента: цифровой вольтметр с высоким сопротивлением и обратный пробник.У механика в ремонтной мастерской Meineke есть эти необходимые специализированные инструменты для проверки датчиков O2. Первым шагом к проверке датчика O2 является обнаружение окружающих проводов, чтобы убедиться, что они целы и без видимых следов износа. Затем необходимо запустить автомобиль и дать ему поработать до тех пор, пока двигатель не достигнет 600 градусов по Фаренгейту, чтобы обеспечить точные показания датчика. Используя задний датчик и вольтметр, датчик кислорода измеряется в заданном количестве точек и при определенных условиях, чтобы определить любые ошибочные измерения.Поскольку для проверки кислородного датчика требуется специальная подготовка и инструменты, лучше всего позволить механику провести это испытание на основе напряжения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *