Работа гидротрансформатора акпп: Гидротрансформатор: устройство и принцип работы

Содержание

Устройство и принцип работы, неисправности|center-at

Гидротрансформатор по своему принципу работы представляет собой асинхронную машину, то есть его работа – передача крутящего момента - возможна только при относительном скольжении его лопастных колес. В лучшем случае это скольжение достигает 5-10% и больше у легковых автомобилей и доходит до 2-4% у тяжелых автомобилей. Это значит, что при частоте вращения двигателя, например, 2000 об/мин турбинное колесо будет отставать от двигателя на 100-200 об/мин. Это приводит к увеличению расхода топлива по сравнению с обычным сцеплением на 3-5%.

Для устранения этого недостатка в него встраивается дополнительное сцепление блокировки, которое связывает вал турбинного колеса (входной вал коробки передач) с двигателем, минуя гидравлическую часть.

Устройство гидротрансформатора АКПП

  • Колесо насосное
  • Колесо Турбинное
  • Муфта свободного хода
  • Колесо реактора
  • Сцепление блокировки

Сцепление блокировки включается по команде с гидравлической системы управления.

Для большей экономии топлива на современных автомобилях стремятся включать блокировку гидротрансформатора как можно раньше, на частоте вращения 1200-1500 об/мин, но на такой частоте высока вероятность вибрации из-за неравномерной работы двигателя. Поэтому включение происходит не полностью, а частично, и вибрации гасятся гидравлической связью между его колесами, а крутящий момент передается двумя потоками частично через сцепление, а частично через колеса гидротрансформатора. По мере увеличения частоты вращения двигателя доля крутящего момента, передаваемая сцеплением, увеличивается, и доходит до 100% примерно при 1800- 2000 об/мин, когда неравномерность вращения двигателя практически отсутствует. Данный режим работы называется скользящая или частичная блокировка.

Конструкция сцеплений

Наиболее распространенной является конструкция, приведенная на рисунке выше. Она представляет собой сцепление с одной поверхностью трения, при этом фрикционная накладка может быть наклеена как на поверхность поршня, так и на поверхность крышки ГТ. Жидкость под давлением, подаваемая в полость между поршнем и крышкой, отжимает поршень, далее попадает в полость колес и отводится на охлаждение по кольцевому зазору между валами. Для включения блокировки гидравлическая система меняет каналы местами – полость между крышкой и поршнем соединяется со сливом, а в полость между колесами подается жидкость под давлением, прижимая поршень к крышке. Величина давления жидкости определяет величину крутящего момента, передаваемого сцеплением блокировки.

Конструкция сцепления блокировки Мерседес 722.6.

Мерседес применяет в своих коробках многодисковую муфту с 3-х канальным управлением. Два канала используются для организации циркуляции жидкости в рабочих полостях, а третий канал – для включения сцепления блокировки.

Аналогичная конструкция применяется и в 5 и 7-ступенчатых коробках JATCO, причем у обоих производителей даже размерности дисков одинаковы.

Фирма ZF применила в этой серии коробок конструкцию с предварительно поджатым сцеплением. Это обеспечивает уменьшение времени задержки включения сцепления, но при этом сильно усложняет его устройство.

Поджатие осуществляется тарельчатой пружиной, расположенной между диском ступицы поршня и прижимающей его к дискам сцепления.У нового гидротрансформатора эта пружина обеспечивает момент срыва сцепления в диапазоне 8-12 н*м, допустимый разброс от 4 до 20 н*м. В дальнейших коробках семейства 8HP ZF отказался от такой конструкции.

Неисправность гидротрансформатора АКПП связана с системой сцепления блокировки. Основные проблемы, которые могут возникнуть.

    1. Не включение блокировки (ошибка P0741). Причиной может являться заедание электромагнитного клапана или золотника, а также износ дисков или накладки сцепления, конусность крышки гидротрансформатора или неисправность уплотнения поршня сцепления блокировки.

С этого поршня фрикционная накладка сошла полностью

    2. Вибрация при работе сцепления на режиме скользящей блокировки. Причины могут быть те же.
    3. Двигатель глохнет при включении передачи на стоящем автомобиле или при остановке автомобиля. Причиной может являться заедание электромагнитного клапана или золотника включения блокировки.

При возникновении одного из признаков неисправности гидротрансформатора АКПП необходимо сначала проверить гидравлическую систему управления, а при отсутствии дефектов в ней снимать коробку передач и производить работы по его ремонту.

Центр АТ МАИ производит ремонт гидротрансформаторов любой сложности в течение 1-2 дней, включая замену дисков или накладок сцепления блокировки.

Что такое гидротрансформатор АКПП? Типичные неисправности и принцип работы. |

Принцип работы гидротрансформатора АКПП

Гидротрансформатор АКПП отвечает за плавность переключения скоростей и принимает на себя мощность от двигателя, передавая ее непосредственно на АКПП. Он представляет собой заваренный герметично узел, форма которого напоминает бублик. Передача мощности осуществляется за счет двух небольших турбин, вращающихся внутри гидротрансформатора в специальном масле.

Типичные неисправности гидротрансформатора: пробуксовки, вибрация, и металлический шум.

В современных автоматических трансмиссиях этот механизм исполняет роль сцепления, когда происходит размыкание мощности при переключении автоматикой сцепления. Именно за счет гидротрансформатора обеспечивается плавность хода автомобиля даже во время переключения ступеней автоматической коробкой передач.

Устройство гидротрансформатора

Состоит этот агрегат из трех колец с лопастями, вращающимися внутри гидротрансформатора АКПП. Устанавливаются эти лопасти и сам узел на коленчатый вал, соединяя с коробкой передач. Внутри корпуса гидротрансформатора закачана под давлением специальная жидкость, которая отвечает за смазку и охлаждение подвижных элементов. За давление и подачу трансмиссионной жидкости отвечает мощная внутренняя помпа с системой фильтрации и охлаждением масла.

Как работает гидротрансформатор — Видеозапись

 

В современных коробках передач большинство моделей гидротрансформаторов оснащены многочисленными датчиками, контролирующими внутреннее давление, температуру рабочей жидкости, скорость вращения внутренних валов. Внутри этой детали расположены многочисленные подвижные элементы, поэтому большинство поломок отмечается на механическом уровне. Достаточно часто возникают проблемы с герметичностью корпуса и поломки масляной помпы, в результате чего подвижные детали ощущают масляное голодание и, перегреваясь, быстро выходят из строя, в таком случае требуется ремонт гидротрансформатора АКПП.

Эксплуатационный срок гидротрансформатора АКПП в большинстве случаев аналогичен самим автоматическим коробкам передач, однако в силу конструктивной сложности и большого числа подвижных элементов этот узел может выходить из строя, что требует проводить дорогостоящий ремонт. Расскажем вам поподробнее о признаках поломки гидротрансформатора. Это позволит вам еще только при появлении проблемы обратиться в сервис и устранить поломку с минимальными финансовыми затратами.

Признаки неисправности гидротрансформатора АКПП

Из основных признаков неисправности гидротрансформатора у автоматической коробки передач можем выделить следующее:

  • При смене передач появляется механический звук, пропадающий с набором оборотов двигателя. У коробки передач имеются проблемы с подшипниками вала АКПП.
  • В скоростном диапазоне 60 — 90 км может ощущаться легкая вибрация, нарастающая по мере увеличения скорости. Наличие такой вибрации говорит о появлении продуктов износа в рабочей жидкости внутри гидротрансформатора. Также возможно засорен масляный фильтр, который требует незамедлительной замены.
  • Ухудшение тяги вызвано поломкой обгонной муфты.
  • Полная остановка автомобиля с невозможность продолжить движение говорит о повреждении шлица турбинного колеса.
  • На холодном двигателе из коробки доносится шуршащий звук – поврежден подшипник у реакторного колеса.
  • Появление громкого металлического стука свидетельствует о выпадении лопаток.
  • Появление запаха плавленой пластмассы свидетельствует о перегреве гидротрансформатора.
  • Неправильно включаются передачи – нарушена автоматика АКПП и гидротрансформатора.

Конструктивные особенности гидротрансформатора

Популярность автомобилей с автоматической коробкой передач растет день ото дня. Мало кто догадывается о том, что представляет собой узел под названием АКПП, благодаря которому обеспечивается удобное и простое управление транспортным средством. Коробка автомат работает в комплексе с гидротрансформатором. Задача последнего компонента заключается в передаче тяговой силы от вала двигателя на валы КПП. Подавляющее количество владельцев авто считает, что гидротрансформатор - это один из элементов автоматического узла. В действительности это не так, но все же без данного компонента функционирование АКПП невозможно.

Конструктивные особенности гидротрансформатора

Первое время комплектовали автомобили коробками передач с сервоприводами. Увы, но они не смогли снискать популярности среди жителей страны по причине массы неудобств. Чуть позже сервоприводы были заменены гидромуфтами. Гидротрансформатор является аналогом сцепления механического узла, но функционирует в автоматическом режиме. Задачи данного компонента следующие:

  • передача вращающего момента от мотора в АКПП;
  • смягчение передачи вращения. Оно происходит без рывков и резких снижений оборотов двигателя;
  • нормализация вращательного движения. При увеличении скорости происходит "гашение" увеличения вращения, которое передается на следующие передачи.

Гидротрансформатор является самостоятельным узлом, но все же не представляет никакой ценности без автоматической коробки передачи. Первый элемент передает второму требуемое количество жидкости. Если это становится невозможным по той или иной причине, то автоматически прекращается работа гидротрансформатора. Конструкция компонента достаточно простая. Представляет собой некое подобие мельницы, внутри которой расположены лопасти. При работе двигателя они начинают вращаться. Мгновенно нагнетается давление масла, которое и регулирует работу АКПП.

Основные неисправности гидротрансформатора

По-максимуму нагружен гидротрансформатор до определенного момента. Если сказать точнее, то до достижения скорости в 70 км/ч. В этот самый момент энергия, получаемая от двигателя, по большей части уходит на раскручивание компонента. Приблизительно около 75-86%. Гидротрансформатор на этой скорости подвержен огромным нагрузкам. Все неисправности компонента делят на две основные группы:

  • поломка непосредственно гидротрансформатора;
  • поломка плиты, которая контактирует с ним

Если гидроблок является ремонтопригодным узлом, то гидротрансформатор нет. Но, на сервисах прибегают к его разбору. Срезается шов, соединяющий две части. После этого проводятся требуемые ремонтные работы, и происходит соединение этих самых частей сварочным аппаратом. В гидротрансформаторе находятся фрикционы, которые могут выйти из строя. Кроме этого, качество работы компонента может быть ухудшено и из-за забивания каналов подачи масла. Что касается гидравлической плиты, то она приходит в негодность по следующим причинам:

  • нарушение работы масляного насоса;
  • неисправность элементов, назначение которых - подача смазки в гидротрансформатор;
  • забитый гидрофильтр.

Все поломки АКПП могут проявиться в виде 3-х симптомов: некорректная работа узла, перегрев и вибрация. Если пришлось столкнуться с одним из них, то медлить с ремонтом не следует. Чем быстрее автовладелец прибудет в сервисный центр, тем выше вероятность быстрого восстановления важного узла.

Ремонт гидротрансформаторов АКПП

 

Гидротрансформатор или преобразователь крутящего момента - гидравлическое устройство, служащее для передачи крутящего момента от ДВС к трансмиссии. Гидротрансформаторы получили широкое распространение в автомобильной технике, предназначены для плавного начала движения автомобиля с места и уменьшения передачи ударных нагрузок от трансмиссии на вал ДВС.

Простейший гидротрансформатор состоит из:

  • Насоса, жестко закрепленного на ведущем валу. Насос обеспечивает движение жидкости.
  • Турбины, жестко соединенной с ведомым валом. Турбина вращается под действием потока жидкости от насоса.
  • Так называемого статора (реактора) — специальной крыльчатки, установленной на пути жидкости непосредственно на выходе из турбины. Статор закреплен на обгонной муфте, позволяющей ему свободно вращаться только в одну сторону.

Различают три режима работы гидротрансформатора:

  • Выходной вал заблокирован, то есть принудительно остановлен трансмиссией (например, водитель удерживает педаль тормоза автомобиля). В этом случае жидкость, пройдя неподвижную турбину, упирается в крыльчатку статора. Крыльчатка статора сделана так что фактически стоит поперек потока жидкости, выходящего из турбины. Поток упирается в нее как в стену, вынужденно резко меняя направление потока. Статор при этом испытывает усилие вращения, заблокированное обгонной муфтой. Таким образом статор резко увеличивает гидравлическое сопротивление в контуре, повышая давление и усилие на турбине. Момент на турбине и ведомом валу максимальны.
  • Выходной вал и турбина на нем разблокированы и начинают вращаться. При этом скорость выходящего из турбины потока жидкости относительно все еще неподвижной крыльчатки статора уменьшается (из скорости жидкости вычитается скорость турбины). А значит уменьшается давление на лопатки статора, уменьшается внесенное статором гидравлическое сопротивление, а значит падают давление на турбине и момент на ведомом валу.
  • Скорость вращения турбины достигает таких значений что скорость жидкости на выходе турбины оказывается ниже скорости турбины. Теперь жидкость уже не давит на лопатки статора а тянет их за собой, в сторону вращения турбины. Обгонная муфта статора теперь не препятствует вращению статора и таким образом статор перестает вносить в гидравлический тракт существенное сопротивление. Гидротрансформатор переходит в режим обычной гидравлической муфты.

 

Основными проблемами работы автоматической коробки передач, вызванными некорректной работой гидротрансформатора являются:

  • Отсутствие блокировки гидротрансформатора

При движении по трассе наблюдаются повышенные обороты двигателя, повышенный расход топлива, появление кода неисправности в памяти электронного блока управления автоматической коробки передач "ошибка проскальзывания муфты блокировки гидротрансформатора",

  • Резкая потеря движения автомобиля

Данная проблема наиболее часто наблюдается на японских моделях автоматических коробок, как правило, связана с критической выработкой на шлицевом соединении ступицы турбинного колеса

  • При переводе ручки селектора в положение "R" и "D", двигатель автомобиля глохнет

Данная проблема в большинстве случаев связана с заклиниваем поршня блокировки гидротрансформатора. 

  • Пробуксовка при начале движения

Данный дефект может быть вызван механическим повреждением обгонной муфты (реактора) гидротрансформатора.  

 

Пушкин Моторс - Это высокое качество в короткие сроки по приемлемой цене.   

Цены на ремонт и обслуживание можно уточнить у менеджеров.

Номер телефона +7 (812) 928-75-05 

 

 

Принцип работы гидротрансформатора

20.05.2010

Краткий обзор гидротрансформатора

Крутящий момент, создаваемый двигателем, передается к автоматической коробке передач посредством гидротрансформатора. В этом разделе описывается, как элементы гидротрансформатора создают гидравлическую связь, увеличивают крутящий момент при низких значениях скорости и устанавливают прямую механическую связь с двигателем при высоких значениях скорости.

Гидротрансформатор обеспечивает гидравлическую связь между коленчатым валом двигателя и коробкой передач. Гибкая пластина крепится болтами к задней части коленчатого вала, а гидротрансформатор, в свою очередь, крепится болтами к гибкой пластине.

Трансмиссионная жидкость для автоматической коробки передач (ATF), находящаяся в гидротрансформаторе, передает вращательное движение коленчатого вала к первичному валу коробки передач. Гидротрансформатор вращается всегда, когда работает двигатель.

Простой гидротрансформатор имеет три основных элемента: лопастное колесо, статор (или направляющий аппарат) и турбину. Большинство современных гидротрансформаторов также имеют муфту, служащую для блокировки гидротрансформатора при соответствующих рабочих условиях автомобиля.

Трехэлементный гидротрансформатор

При работающем двигателе и гидротрансформаторе, не заполненном трансмиссионной жидкостью, первичный вал вращаться не будет. Однако, когда гидротрансформатор заполняется трансмиссионной жидкостью, вал будет не просто вращаться, он будет вращаться с силой, достаточной для приведения в движение внутренних элементов коробки передач, которые создают движущую силу автомобиля. Поэтому, трансмиссионная жидкость, находящаяся в гидротрансформаторе, обеспечивает связь между двигателем и коробкой передач.

В простом трехэлементном гидротрансформаторе нет никакой механической связи между секцией гидротрансформатора, приводимой в движение от двигателя, и первичным валом коробки передач. Двигатель с первичным валом связывает только трансмиссионная жидкость, находящаяся в гидротрансформаторе. В главах, данных на следующих страницах, описывается каждый элемент гидротрансформатора и объясняется, как обеспечивается гидравлическая связь.

Лопастное колесо

Если вы знакомы с конструкцией водяных насосов автомобиля, то уже знаете, что такое лопастное колесо. Лопастное колесо в водяном насосе - это ступица с лопастями, которая вращается на вале. Когда работает двигатель, вращающиеся лопасти лопастного колеса заставляют охлаждающую жидкость циркулировать по каналам охлаждающей жидкости и через радиатор.

Лопастное колесо гидротрансформатора работает аналогично. Вращающееся лопастное колесо за счет возникновения центробежной силы заставляет трансмиссионную жидкость циркулировать. Трансмиссионная жидкость вовлекается лопастями во вращательное движение, и по мере увеличения своей скорости уходит от центра лопастного колеса.

Т.к. жидкость стремится наружу, лопасти несут ее в направлении верхней кромки лопастного колеса. Когда скорость лопастного колеса увеличивается, трансмиссионная жидкость получает импульс движения, достаточный для того, чтобы уйти с краев лопастей и из лопастного колеса. Трансмиссионная жидкость выходит из лопастного колеса с силой, достаточной для приведения в движение первичного вала коробки передач, но при условии того, что сила правильно направлена.

Турбина

Турбина гидротрансформатора по конструкции аналогична лопастному колесу. Т.е. турбина - это ступица с лопастями (или лопатками). Такая конструкция нужна для того, чтобы турбина улавливала трансмиссионную жидкость, сбрасываемую лопастным колесом.

Когда рабочая жидкость сбрасывается с лопастного колеса, лопатки турбины подхватывают ее, заставляя течь к центру турбины. Эта сила вращает турбину до того момента, как жидкость пойдет обратно через центр турбины в направлении лопастного колеса.

Сила трансмиссионной жидкости, ударяющейся о лопатки турбины, зависит от частоты вращения коленчатого вала двигателя. Чем быстрее вращается коленчатый вал, тем большее количество силы передается жидкостью от лопастного колеса к турбине. Когда двигатель работает в режиме холостого хода, рабочая жидкость не имеет достаточно силы, чтобы вращать турбину, преодолевая удерживающее усилие тормозов. Жидкость просто циркулирует от лопастного колеса к турбине и обратно.

Трансмиссионная жидкость уходит от лопастного колесо в направлении по часовой стрелке, а возвращается к нему от турбины в направлении против часовой стрелки.

Статор (направляющий аппарат)

Статор (или направляющий аппарат) располагается между турбиной и лопастным колесом. Назначение статора гидротрансформатора - изменять направление потока трансмиссионной жидкости, когда она перемещается от центра турбины к центру лопастного колеса.

Жидкость течет от лопастного колеса к турбине в направлении по часовой стрелке. Однако, когда жидкость проходит через турбину, ее направление изменяется на противоположное - против часовой стрелки.

Если бы трансмиссионной жидкости было разрешено вернуться к лопастному колесу в направлении против часовой стрелки, это вызвало бы противодействие потока жидкости вращению лопастного колеса, тем самым уменьшая эффективность нагнетания лопастного колеса. Лопастное колесо должно было бы тратить часть крутящего момента, который оно получает от двигателя, на изменение направления потока жидкости.

Когда статор изменяет направление потока трансмиссионной жидкости, чтобы лопастное колесо вращалось в направлении по часовой стрелке, никакой крутящий момент не тратится впустую. Фактически жидкость с измененным направлением вращения помогает воздействовать на лопастное колесо, тем самым увеличивая крутящий момент.

Статор состоит из нескольких лопастей, подсоединенных к ступице, которая закреплена на муфте одностороннего действия.

Муфта в сборе имеет внутреннюю и наружную обоймы с двумя дорожками, разделенными подпружиненными роликами. Внутренняя обойма располагается на шлицевой опоре статора, которая проходит из коробки передач в гидротрансформатор. Т.к. внутренняя обойма имеет шлицевое соединение с опорой статора, она зафиксирована и не может вращаться.

Наружная обойма устанавливается над внутренней обоймой. Внутренняя и наружная обоймы разделяются подпружиненными роликами. Ролики располагаются в клиновых зазорах, образованных наклонными плоскостями, сделанными в наружной обойме. При наличии пружин ролики удерживаются напротив суженных концов клиновых зазоров.

Ролики, клиновые зазоры и дорожки позволяют наружной обойме вращаться только в одном направлении. Когда статор вращается по часовой стрелке, каждый ролик перемещается в расширенный конец клинового зазора, преодолевая усилие пружины, тем самым позволяя статору вращаться. Если статор вращается в противоположном направлении, пружина толкает каждый ролик внутрь клинового зазора, где он заклинивается между двумя дорожками. Когда ролики заклиниваются, статор стопорится относительно внутренней обоймы и не может вращаться.

Возврат потока трансмиссионной жидкости

Поток трансмиссионной жидкости, направленный против часовой стрелки, покидая турбину, перед достижением лопастного колеса проходит через лопасти статора. За счет кривизны лопастей статора направление потока жидкости полностью изменяется.

Изменение направления позволяет трансмиссионной жидкости входить в лопастное колесо и присоединяться к жидкости, текущей вдоль его лопастей. Первое преимущество статора заключается в том, крутящий момент двигателя не затрачивается впустую за счет способности статора изменять направление потока. Второе преимущество заключается в том, что жидкость входит в лопастное колесо в направлении, которое позволяет "помогать толкать" лопасти лопастного колеса.

Увеличение крутящего момента

Влияние статора приводит к тому, что трансмиссионная жидкость, входящая на лопастное колесо, уже находится в движении. Жидкость не должна разгоняться из неподвижного состояния. Она попадает на лопасти, где ускоряется. Ускорение прогоняет жидкость через лопастное колесо и отбрасывает ее к турбине со значительно увеличенной силой.

Благодаря этому эффективному управлению жидкостью, крутящий момент турбины становится больше, чем крутящий момент двигателя. Фактически крутящий момент увеличивается.

Увеличение крутящего момента статором возможно только в том случае, когда имеется большая разница в скорости между лопастным колесом и турбиной. Чем больше разница в скорости между этими двумя элементами, тем больше увеличение крутящего момента.

Увеличение крутящего момента

Муфта одностороннего действия статора играет важную роль в увеличении крутящего момента. Трансмиссионная жидкость, циркулирующая между лопастным колесом и турбиной, называется вихревым потоком. Этот поток существует только в том случае, когда имеется разница в частоте вращения между лопастным колесом и турбиной.

Самая большая разница скорости между этими двумя элементами имеет место, когда автомобиль в первый раз разгоняется из неподвижного состояния. В этот момент лопастное колесо вращается, а турбина - нет. Вследствие наличия большой разницы в скорости вихревой поток и увеличение крутящего момента - максимальны. Вихревой поток, проходящий через лопасти статора, пытается вращать статор против часовой стрелки. Когда это происходит, ролики муфты уходят в клиновые зазоры и блокируют статор относительно его опоры.

Когда автомобиль ускоряется, турбина постепенно приобретает скорость относительно лопастного колеса. В конечном счете турбина ускоряется вплоть до того момента, когда трансмиссионная жидкость начинает течь в одном направлении (по часовой стрелке).

Т.к. центробежная сила уменьшает вихревой поток, увеличение крутящего момента также уменьшается. Наконец, когда скорость турбины достигает приблизительно 90 процентов от скорости лопастного колеса, гидротрансформатор достигает фазы "сцепления". В этой фазе гидротрансформатор просто передает крутящий момент от двигателя через "гидравлическую муфту" к первичному валу коробки передач.

Связь не обязательно имеет место при определенной скорости движения. Например, автомобиль может перемещаться при стабильной скорости с гидротрансформатором, связанным с коробкой передач. Если водитель резко ускоряет автомобиль, чтобы обогнать другой автомобиль, более быстрое вращение двигателя приводит к увеличению скорости лопастного колеса, заставляя его вращаться быстрее, чем турбина. При значительной разнице в скорости между лопастным колесом и турбиной снова происходит увеличение крутящего момента (и вихревого потока) вплоть до того момента, когда турбина не начинает вращаться со скоростью лопастного колеса.

Когда скорость турбины увеличивается, а вихревой поток уменьшается, вращательное усилие, действующее на статор, реверсируется. Ролики муфты уходят из клиновых зазоров, отпуская муфту и позволяя статору вращаться свободно (по часовой стрелке). Направление потока трансмиссионной жидкости, ударяющейся о лопасти статора, также изменяются. Вместо течения к передней части лопастей статора, жидкость ударяется о заднюю часть лопастей. Если бы муфта не отпускала статор, его лопасти генерировали бы турбулентность потока, что значительно уменьшило бы эффективность гидротрансформатора.

Гидравлическая и механическая связь

Т.к. гидротрансформатор не имеет прямой механической связи с двигателем, он теряет некоторый крутящий момент двигателя вследствие наличия проскальзывания трансмиссионной жидкости. Скорости и нагрузки, прикладываемые к жидкости, заставляют лопастное колесо и лопатки турбины в некоторой степени проскальзывать в жидкости.

Это проскальзывание вызывает определенную потерю эффективности, особенно при более высоких значениях скорости автомобиля. Коленчатый вал двигателя может вращаться быстрее, чем турбина или вторичный вал, таким образом топливо тратится впустую. Чтобы исключить эту потерю эффективности, многие гидротрансформаторы обеспечивают прямую механическую связь (называемую блокировкой гидротрансформатора) между двигателем и коробкой передач. В режиме блокировки турбина и лопастное колесо вращаются с одинаковой скоростью. Нет никакого проскальзывания жидкости, что помогает уменьшать выделение тепла.

Блокирующийся гидротрансформатор - это один из самых распространенных способов обеспечения механической связи.

Блокирующийся гидротрансформатор механически связывает турбину с крышкой гидротрансформатора при различных значениях рабочей скорости, в зависимости от модели автомобиля и условий движения. Крышка механически крепится болтами к двигателю. В режиме блокировки крышка гидротрансформатора приводит в движение турбину. Гидравлическая связь исключается, а двигатель и турбина механически блокируются вместе, напрямую приводя в движение первичный вал коробки передач.

Блокирующийся гидротрансформатор требует, чтобы муфта сцеплялась и расцеплялась, обеспечивая и убирая механическую связь между двигателем и крышкой гидротрансформатора. Два основных типа муфты гидротрансформатора - это центробежная муфта и гидравлически активизируемая муфта гидротрансформатора.

Центробежная муфта гидротрансформатора использовалась главным образом до 1990 года. На современных автомобилях используется преимущественно гидравлически активизируемая муфта.

Центробежная муфта

Центробежная муфта имеет шлицевое соединение с турбиной через муфту одностороннего действия. Когда скорость автомобиля увеличивается, гидравлически активизируемая турбина и блокирующая муфта, соединенная с ней посредством шлицевого соединения, вращаются с увеличивающейся скоростью. Центробежная сила, воздействующая на колодки муфты, увеличивается, когда муфта вращается все быстрее и быстрее.

Когда турбина и блокирующая муфта начинают вращаться достаточно быстро, центробежная сила заставляет колодки муфты расходиться наружу до тех пор, пока они не войдут в контакт с внутренней поверхностью крышки гидротрансформатора. Каждая колодка прижимается своей рабочей поверхностью к крышке и блокирует ее относительно турбины.

Когда скорость автомобиля падает, скорость турбины и центробежная сила уменьшаются. Возвратные пружины втягивают колодки муфты, крышка отпускается, и турбина снова приобретает "гидравлический привод".

Муфта одностороннего действия приводит в движение муфту в сборе. При сцепленной муфте водитель может слегка отпустить педаль акселератора, позволяя автомобилю двигаться по инерции. Это позволяет двигателю и первичному валу вращаться с различной частотой вращения.

Фрикционные колодки не могут отпускаться при движении накатом, потому что центробежная сила удерживает их прижатыми к крышке. Вместо этого муфта одностороннего действия в сборе с демпфером отпускается таким образом, что первичный вал может вращаться с частотой, большей чем частота вращения коленчатого вала двигателя. Когда водитель разгоняет автомобиль, муфта одностороннего действия в сборе с демпфером снова блокирует турбину.

Муфта одностороннего действия в сборе с демпфером обеспечивает плавную работу гидротрансформатора. Пружины демпфера также способствуют обеспечению плавности работы. Эти пружины поглощают вибрации двигателя и демпфирует действие колодок, когда они прижимаются к крышке гидротрансформатора.

Когда при ускорении потребность в крутящем моменте превышает удерживающую способность фрикционных колодок, имеет место некоторое проскальзывание. Оно уменьшает крутильные колебания/ вибрации при более высокой нагрузке двигателя.

Гидравлически активизируемая муфта гидротрансформатора

Другой способ соединения двигателя и коробки передач напрямую заключается в использовании муфты гидротрансформатора (ТСС) с торсионными демпфирующими пружинами, присоединенными к ступице. Ступица в сборе имеет шлицевое соединение с первичным валом или турбиной в сборе.

Гидравлическая муфта отпущена

Сигналы от модуля управления управляют активизацией и отпусканием муфты гидротрансформатора. Модуль управления активизирует и отпускает гидравлическую муфту, включая или выключая электромагнит муфты гидротрансформатора. Электромагнит - это такой электрический переключатель, который имеет проволочную катушку. Когда через катушку пропускается электрический ток, катушка намагничивается. Электромагнитное поле перемещает якорь, который открывает и закрывает гидравлический канал.

Гидравлическое давление прикладывается к зоне между крышкой гидротрансформатора и пластиной поршня муфты. Гидравлическое давление обеспечивается питающим контуром гидротрансформатора, расположенным в блоке клапанов.

Когда электромагнит муфты гидротрансформатора не активизирован модулем управления, клапан остается открытым. Давление в магистрали проходит через электромагнитный клапан. Трансмиссионная жидкость проходит через переднюю камеру гидротрансформатора, между ТСС и крышкой гидротрансформатора.

Гидравлическая муфта активизирована

Муфта гидротрансформатора включается только тогда, когда модуль управления возбуждает электромагнитный клапан муфты гидротрансформатора. Электромагнитный клапан закрывает сливной канал, позволяя обеспечить в контуре рост давления в магистрали. Трансмиссионная жидкость направляется к задней камере, и сливается из передней камеры.

Гидравлическая сила толкает поршень ТСС к крышке гидротрансформатора. Эта связь напрямую передает крутящий момент двигателя через демпфер в сборе к первичному валу коробки передач. Т.к. лопастное колесо и турбина вращаются с одинаковой скоростью, увеличения крутящего момента не происходит, и гидротрансформатор находится в режиме блокировки.

автозапчасти в москве

Коробка автомат принцип работы, ресурс, тюнинг, устройство АКПП, режимы

В нашей статье рассмотрим плюсы и минусы классической коробки автомат АКПП: принцип работы, устройство, особенности конструкции, требующие ремонта или замены характерные недостатки и неисправности автоматической трансмиссии с гидротрансофрматором, а также ресурс и неоспоримые достоинства традиционного автомата.

Плюсы и минусы АКПП

Автоматическая коробка передач, вариатор, роботизированная коробка передач — на чем остановить свой выбор при заказе автомобиля. Еще 15-20 лет назад такой вопрос даже не стоял перед отечественными автолюбителями, машины советского, а затем и российского производства были доступны только с механической коробкой передач (МКПП). С появлением в России подержанных иномарок и возможности покупать новые автомобили известных мировых производителей изменилась расстановка сил в пользу автоматической трансмиссии, все больше потенциальных владельцев стали приобретать автомобиль с АКПП. По итогам 2012 года более 45% проданных на российском рынке новых иномарок оснащены автоматами. Даже АвтоВАЗ в июле 2012 года порадовал выпуском бюджетного седана Лада Гранта с АКПП.

Данный агрегат имеет неоспоримые достоинства, но не лишен и недостатков. Среди плюсов – удобство управления движущей силой автомобиля, а к недостаткам можно отнести медленное реагирование, не слишком высокую производительность и сравнительно короткий ресурс — срок службы. Однако следует отметить, что новейшие КПП производят достаточно быстродействующими. Прежде чем разобраться, что к чему, нужно четко понимать разницу в терминах. Автоматическая трансмиссия состоит из двух агрегатов — это сама коробка и гидротрансформатор.

Устройство гидротрансформатора

Итак, гидротрансформатор, или как его еще называют конвертор крутящего момента, представляет собой совокупность двух лопастных устройств – турбинного колеса и центробежного насоса. Связывает их между собой реактор или статор, который и направляет тот самый крутящий момент. Есть еще механизм блокировки, действующий при необходимости на статор, используя обгонную муфту. Насосное колесо находится в жесткой сцепке с коленчатым валом мотора, а турбина – с валом КПП.

Гидротрансформатор наполнен маслом, при активной работе оно постоянно перемешивается и нагревается, на что тратится много полезной энергии, ее же значительно потребляет и насос, создающий давление в рабочих связующих трубках. При большой разнице в оборотах у насоса и турбины реактор блокируется и подает на колесо насоса гораздо больший объём жидкости, в итоге крутящий момент при старте с места увеличивается до трёх раз, снижая КПД передачи. Все это объясняет невысокий общий КПД коробки передач в целом, а также делает более привлекательными в этом плане роботизированные МКПП и вариаторы.
Передача крутящего момента в гидротрансформаторе происходит очень плавно, благодаря чему исключаются ударные нагрузки на трансмиссию, что придает плавности хода автомобилю и положительно сказывается на качественной и продолжительной работе двигателя. Однако от использования гидротрансформатора могут возникнуть и проблемы: например, завести машину с помощью буксира или с толкача, в случае чего, не получится.

Устройство и приницип работы автоматической трансмиссии

Теперь разберемся с устройством самой коробки переключения передач с планетарным редуктором и пакетом фрикционов. Планетарный (дифференциальный) редуктор (передача) представляет собой механизм, в состав которого входят несколько планетарных шестерен, которые при работе вращаются вокруг так называемого солнечного, или центрального, колеса, обычно в сцепке с ним при помощи водила. К планетарной передаче иногда подключено еще и внешнее коронное колесо-шестерня, сцепленное с внутренней стороны с планетарными шестернями. При работе передачи на повышение частоты водило вращается благодаря работе двигателя. При этом коронная шестерня зафиксирована, а выходной вал передачи работает в соединении с солнечной шестерней.

Передачу можно сделать прямой путем фиксирования отпущенной кольцевой (коронной) шестерни с помощью фрикциона. Понижающей же передача получится тогда, когда движком приводится в действие солнечная шестерня при зафиксированном водиле. При этом снимается мощность с кольцевой шестерни.
Пакет фрикционов – это система подвижных и неподвижных колец, вращающихся независимо друг от друга, пока не включена передача. Когда же в соответствующей магистрали возникает давление, фрикционы зажимаются гидравлическим толкателем. Те элементы фрикциона, сцепленные с водилом планетарного редуктора, что были подвижны, застопорятся, остановив водило и включив передачу.

Крутящий момент от мотора к коробке передач передается с помощью потоков рабочего масла, подаваемого лопастями колеса насоса на лопасти турбины. Зазоры между турбинным и насосным колесами минимальны, а их лопасти имеют гармоничное и соответствующее друг другу строение, поэтому круг циркуляции масла непрерывен. Получается, что между двигателем и коробкой передач нет жесткой связи, благодаря чему обеспечивается работа двигателя и возможность остановки автомобиля при включенной передаче, а также плавной передаче тяги.
Необходимо отметить, что по выше приведенной схеме функционирует гидромуфта, передающая крутящий момент без преобразования его величины. Реактор, внедренный в конструкцию гидротрансформатора, как раз и предназначен для изменения момента. Он представляет собой такое же колесо с небольшими лопастями, но оно до определенного момента не вращается. Лопасти реактора имеют специфическое строение и находятся на пути масла, идущего обратно от турбины к насосу. Когда реактор пребывает в гидротрансформаторном режиме (без движения), он способствует увеличению скорости движения рабочей жидкости, которая в это время совершает круговорот между колесами. Чем быстрее двигается масло, тем выше энергия, воздействующая на колесо турбины. Благодаря такому эффекту значительно повышается крутящий момент, развивающийся на валу колеса турбины.

Например, в одной из рядовых ситуаций, когда включена передача в коробке, а машина удерживается на месте педалью тормоза, происходит следующее. Колесо турбины неподвижно, тогда как момент в нем выше обычно развиваемого двигателем на этих оборотах в полтора, а то и в два раза в зависимости от модели. Как только отпускается педаль тормоза, машина начинает трогаться с места и разгоняться до того момента, когда момент на колесах становится равен моменту сопротивления автомобиля.
Когда скорость оборотов колеса турбины приближается к скорости насосного колеса, реактор становится свободным и начинает вращение вместе с ними. Такая ситуация называется переходом гидротрансформатора в режим гидромуфты, что способствует снижению потерь и увеличению КПД гидротрансформатора.
Так как есть случаи, когда необходимости в преобразовании крутящего момента нет, гидротрансформатор может быть и вовсе заблокирован фрикционным сцеплением. В таком режиме КПД передачи может доходить практически до 100%, так как проскальзывание между лопаточными колесами совершенно исключено.
Однако, например, когда автомобиль едет по прямой, поддерживая постоянную скорость, а потом дорога начинает уходить вверх под уклон, гидротрансформатор тут же начнет реагировать. При уменьшении частоты вращения турбинного колеса, реактор начинает автоматически замедляться, что ускорит движение рабочей жидкости, а, следовательно, и крутящий момент, передаваемый на вал колеса турбины и, конечно, на колеса. Иногда такого увеличенного крутящего момента будет достаточно для поднятия в гору, не переходя на низшую передачу.
Гидротрансформатор не способен изменять скорость вращения и крутящий момент в больших пределах, поэтому к нему подключают коробку передач с большим количеством ступеней, которая к тому же будет способна обеспечить обратный ход. КПП, работающие в комплексе с гидротрансформаторами, обычно содержат несколько планетарных передач, и у них оказывается много общего с механическими коробками.

Колеса-шестерни в механической коробке передач все время находятся в зацеплении, при этом те, что являются ведомыми, вращаются на вторичном валу свободно. Когда включается какая-то передача, происходит блокировка соответствующей шестерни на ведомом валу. АКПП работает по такому же принципу, только планетарные передачи состоят из таких элементов как сателлиты, водило, кольцевая и солнечная шестерни.
Такие редукторы приводят в движение одни элементы и фиксируют другие, тем самым позволяя менять скорость вращения, а также усилие, передаваемое с помощью планетарной передачи. Последняя приводится от выходного вала гидротрансформатора, соответствующие же ее элементы фиксируются фрикционными лентами (пакетами). В механической коробке эти функции несут блокирующие муфты и синхронизаторы.

Включение передачи происходит следующим образом. Давление рабочей жидкости гидротрансформатора приводит в действие гидравлический толкатель, который, в свою очередь давит на фрикцион. Источник давления жидкости – специальный насос, а распределение этого давления между фрикционами происходит под постоянным контролем электроники с помощью совокупности электромагнитных соленоидов (клапанов). При этом должен быть соблюден алгоритм работы коробки передач.
Основным отличием автоматической коробки передач от механической является переключение передач, которое в ней происходит так, что поток мощности не разрывается: одна передача выключается, а в тот же момент включается другая. Резкие рывки при этом исключены, так как их успешно гасит и смягчает гидротрансформатор. Хотя, следует отметить, что современные коробки передач с настройками спортивного режима не отличаются особой плавностью работы, что обусловлено слишком быстрой сменой одной передачи на другую. Такие характеристики позволяют машине быстрее брать разгон, но, к сожалению, гораздо быстрее изнашивают фрикционы, а также уменьшают срок службы и самой трансмиссии, и всей ходовой части.

Работа коробки передач в различных режимах

В трансмиссиях-автоматах самого первого поколения управление было полностью гидравлическим. Впоследствии гидравлика стала выполнять только исполнительские функции, устанавливать же алгоритм стала целиком электроника. Именно благодаря ей стала возможной реализация различных режимов работы коробки передач – резкого ускорения (kick-down), экономичного режима, зимнего, спортивного и других.
Например, если рассмотреть спортивный режим, то при нем двигательная тяга используется полностью – каждая последующая передача включается при частоте вращения коленчатого вала, близкой к той, на которой развивается максимальная величина крутящего момента. Дальнейшее увеличение скорости приводит к ускорению частоты вращения вала до своих максимальных значений, при которых двигатель работает на полную мощность. Также происходит и далее. Машина при этом способна развивать гораздо более высокие ускорения, чем при работе в обычном или экономичном режимах.
Большинство современных автомобилей, оборудованных автоматическими коробками передач, имеют технологии, позволяющие алгоритмам управления активизироваться самостоятельно, что зависит от водительской манеры вождения. Электроника, автоматически анализируя информацию с разнообразных датчиков, сама адаптирует необходимую в этом случае работу двигательного агрегата и принимает решение о переключении передач в нужный момент в соответствии с требуемым характером переключений.
Если водитель управляет автомобилем спокойно, аккуратно и плавно, то контроллер осуществляет соответствующие настройки, при которых мотор не выходит на мощностные режимы, что позволяет расходовать топливо более экономично. Если же водитель станет нажимать на педаль газа более резко и часто, то электроника сразу же сделает вывод о необходимости более резвого разгона, и двигатель в паре с коробкой передач сразу же начнут работать в спортивном режиме. При возвращении к плавному педалированию коробка опять же самостоятельно перейдет на нормальную программу работы.

Коробка полуавтомат

Растет количество автомобилей, оснащаемых коробками передач, где, кроме автоматического, присутствует еще и полуавтоматический режим управления. В таком случае система только самостоятельно переключает передачи, а установки на это дает водитель. Однако это не означает полную свободу действий в управлении – зачастую скорость переключения передач увеличивается, но время переключений остается таким же, как при автоматическом режиме. Об этом заботятся некоторые производители, желая продлить срок службы силового агрегата. В сфере машиностроения эта система имеет разные названия – Steptronic, Autostick или Tiptronic.

Тюнинг АКПП

Не так давно стало возможно осуществлять тюнинг некоторых автоматических трансмиссий с помощью перепрограммирования блоков управления двигателем и коробкой передач. Для улучшения скорости разгона в программе АКПП изменяют моменты, когда происходит переход с одной передачи на другую, а также значительно сокращают время переключений. Компьютерные технологии сегодня развиваются стремительно, электроника научилась анализировать степень старения фрикционов и создавать необходимое давление для того, чтобы могла включиться каждая муфта. Путем регистрации давления можно осуществлять прогноз степени износа фрикционов и, соответственно, самой коробки. Блоком управления постоянно осуществляется контроль исправности системы и фиксируются в памяти коды ошибок и сбоев, происходивших в работе ее элементов.
В экстренных случаях блок управления работает в аварийном режиме, когда в коробке передач блокируются все переключения, а работает только какая-то одна передача, обычно вторая или третья. В этом случае ездить на автомобиле не советуют, это и не получится, возможной становится только поездка до ближайшего автосервиса с целью устранения неисправностей.
Любая коробка передач способна удовлетворить ожидания владельца автомобиля, где она установлена, и служить на протяжении 200 тысяч километров. Однако следует помнить, что безотказная ее работа и длительный ресурс напрямую зависят от грамотной эксплуатации и регулярного прохождения квалифицированного техобслуживания.

Режимы работы автоматической коробки передач

1.Рarking (Р) – стояночный режим, когда выключены все передачи, выходной вал коробки и все остальные ее элементы управления заблокированы. Когда двигатель работает, ограничитель скорости вращения вала начинает срабатывать намного раньше, чем это происходит при разгоне. Такие защитные меры от неграмотного управления не позволяют лишний раз зря перемешивать рабочую жидкость трансмиссии.
2.Reverse (R) – передача для движения автомобиля задним ходом.
3.Neutral (N) – нейтральная передача, при включении которой ведущие колеса не связаны с двигателем. Блокировка выходного вала отсутствует, поэтому автомобиль способен ехать накатом, а также возможно его буксировать.
4.Drive (D) – основной режим для движения автомобиля. В этом режиме передачи с 1 по 3 (4) переключаются автоматически.
5.Sport (S) или как он иногда еще называется Power, PWR или Shift – это спортивный режим, в котором двигатель при разгонах работает на полную мощность и расход топлива достигает максимальной величины. Есть возможность увеличивать скорость переключения передач с одной на другую (зависит от программы и конструкции). Мотор при работе коробки в этом режиме постоянно пребывает в тонусе и работает обычно на оборотах, близких к тем, на которых развивается максимальная величина крутящего момента. Ну и, конечно, об экономичности в этих условиях можно забыть.
6.Kick-down – переход на низшую передачу для того, чтобы реализовать резкое ускорение (используется, например, при обгоне). Двигатель переходит в режим повышенной отдачи. Из-за этого, а также за счет увеличенного передаточного отношения пониженной передачи происходит резкий подхват. Чтобы перевести трансмиссию в этот режим. Необходимо резкое нажатие педали газа. В более ранних версиях трансмиссий при этом должен почувствоваться характерный щелчок.
7.Overdrive (O/D) – режим, при котором чаще включается повышенная передача. Такой режим движения на пониженных оборотах внушительно экономит топливо, но автомобиль при этом теряет динамику.
8.Norm – наиболее сбалансированный режим, при котором переключение передач на более высокие происходит постепенно, по мере увеличения оборотов.
9.Winter (W, Snow) – это режим работы АКПП, используемый в зимних условиях. Он осуществляет трогание автомобиля с места со второй передачи во избежание пробуксовки. Переход с одной передачи на другую по этой же причине происходит более плавно, на низких оборотах. Разгон тоже происходит более медленно.
10.Если установить рычаг напротив цифр 1, 2 или 3, то коробка не будет переходить выше, чем выбранная передача. Такой режим используется в трудных условиях езды, например, по серпантину или при движении с прицепом или буксировке другого авто. Двигатель в таком случае способен работать на средних и высоких нагрузках без перехода на высшую передачу.
11.Некоторые модели АКПП предусматривают возможность ручного управления коробкой. Кнопки со значками «+» и «–», обозначающими именно наличие этой возможности, могут в зависимости от модели находиться в разных местах – на самом селекторе управления АКПП, на руле или в виде подрулевых переключателей и т. п. Но в режиме самостоятельного управления электроника все равно не позволит переходить на неуместные в конкретный момент передачи. Скорость же смены скоростей будет не выше той, которая присутствует в спортивном режиме.

Что такое Гидротрансформатор и зачем он нужен?

Гидротрансформатор - устройство, необходимое автомобилям с автоматической коробкой передач для отделения трансмиссии от двигателя, заменяя сцепление.

Краткое описание


Гидротрансформатор дает возможность машинам с автоматической трансмиссией работать на холостых оборотах, благодаря полному отсоединению трансмиссии от двигателя. Располагается гидротрансформатор между двигателем и трансмиссией.

В данном устройстве для передачи движения от двигателя трансмиссии используется жидкость. При работе двигателя на малых оборотах (остановка на светофоре и т.д.) входящий крутящий момент мал, поэтому для удержания машины на месте достаточно лишь слегка удерживать педаль тормоза.

Внутри гидротрансформатор состоит из 4 элементов:

  • насос
  • турбина
  • реактор
  • трансмиссионная жидкость

 

Корпус гидротрансформатора прикреплен болтами к маховику двигателя, поэтому скорость его вращения равна скорости вращения двигателя. Плавники (они создают давление масла в гидротрансформаторе) так же  соединены с корпусом, поэтому их скорость вращения, тоже совпадает со скоростью работы двигателя.

 

Соединение гидротрансформатора  с трансмиссией и двигателем


Принцип работы насоса в гидротрансформаторе основан на принципе работы центрифуги. Когда происходит вращение гидротрансформатора, то жидкость отбрасывается наружу, создавая разреженное давление в центре и притягивая, тем самым, жидкость к центру. Все это очень напоминает принцип действия стиральной машины, в которой белье и вода прижимаются к стенкам барабана.

Жидкость попадает на лопасти турбины, соединенной с трансмиссией. Таким образом турбина вызывает вращение трансмиссии и машина начинает движение.

 

Достоинства и недостатки наличия гидротрансформатора


Современные гидротрансформаторы могут обеспечивать увеличение крутящего момента в 2-3 раза. Добиться этого возможно только если двигатель работает гораздо быстрее гидротрансформатора.

При движении с высокой скоростью частота вращения трансмиссии уравнивается с частотой работы двигателя. Разница скоростей вращения ведет к потере энергии. Эта причина приводит к перерасходу топлива (по сравнению с машинами с механическими трансмиссиями).

Для устранения данного эффекта в  некоторые машины дополнительно к  гидротрансформатору устанавливают блокировочную муфту. Когда обе половины гидротрансформатора набирают скорость, эта муфта соединяет их жестко, ликвидируя возможные потери производительности.

 

Блог

AAMCO | Что такое гидротрансформатор [и как он работает]?

Вы когда-нибудь замечали, что ваша машина не может проработать неделю на баке бензина, а теперь еле-еле проживет два дня? Ваша машина когда-нибудь ломалась и могла ли вообще куда-нибудь ехать, несмотря на то, что двигатель, казалось, работал нормально? Приводил ли ваш механик когда-либо к гидротрансформатору во время любой из этих проблем?

Гидротрансформатор - это то, что заставляет автоматическую коробку передач в легковых и грузовых автомобилях двигаться. И хотя они являются неотъемлемой частью автоматического транспортного средства, многие люди не понимают, как они работают. Читайте дальше, чтобы узнать, что такое гидротрансформатор и как он помогает вам катиться по дороге.

Что такое крутящий момент

Прежде чем мы перейдем к идее гидротрансформатора, давайте кратко рассмотрим, что такое крутящий момент. Проще говоря, крутящий момент - это потенциальная энергия, которую вы создаете, когда что-то скручиваете. Заводные игрушки, с которыми вы играли в детстве, и машины, которые катятся вперед после того, как вы их тянете назад, работают на крутящем моменте.

В автомобилях вращение коленчатого вала двигателя создает крутящий момент. Это то, что позволяет разгонять машину. Чем выше крутящий момент ваш двигатель, тем быстрее он работает.

Важность гидротрансформатора

Преобразователь крутящего момента передает крутящий момент от двигателя на вращающуюся ведомую нагрузку. В автомобиле с автоматической коробкой передач преобразователь крутящего момента подключает источник питания к нагрузке.

Анатомия

Преобразователи крутящего момента

состоят из пяти основных компонентов: крыльчатки, турбины, статора, муфты и жидкости.Статор - это то, что делает преобразователь крутящего момента преобразователем крутящего момента; без статора это просто гидравлическая муфта.

Крыльчатка представляет собой деталь с наклонными лопастями, которая чем-то похожа на вентилятор. Эта деталь вращается механически двигателем. Во время вращения крыльчатка проталкивает трансмиссионную жидкость через свои лопасти; чем быстрее он идет, тем быстрее движется жидкость.

Когда жидкость покидает рабочее колесо, она перемещается в турбину, почти идентичную лопатку, которая находится напротив рабочего колеса.Жидкость, попадающая на расположенные под углом лопасти турбины, заставляет турбину вращаться, что приводит к вращению трансмиссионного вала и насоса в вашем автомобиле. Жидкость перенаправляется через центр турбины, где снова ударяет по крыльчатке.

Здесь вступает в действие статор; статор находится в центре гидротрансформатора. Это еще одна серия лопастей вентиляторного типа, которые расположены под углом, так что когда трансмиссионная жидкость течет в них, она снова меняет направление. Статор удерживает трансмиссионную жидкость, которая вращается в направлении, противоположном двигателю, от удара о корпус преобразователя и его замедления.

Гидротрансформатор также имеет корпус, который прикреплен к двигателю вместе с крыльчаткой. В большинстве преобразователей крутящего момента также используется блокирующая муфта, которая блокирует рабочее колесо и турбину вместе на высоких скоростях для повышения топливной экономичности автомобиля.

Фазы

Гидротрансформатор работает в трех фазах: остановка, ускорение и сцепление.

Во время остановки двигатель продолжает вращаться, как и крыльчатка. Но турбина не может вращаться, поэтому машина не движется. Вот что происходит, когда у вас работает двигатель, включена передача и вы нажимаете ногу на тормоз, поэтому машина не движется.

Ускорение - это когда в игру вступает сила умножения крутящего момента. По мере увеличения числа оборотов двигателя крыльчатка начинает двигаться быстрее, что заставляет турбину двигаться быстрее. Но на этом этапе крыльчатка все еще движется быстрее, чем турбина.

Муфта - это то, что происходит при движении на высоких скоростях.Скорости крыльчатки и турбины на этом этапе почти идентичны, и это когда некоторые модели блокируют их вместе с помощью фрикционной муфты для повышения эффективности. На самом деле статор в основном не участвует в этом процессе, поскольку при достаточно высоких скоростях жидкость будет двигаться таким образом, чтобы не было риска столкновения с корпусом преобразователя.

КПД

Одна из важнейших задач статора - повышение эффективности гидротрансформатора. Перенаправляя жидкость, выходящую из турбины, статор может собирать эту кинетическую энергию и возвращать ее в цикл.Это позволяет преобразователям крутящего момента увеличивать крутящий момент для большего ускорения.

Но гидротрансформаторы не могут быть эффективными на 100 процентов, пока не произойдет блокировка; в этом процессе участвуют трение и некоторая потеря кинетической энергии. Преобразователи крутящего момента наиболее эффективны на очень низких скоростях. Хотя такие компании, как Buick, поиграли с добавлением дополнительных турбин в свои муфты крутящего момента, эти модели никогда не были такими эффективными, как традиционные трехкомпонентные модели, и были сняты с производства.

Общие проблемы

Существует несколько распространенных причин выхода из строя гидротрансформатора, некоторые из которых могут быть опасными. Постоянно высокое проскальзывание гидротрансформатора может вызвать перегрев, который может повредить эластомерные уплотнения, удерживающие трансмиссионную жидкость в гидротрансформаторе. Жидкость начнет вытекать, а когда в системе закончится жидкость, она может вообще перестать работать.

Муфта статора также может заедать или ломаться.Во время заклинивания внутренние и внешние элементы сцепления могут навсегда заблокироваться, что приведет к огромному снижению эффективности использования топлива. Если муфта статора вообще выйдет из строя, статор будет свободно вращаться, и ваша машина вообще не сможет двигаться самостоятельно.

В некоторых случаях вы можете увидеть деформацию и фрагментацию лезвия. В большинстве случаев это приведет к тому, что гидротрансформатор будет работать не так эффективно, что приведет к сокращению расхода бензина. В некоторых крайних случаях преобразователь может самоуничтожиться.

Внутри корпуса преобразователя крутящего момента движется много давления и горячей жидкости. В некоторых случаях это давление может стать слишком высоким, и корпус может взорваться или даже взорваться. Если корпус разорвется, вам грозит опасность разлетающихся осколков и горячего масла.

Узнайте больше о том, как работает ваш автомобиль

Гидротрансформатор - одна из самых важных частей автомобиля, о которой забывают. Это то, что позволяет автомобилям с автоматической коробкой передач работать, и это большая часть того, что определяет вашу топливную экономичность.Небольшое знание того, как работают эти детали, может помочь вам диагностировать проблемы, которые в противном случае могли бы быть связаны с трансмиссией, что сэкономит вам много денег на ремонте.

Как работает гидротрансформатор - x-engineer.org

Большинство современных автомобилей оснащено двигателями внутреннего сгорания (ДВС). Одним из недостатков ДВС по сравнению с электродвигателем является то, что он не запускается под нагрузкой и для него требуется внешнее пусковое устройство (электростартер).Следовательно, чтобы избежать остановки двигателя на неподвижном автомобиле, нам необходимо отсоединить двигатель от колес.

На автомобиле с механической коробкой передач (МКПП) отключение двигателя может быть выполнено двумя способами:

  • нажатием педали сцепления
  • путем выбора нейтрального положения с помощью рычага переключения передач

На автомобиле с автоматической коробкой передач трансмиссия (AT) , отключение двигателя от трансмиссии происходит автоматически, без вмешательства водителя.Это возможно благодаря принципу работы гидротрансформатора .

Изображение: Автоматическая коробка передач с гидротрансформатором

Гидротрансформатор расположен между двигателем внутреннего сгорания и коробкой передач. Автоматическая коробка передач внутри корпуса состоит из трех основных частей: гидротрансформатора, планетарной коробки передач и электрогидравлического модуля управления.

Коленчатый вал ДВС механически связан с гидротрансформатором. Внутри гидротрансформатора мощность двигателя передается на коробку передач гидродинамически . Когда гидротрансформатор не заблокирован, нет механической связи между входом (двигатель) и выходом (коробка передач).

Чтобы лучше понять, как работает гидротрансформатор, давайте рассмотрим следующий пример. Что произойдет, если у вас есть два настольных электрических вентилятора, расположенных друг напротив друга (как на изображении ниже), и один из них запитан?

Изображение: Гидротрансформатор - принцип работы

Левый вентилятор запитывается электрическим током от сети.Во время вращения он создает осевой поток воздуха. Поток воздуха попадет в правый вентилятор (не включенный), который начнет вращаться. Мощность передается от левого вентилятора к правому вентилятору через рабочую жидкость (в данном случае воздух). Очевидно, что эффективность этой системы очень низкая, так как много воздуха будет рассеиваться вокруг лопастей правого вентилятора.

Тот же принцип применяется к гидротрансформатору , но с некоторыми отличиями. В случае преобразователя крутящего момента оба «вентилятора» расположены очень близко друг к другу, чтобы минимизировать потери мощности.Рабочая жидкость жидкость (масло АКПП). Кроме того, между двумя «вентиляторами» есть еще один компонент, который перенаправляет поток жидкости, чтобы минимизировать потери и усиливает передаваемый крутящий момент.

Изображение: Гидротрансформатор - основные компоненты
Кредит: Luk

«Вентилятор», который вырабатывает энергию, называется рабочим колесом и механически соединен с коленчатым валом двигателя. «Вентилятор», получающий гидравлическую энергию, называется турбиной и механически связан с входным валом коробки передач.Между рабочим колесом и турбиной находится статор , который перенаправляет поток масла. Объем, созданный этими компонентами, заполнен маслом.

Когда ДВС работает на холостом ходу, вращение крыльчатки «выбрасывает» масло в турбину. Поскольку частота вращения двигателя низкая, кинетической энергии движущегося масла недостаточно для привода транспортного средства. Передается небольшой крутящий момент, этот крутящий момент называется тормозным моментом .

Момент сопротивления увеличивается, если вязкость масла увеличивается (при низкой температуре).Крутящий момент сопротивления заставляет автомобиль « ползать ». Это означает, что, когда селектор переключения передач находится в режиме движения (D), при отпущенной педали акселератора и тормоза, тормозящий момент немного перемещает автомобиль. Если водитель нажмет на педаль тормоза, автомобиль остановится, потому что тормозной момент незначителен по сравнению с тормозным моментом на колесах.

Когда водитель нажимает педаль акселератора, частота вращения двигателя увеличивается. Рабочее колесо будет вращаться быстрее и увеличит кинетическую энергию масла.Турбина получит больше энергии, что приведет к более высокому крутящему моменту, передаваемому на коробку передач.

Изображение: Гидротрансформатор - схема

На схеме выше мы можем легко различить компоненты гидротрансформатора. Крыльчатка (зеленая) соединена с двигателем, а турбина (желтая) - с первичным валом коробки передач. Статор (синий), как следует из названия, большую часть времени является статическим (фиксированным).

Движение потока масла в гидротрансформаторе имеет две составляющие:

  • оборот , вокруг центральной оси вместе с рабочим колесом и турбиной
  • вращение (красные стрелки), вокруг радиального центра гидротрансформатора

Вращательное движение - это переход жидкости от рабочего колеса к турбине, к статору и обратно к рабочему колесу.

Изображение: Гидротрансформатор - статор
Кредит: Luk

Между рабочим колесом и турбиной постоянное скольжение . Это означает, что они вращаются с разной скоростью. Соотношение между скоростью турбины и скоростью крыльчатки называется передаточным числом гидротрансформатора. Передаточное число составляет 0 , когда турбина статична и рабочее колесо вращается, и 1 , когда обе вращаются с одинаковой скоростью.

Гидротрансформатор также имеет передаточное число .Это соотношение, на которое входной крутящий момент (двигателя) умножается перед передачей на коробку передач. Максимальное значение передаточного числа (около 2,3–3,0 ), когда передаточное число составляет 0,0 , и минимальное ( 1,0 ), когда передаточное число выше 0,85–0,9 .

Статор неподвижен, пока между рабочим колесом и турбиной имеется значительное скольжение. Когда скорости близки друг к другу, когда передаточное число составляет около 0,85 - 0.9 , направление жидкости изменяется, и статор также начинает вращаться. Это возможно, потому что статор установлен на ходовом механизме .

Изображение: Гидротрансформатор - муфта блокировки
Кредит: Luk

Гидротрансформатор также имеет КПД , что довольно низко. Поскольку он имеет постоянное скольжение, существует большое трение между рабочей жидкостью (маслом) и механическими компонентами (крыльчатка, турбина и статор) .Эффективность минимальна (ниже 10% ) при соотношении скоростей около 0 , и пиковое значение 85 - 90% , когда передаточное число составляет около 0.85 .

Для повышения эффективности преобразователя крутящего момента, когда скольжение между крыльчаткой и турбиной относительно невелико, преобразователь крутящего момента блокируется. Это возможно за счет использования муфты блокировки , которая механически связывает рабочее колесо с турбиной. Таким образом, больше нет трения между маслом и компонентами, и мощность двигателя механически передается на коробку передач.

Гидротрансформатор блокируется обычно на более высоких передачах (выше 2-й) или когда скорость автомобиля превышает 20 км / ч.Когда коробка передач выполняет переключение передач, муфта блокировки переводится в состояние скольжения , чтобы помочь гасить колебания трансмиссии.

Изображение: Гидротрансформатор - гаситель колебаний муфты блокировки
Кредит: Luk

Подобно муфте механической коробки передач, муфта блокировки имеет демпфер , который гасит колебания во время блокировки гидротрансформатора. фаза вверх.

Гидротрансформатор является соединительным устройством по умолчанию в большинстве эпициклоидальных автоматических трансмиссий (AT) , а также в некоторых бесступенчатых трансмиссиях (CVT) .Основными характеристиками гидротрансформатора являются автоматическое отключение двигателя от трансмиссии при низких оборотах двигателя, усиление крутящего момента и гашение вибрации (за счет гидродинамической передачи мощности).

Для любых вопросов или замечаний относительно этого руководства, пожалуйста, используйте форму комментариев ниже.

Не забывайте ставить лайки, делиться и подписываться!

Работа, проблемы и применение

Итак, вы можете встретить термин «механическая трансмиссия», в котором двигатель соединен с трансмиссией через сцепление. Автомобиль может не остановиться, если это соединение разорвется. Но автомобили, работающие с автоматической коробкой передач, у которых нет сцепления, отсоединяют трансмиссию от двигателя. Затем приходит мысль, что как работают машины? Вот и ответ, и это потрясающее устройство, называемое преобразователем крутящего момента. Само название может означать, что это полностью техническая концепция. Но об этом устройстве нужно знать много экзотики. Таким образом, это эксклюзивно разработанный автомобильный компонент, который имеет первостепенное значение, и об этом нужно узнать больше.Давайте углубимся в концепцию «гидротрансформатора».

Что такое гидротрансформатор?

Гидротрансформатор - это прочное устройство в форме пончика, которое соединяет двигатель и трансмиссию. Внутри устройства размещены две изогнутые пластины, обращенные в противоположные стороны. Внутреннее пространство устройства заполнено жидкостью, которая передает мощность от двигателя к трансмиссии. Эксплуатация автомобиля с водителем-водителем может показаться несколько иной. Но в целом двигатель приводит в движение крыльчатку турбины, которая передает эту жидкость на турбину.Гидротрансформатор работает идеально, когда лопасти специально изготовлены для увеличения передачи энергии, уменьшения коэффициента турбулентности и тепловыделения.

Для ясности рассмотрим пример, когда два вентилятора обращены в противоположные стороны. Когда один включен (двигатель), он автоматически приводит в движение второй (трансмиссия). Когда обе лопасти вентилятора имеют одинаковый вес, скорость их вращения будет одинаковой. По такому же сценарию работают лопасти вентилятора автомобиля.Есть много других примеров, очень похожих на работу преобразователя крутящего момента, где он более активирован, наряду со статором, который помогает в передаче жидкости обратно к крыльчатке турбины для повышения энергоэффективности. Также доступны преобразователи с блокировкой, которые блокируют преобразователь на соответствующих оборотах, и он автоматически вращается вместе с двигателем. Конструкция преобразователя крутящего момента

Гидравлический преобразователь крутящего момента

Гидравлические трансмиссии работают по принципу передачи жидкости, которая создает вращательное движение или крутящую силу (крутящий момент).Есть два вида гидравлических трансмиссий

  • Hydrokinetic - он работает по концепции гидравлической муфты, которая использует кинетическую энергию жидкости для создания движения.
  • Hydrostatic - Он использует энергию давления жидкости для создания движения.

Гидравлическая муфта - это своего рода устройство, которое соединяет оба вращающихся вала. Он имеет крыльчатку с лопастями, которая размещена на приводном валу, который находится в направлении, противоположном лопаточному рабочему колесу, и рабочее колесо, и рабочее колесо помещаются в контейнер, который заполняется жидкостью.Когда вращение ведомого вала не вызывает сопротивления, ведомый вал будет вращаться с той же скоростью, что и ведущий вал. Когда на ведомый вал прикладывается определенная нагрузка, он замедляется, и создается крутящий момент, который имеет одинаковую величину на обоих валах.

В основном, в момент гидравлической муфты, когда действует нормальная нагрузка, скорость ведомого вала минимальна на 3% по сравнению со скоростью ведомого вала. Поскольку между рабочим колесом и рабочим колесом отсутствует механическое соединение, оно не создает никаких вибраций или ударных волн.


Как работает гидротрансформатор?

В данной статье подробно описаны функции гидротрансформатора. В основном, есть три основных компонента, а именно:

поток преобразователя крутящего момента
крыльчатка

крыльчатка в преобразователе крутящего момента также называется насосом. Рабочее колесо заполнено жидкостью и вращается вместе с коленчатым валом двигателя. Чем выше скорость отжима, тем больше создается давление, и жидкость движется быстрее.

Турбина

Жидкость из рабочего колеса поступает в турбину и вращает лопатки турбины. Поскольку поток жидкости является непрерывным процессом, он передается от внешней части турбины к внутренней, а затем возвращается к рабочему колесу. Это движение жидкости от рабочего колеса к турбине вызывает движение, называемое сцеплением.

Статор

После того, как жидкость возвращается в рабочее колесо, в действие вступает статор. Это другая серия ребер, которая находится между турбинами на трансмиссионном валу.Лопатки статора расположены так, что движение жидкости меняет направление и направляется к крыльчатке. Таким образом, когда автомобиль выходит из строя, односторонняя муфта статора позволяет ему перестать вращаться, что нарушает гидравлическое соединение.

Помимо этих компонентов, другими фазами работы преобразователя являются:

Остановка

Даже рабочее колесо получает мощность от двигателя, оно не вращается, поскольку водитель оказывает давление на тормоз, например, в состоянии светофор.Автомобиль не будет двигаться, но не остановится.

Ускорение

Это ускорение происходит, когда водитель снимает ногу с тормоза и кладет ее на педаль газа. Затем крыльчатка начинает вращаться слишком быстро, и скорость вращения турбины и крыльчатки изменяется в большей степени. Таким образом, этот вариант развивает крутящий момент, который увеличивает ускорение автомобиля.

Муфта

Когда транспортное средство достигает крейсерской скорости, частота вращения турбины и крыльчатки становится одинаковой, а развитие крутящего момента медленно уменьшается.Здесь гидротрансформатор действует как гидравлическая муфта, а автоматическая трансмиссия связывает турбину с крыльчаткой. Таким образом, этот процесс позволяет автомобилю избежать потери мощности и обеспечивает плавность хода. Поскольку крыльчатка расположена на гидротрансформаторе и соединена с двигателем, крыльчатка получает энергию таким образом. Итак, если происходят какие-либо изменения в движении и процессе этой операции, люди испытывают эффект сотрясения.

Проблемы с гидротрансформатором

Когда гидротрансформатор выходит из строя, это приводит к возникновению эффектов вибрации и скольжения.Есть много проблем, которые вызывают эту неисправность, поэтому давайте рассмотрим эти проблемы и то, как они возникают.

Перегрев

Достаточно взглянуть на датчик температуры автомобиля, и если он перегревается, это может быть связано с неисправностью преобразователя крутящего момента. Эта проблема возникает, когда происходит снижение давления жидкости, что приводит к перегреву трансмиссии.

Проскальзывание трансмиссии

Проблема с гидротрансформатором, вероятно, проявится сразу же, поскольку поток жидкости не может быть обработан должным образом.Когда нет достаточного потока или перелива жидкости в трансмиссии, это вызывает скользкость в передачах и снижает ощущение ускорения. При этом также будет потеряна экономия топлива транспортного средства.

Дрожание

Если вы чувствуете дрожь на скорости 30–45 миль в час, это может быть связано с проблемами гидротрансформатора. Это создает ощущение вождения по неровной дороге или автомобиль подпрыгивает там, где вы четко это замечаете, если возникает проблема.Вы можете внезапно почувствовать дрожь, и это ощущение исчезнет за минимальное время. Так что лучше проверить вашу трансмиссию на начальных этапах.

Загрязнения жидкости

Когда в жидкости присутствует чрезмерное количество черных загрязнителей, это также вызывает повреждение гидротрансформатора. И это также наносит ущерб работе сцепления транспортного средства. Итак, сначала пройдите тест жидкости и управляйте своим автомобилем.

Повышенная скорость опрокидывания

Плохая работа гидротрансформатора возникает, когда трансмиссии требуется больше времени для контакта с двигателем, что приводит к увеличению скорости остановки.Для этого необходимо проверить характеристики скорости сваливания автомобиля.

Странные звуки

Любые щелчки или крики из автомобиля указывают на неисправность гидротрансформатора.

Во многих случаях перечисленные выше проблемы могут быть не из-за плохой работы гидротрансформатора, поэтому не делайте никаких выводов, пока трансмиссия не будет тщательно проверена профессионалами в области автомобилестроения.

Гидротрансформатор Преимущества / недостатки

Теперь давайте поговорим о преимуществах и недостатках гидротрансформатора.

Преимущества

К преимуществам гидротрансформатора можно отнести следующее.

Удобство

Преобразователи крутящего момента более широко применяются, потому что они заставляют автомобиль заводиться и останавливаться без какого-либо участия человека.

Умножение крутящего момента

Умножение крутящего момента определяет, что, вставленное с этим устройством, может работать с более быстрым и плавным приводом, чем тот, у которого есть муфта.

Infinite Slippage

В некоторых случаях он может скользить бесконечно, не имея шансов на повреждение.Это напрямую связано со склонностью человеческого трансмиссии к ожогам сцепления, которое он допускал для значительного проскальзывания.

Резервуар для жидкости

Поскольку в преобразователи крутящего момента встроены различные четверти трансмиссионной жидкости, они помогают уменьшить перегрев, обеспечивая при необходимости охлаждающую жидкость.

Недостатки

Недостатки такие же, как и проблемы, которые мы обсуждали в предыдущих разделах. Таким образом, предотвращение плохой работы гидротрансформатора происходит при их проверке на начальных этапах.

Применение гидротрансформатора

Благодаря высокой производительности этого устройства, оно внедряется во многие приложения. Некоторые из них приведены ниже:

  • Легко внедряются в судовые силовые установки.
  • Можно использовать как отличный инструмент для АКПП.
  • Широко используется в автомобильной промышленности для лебедок, буровых установок и приводов конвейеров.
  • Внедрен в конструкторском отделении также для современных вилочных погрузчиков и железнодорожных локомотивов.

Воспользуйтесь широкими характеристиками гидротрансформаторов и сделайте ваш привод более плавным и безопасным. Подумайте о том, как гидротрансформатор позволяет вашему автомобилю правильно и точно работать?

Что такое гидротрансформатор?

Все автомобили, независимо от того, имеют ли они механическую или автоматическую коробку передач, нуждаются в том, чтобы двигатель продолжал работать, пока автомобиль остановлен. Если у вас механическая коробка передач, это достигается с помощью сцепления.Он временно отключает двигатель от коробки передач.

Как работают гидротрансформаторы

Если у вас автоматическая коробка передач, в вашем автомобиле есть уникальная деталь, известная как гидротрансформатор. Гидротрансформаторы на самом деле представляют собой довольно гениальные системы, упакованные в небольшой корпус. Он использует процесс гидравлической муфты, поэтому, когда ваш двигатель работает медленно (на холостом ходу), не требуется много времени, чтобы удерживать ваш автомобиль в остановленном положении. Вот почему вы должны держать ногу на тормозе при остановке на светофоре или в пробке в час пик.

Корпус гидротрансформатора соединен непосредственно с маховиком двигателя и может вращаться с той же скоростью, что и двигатель. Ключевыми компонентами гидротрансформатора являются насос, турбина, статор и трансмиссионная жидкость. Не утомляя вас слишком большим количеством механических деталей, все эти части работают вместе, выполняя жизненно важную функцию, необходимую для всех автомобилей с автоматической коробкой передач.

Выявление проблем гидротрансформатора

Есть несколько признаков, которые могут указывать на то, что гидротрансформатор ухудшает работу вашего автомобиля.Неисправный преобразователь крутящего момента может привести к перегреву, загрязнению трансмиссионной жидкости, дрожанию, проскальзыванию шестерен, странному шуму или необычно высокой скорости остановки. Однако эти проблемы могут указывать на различные неисправности различных деталей трансмиссии или трансмиссии. Другими словами, проблема может исходить из нескольких разных источников.

Вот почему всегда стоит нанять такого эксперта, как Ralph’s Transmission, для полной проверки вашей трансмиссии, раздаточной коробки и любых других компонентов трансмиссии.Мы можем выявить любые проблемы и сфокусировать наш ремонт на их устранении. Это может быть одна крошечная деталь, которую необходимо заменить, или может потребоваться более крупный ремонт.

Наш партнер по гидротрансформатору

Один из самых важных поставщиков трансмиссии Ральфа - преобразователи крутящего момента Saxco из Сан-Хосе. Они являются эксклюзивным поставщиком новых и отремонтированных гидротрансформаторов, которые мы используем в магазине каждый день. «Я работаю с Saxco в течение многих лет, - говорит Марио Хореги, владелец Ralph’s Transmission, вашей службы трансмиссии в Модесто.«Я всегда знаю, что могу рассчитывать на то, что их преобразователи будут правильно работать для наших клиентов».

Если вы опасаетесь, что у вас может быть проблема с гидротрансформатором вашего автомобиля или возникают какие-либо из этих симптомов трансмиссии, поставьте свой автомобиль в Ralph’s Transmission в центре Модесто или позвоните нам по телефону 209.526.1909 . При необходимости мы отбуксируем ваш автомобиль в магазин и всегда бесплатно проводим первоначальный осмотр, чтобы диагностировать проблему до того, как будут выполнены какие-либо работы. Если проблема связана с трансмиссией, преобразователем крутящего момента, ведущим мостом, приводным валом, сцеплением, карданным шарниром, раздаточной коробкой, дифференциалом или спидометром, мы проведем вас через процесс ремонта и быстро позаботимся о нем, чтобы вы могли снова вернуться к работе. дорога!

Общие сведения о преобразователях крутящего момента - Журнал «Штанговые и специальные»

Если бы проводилось голосование за наиболее непонятый автомобильный компонент, мы готовы поспорить, что автоматическая трансмиссия будет иметь довольно высокий рейтинг, а сам гидротрансформатор, возможно, еще выше.Хорошо, это что-то вроде сцепления для автоматической коробки передач, но как оно работает? И что конкретно означают скорость сваливания и блокировка? Как выбрать гидротрансформатор, идеально подходящий для вашего проекта или стиля вождения?

Пожалуй, стоит начать с основ работы преобразователя. По сути, это модифицированная гидравлическая муфта, которая, как и сцепление, позволяет отделить трансмиссию от двигателя, поэтому последний может работать, пока автомобиль неподвижен, но позволяет передавать мощность, когда автомобиль находится в движении.Однако, в отличие от обычной гидравлической муфты, гидротрансформатор умножает крутящий момент, когда есть разница между входной и выходной скоростями, как в редукторе.

Просмотреть все 10 фотографий

Гидротрансформатор состоит из трех основных внутренних компонентов: насоса, турбины и статора, а также трансмиссионной жидкости. Корпус преобразователя прикручен к маховику двигателя, а ребра насоса прикреплены к корпусу. Это центробежный насос, выбрасывающий жидкость наружу при вращении.Это создает вакуум, который втягивает больше жидкости в центр. Затем жидкость поступает в турбину, которая соединена с трансмиссией через выходной вал, поэтому трансмиссия начинает движение автомобиля, когда турбина начинает вращаться.

Когда жидкость выходит из турбины, она движется в направлении, противоположном движению двигателя и насоса. Функция статора, расположенного в центре гидротрансформатора, заключается в перенаправлении жидкости перед ее повторным поступлением в насос. Статор установлен на неподвижном валу, но имеет внутреннюю одностороннюю муфту, так как он должен вращаться на выбеге при определенных рабочих скоростях.

Просмотреть все 10 фотографий

Гидротрансформатор имеет три стадии работы: останов, ускорение и сцепление. Срыв - это когда трансмиссия включена, но тормоза не позволяют машине двигаться. При остановке гидротрансформатор может производить максимальное увеличение крутящего момента, называемое передаточным числом, если подана достаточная входная мощность.

На этапе ускорения автомобиль движется, но при относительно большой разнице между скоростями насоса и турбины, преобразователь будет производить меньшее увеличение крутящего момента, чем можно было бы достичь в условиях сваливания.

Муфта - это когда турбина достигает примерно 90 процентов скорости насоса. Больше нет увеличения крутящего момента, и именно на этом этапе сработает муфта блокировки. Преобразователи блокировки имеют внутреннюю муфту блокировки, которая блокирует две половины гидротрансформатора вместе, устраняя любое проскальзывание, когда двигатель и трансмиссия не могут физически работать с той же скоростью. Это, в свою очередь, исключает любую потерю мощности и, таким образом, повышает топливную экономичность на 65 процентов.

Посмотреть все 10 фотографий

Что касается скорости сваливания, Грег Дукато из Phoenix Transmission Products объяснил, что «гидротрансформатор подобен сцеплению. Представьте, когда сцепление полностью отпущено, и вы получаете всю мощность от двигателя. Скорость сваливания 2500 оборотов не означает, что вам нужно увеличить скорость мотора до 2500 об / мин, чтобы транспортное средство двинулось с места ». В данном случае это означает, что 2500 об / мин - это предел, при котором преобразователь будет удерживать частоту вращения двигателя, если выходной сигнал трансмиссии запрещен.Запрещая дальнейшее усиление, увеличение оборотов двигателя "глохнет". Скорость, при которой происходит заглохание данного гидротрансформатора, является функцией максимального крутящего момента двигателя.

Вы можете приблизительно проверить скорость сваливания преобразователя, поставив автомобиль в режим Drive, сильно нажав на тормоз и полностью нажав дроссельную заслонку на пару секунд. Скорость сваливания будет максимальной об / мин, показанной на тахометре. Конечно, шины могут вращаться, поскольку двигатель, скорее всего, преодолеет способность тормозной системы сдерживать их.Этот метод называется скоростью срыва при торможении, которая ниже, чем истинная скорость срыва, но он позволит вам подойти достаточно близко, хотя это не рекомендуется.

Просмотреть все 10 фотографий

Чтобы определить, какая скорость сваливания подходит для вашего проекта, необходимо принять во внимание ряд факторов, таких как максимальный крутящий момент двигателя, форма кривой крутящего момента двигателя, вес автомобиля, передаточное отношение заднего хода и кулачок. спецификации. Вес и сопротивление имеют большое значение для скорости сваливания. По словам Грега, «Преобразователь скорости сваливания 2500 об / мин в Т-образном ковше, вероятно, остановится около 1800 об / мин, но если поставить тот же преобразователь в пикап, он повысится примерно до 2800 об / мин.«Имея такое множество переменных, вооружитесь как можно большей информацией о вашем автомобиле, прежде чем связываться с гидротрансформатором или специалистом по трансмиссии.

Максимальное увеличение крутящего момента зависит от размера и геометрии лопастей в турбине и статоре, и он генерируется только тогда, когда преобразователь находится в фазе остановки или около нее. Типичные коэффициенты увеличения крутящего момента в режиме остановки находятся в диапазоне от 1,8: 1 до 2,5: 1. Всегда будет существовать компромисс между максимальным увеличением крутящего момента и эффективностью.Преобразователи с высоким передаточным числом обычно относительно неэффективны ниже скорости муфты, тогда как преобразователи с низким передаточным числом имеют тенденцию обеспечивать меньшее возможное увеличение крутящего момента.

Посмотреть все 10 фотографий

Хотя умножение крутящего момента увеличивает крутящий момент на выходном валу турбины, оно также увеличивает проскальзывание внутри преобразователя, повышая температуру жидкости и снижая общий КПД. Вот почему внутренние детали и характеристики преобразователя должны соответствовать характеристикам предполагаемого автомобиля. Следует отметить, что преобразователи с нижним стояком ограничивают внутреннее производство тепла, которое является главным убийцей любой передачи.

Тепло - не единственная причина поломки, и внезапное включение мощности в автомобилях большой мощности может сломать муфту статора, деформировать или сломать лопасти турбины или насоса. Продолжительные чрезмерные нагрузки, очень высокие обороты или резкие запуски могут исказить или взорвать корпус, а в крайних случаях даже разрушить его.

Одним из аспектов преобразователей, о котором мы пока не говорили, является их размер.Зак Фарах из Gear Star Performance Transmissions объяснил, почему некоторые преобразователи больше, чем другие, и как два преобразователя разного размера могут иметь одинаковую скорость остановки. «Два конвертера разного размера могут иметь одинаковую скорость остановки, но их эффективность будет сильно различаться», - сказал он. «Насос гидротрансформатора будет иметь более высокий КПД, когда его лопасти расположены под положительным углом к ​​ним, поскольку он подает наибольшее количество жидкости в турбину. Чем больше жидкости вы подаете в турбину, тем сильнее она давит на нее и тем больше крутящий момент. доставлен в трансмиссию.

Просмотреть все 10 фотографий

"Для 12-дюймового преобразователя, который обычно останавливается при 1600 об / мин, чтобы преобразовать его в остановку при 2600 об / мин, лопасти насоса можно согнуть назад под отрицательным углом, чтобы подавать в турбину меньше жидкости. Это означает, что насос должен будет увеличить число оборотов в минуту, чтобы заставить турбину с тем же количеством жидкости, и эффективность несколько упадет.

"9-дюймовый преобразователь останавливается выше, потому что он генерирует меньше жидкости из-за своего меньшего размера. Для достижения того же количества гидравлического усилия, что и для более крупного 12-дюймового гидротрансформатора, требуется больший срыв.9-дюймовый насос более эффективен при работе с большим срывом, поскольку лопасти насоса сохраняют положительный шаг. Таким образом, в сущности, изгибая лопасти 12-дюймового преобразователя, он превращается в тяжелый, неэффективный преобразователь с более высокой стойкостью по сравнению с меньшей версией. Вот почему Gear Star использует специальные комбинации насоса и статора для достижения высокого КПД наряду с высокими опорами для установки в 12-дюймовых преобразователях Stealth ».

Этот совет о том, чтобы не сгибать лопасти, кажется, противоречит практике Phoenix Transmission, которая делает именно это, но Технические специалисты Phoenix восстанавливают и модифицируют стандартные преобразователи для конкретных применений, тогда как Gear Star производит новые устройства.Как и в большинстве случаев, я полагаю, что есть более чем один способ добиться аналогичных результатов.

Посмотреть все 10 фотоЭто преобразователь Phoenix 4L80E на базе 245 мм с передней крышкой из стальной заготовки и муфтой из заготовки. Этот преобразователь будет иметь скорость сваливания 3000 об / мин с использованием этой комбинации компонентов и по-прежнему будет иметь блокировочную муфту для холодного хода и пониженных крейсерских оборотов за 750-сильным блоком клиента.

Что такое гидротрансформатор и как он работает?

Преобразователи крутящего момента

- это то, о чем никогда не следует говорить во время разговора на званом ужине.

Плохие драйверы? Может быть. Движение? Абсолютно. Преобразователи крутящего момента? Возможно нет.

Если вы заправляетесь бензином, вы, вероятно, хорошо представляете, что такое «крутящий момент». Вы, вероятно, также хорошо понимаете, как работает сцепление с механической коробкой передач. Но если вы не механик или не проводите много времени с автоматами, вы вряд ли встретите много гидротрансформаторов или сможете заглянуть внутрь одного.

Гидротрансформатор в автомобиле с автоматической коробкой передач выполняет ту же функцию, что и сцепление в автомобиле с ручным управлением, - позволяя двигателю продолжать работать, когда колеса останавливаются.

КАК ЭТО РАБОТАЕТ?

Гидротрансформатор - это элегантное решение очень сложной проблемы. Сложная проблема, которую можно решить многими способами, особенно сейчас, когда технологии стали настолько продвинутыми.

Это решение использует немного физики и много умственных способностей, используя гидравлическую муфту, серию муфт и турбин, чтобы двигатель и трансмиссия вращались независимо друг от друга.

Если вы посмотрите на гидротрансформатор, он немного похож на промышленный салатник.Учитывая тот факт, что он работает с использованием гидравлической муфты, вся сборка герметична и закрыта, а это означает, что вам будет сложно найти возможность заглянуть внутрь нее.

Вместо воды, которая очень легко сжимается под высоким давлением, преобразователь крутящего момента использует трансмиссионное масло для привода турбины, чтобы трансмиссия вращалась независимо от двигателя.

ПОЧЕМУ ЭТО ВАЖНО?

Когда вы едете со скоростью 50 миль в час, 6 -й передачей и 2900 об / мин, ваша трансмиссия будет вращаться практически с той же скоростью, что и двигатель.

Вы начинаете подъезжать на светофоре и в автомобиле с ручным управлением; вы, вероятно, сначала сбрасываете передачи, если сможете снова тронуться с места, не останавливаясь. По мере того, как вы ползете до остановки и ваши обороты становятся все ниже и ниже, вам нужно будет опустить сцепление, чтобы отделить трансмиссию от двигателя и предотвратить его остановку.

В автомобиле с автоматической коробкой передач у нас нет такой роскоши, как ручное разделение. По определению, автомобиль с автоматической коробкой передач делает это автоматически.Здесь в игру вступает гидротрансформатор.

Гидротрансформатор состоит из следующих основных частей: корпуса, ребер, насоса и крыльчатки.

Корпус и ребра прикреплены непосредственно к маховику, что означает, что они всегда вращаются с той же скоростью, что и двигатель. По мере того, как насос вращается, он циклирует трансмиссионное масло, выталкивая его наружу и всасывая больше в центре с помощью вакуума. Затем это нагнетает трансмиссионное масло в крыльчатку, которая начинает вращать трансмиссию независимо от двигателя.

ДОВОЛЬНО УМНЫЙ, ПРАВИЛЬНО?

Что еще более впечатляет, так это то, что это может увеличить крутящий момент, когда вы опускаете ногу и набираете высокие обороты.

Автомобили с автоматом раньше были изрядно бесполезны. Они были неэффективными, резкими, дорогими и даже не очень хорошо переключали передачи. Как и все остальное, технологии сделали их лучше. Не просто немного лучше - осмелимся ли мы так сказать, лучше, чем автомобиль с механической коробкой передач?

Современные семиступенчатые и восьмиступенчатые системы с двойным сцеплением столь же экономичны и часто быстрее, чем их аналоги с ручным управлением, в 0–60 раз.

Что дальше автоматизировать?

MAT FOUNDRY GROUP ЯВЛЯЕТСЯ ВЕДУЩИМ ПРОИЗВОДИТЕЛЕМ СЕРЫХ И ЧУГУННЫХ КОМПОНЕНТОВ ДЛЯ АВТОМОБИЛЕЙ. ЧТОБЫ УЗНАТЬ БОЛЬШЕ О НАС ПРОСМОТРЕТЬ НАШИ ПРОДУКТЫ ИЛИ СВЯЗАТЬСЯ С НАМИ СЕГОДНЯ

Общие сведения о преобразователях крутящего момента - ASNU

Гидротрансформатор - одна из самых непонятых - или, возможно, непонятных - частей силовой передачи. Преобразователи крутящего момента представляют собой герметичные агрегаты; их внутренности редко видят дневной свет, а когда они появляются, их все еще довольно сложно понять! Эта статья проведет вас по гидротрансформатору спереди назад (ну, технически мы вернемся к началу) и поможет вам понять, как части работают вместе.

Начнем с небольшой теории. Гидротрансформатор в автоматической коробке передач служит той же цели, что и сцепление в механической коробке передач. Двигатель должен быть подключен к задним колесам, чтобы автомобиль двигался, и отключен, чтобы двигатель мог продолжать работать, когда автомобиль остановлен. Один из способов сделать это - использовать устройство, которое физически соединяет и разъединяет двигатель и трансмиссию - сцепление. Другой метод - использовать какой-либо тип гидравлической муфты, например, гидротрансформатор.

Представьте, что у вас два вентилятора повернуты друг к другу. Включите один вентилятор, и он будет обдувать лопасти второго вентилятора воздухом, заставляя его вращаться. Но если вы будете держать второй вентилятор неподвижно, первый вентилятор будет продолжать вращаться.

Именно так работает гидротрансформатор. Один «вентилятор», называемый крыльчаткой, соединен с двигателем (вместе с передней крышкой он образует внешнюю оболочку преобразователя). Другой вентилятор, турбина, соединен с входным валом трансмиссии.Если трансмиссия не находится в нейтральном или парковочном положении, любое движение турбины приведет к перемещению автомобиля.

Вместо воздуха в гидротрансформаторе используется жидкая среда, которую нельзя сжимать - масло, также известное как трансмиссионная жидкость. Вращающаяся крыльчатка толкает масло к турбине, заставляя ее вращаться. Но если турбина не двигается (автомобиль останавливается с включенными тормозами), крыльчатка может продолжать вращаться. Отпустите тормоза, и турбина сможет свободно вращаться. Нажмите на акселератор, и крыльчатка будет вращаться быстрее, прижимая больше масла к лопастям турбины и заставляя ее вращаться быстрее.

После того, как масло было прижато к лопаткам турбины, оно должно вернуться к крыльчатке, чтобы его можно было использовать снова. (В отличие от нашей аналогии с вентилятором, где у нас есть комната

, полная воздуха, трансмиссия представляет собой герметичный сосуд, в котором содержится только определенное количество масла. ) Вот здесь и вступает статор.

Статор - это небольшое колесо с оребрениями, которое находится между рабочим колесом и турбиной. Статор не прикреплен ни к турбине, ни к рабочему колесу - он вращается на выбеге, но только в том же направлении, что и другие части преобразователя (односторонняя муфта гарантирует, что он может вращаться только в одном направлении).Когда крыльчатка вращается, движущееся масло давит на ребра статора. Односторонняя муфта удерживает статор в неподвижном состоянии, а ребра направляют масло обратно к крыльчатке. По мере увеличения скорости турбины масло начинает течь обратно к крыльчатке самостоятельно (сочетание конструкции турбины и центробежной силы). Теперь масло давит на заднюю сторону ребер статора, и односторонняя муфта позволяет ему вращаться. Теперь его работа выполнена, статор вращается свободно и не влияет на поток масла.

Поскольку в гидротрансформаторе нет прямого соединения, крыльчатка всегда будет вращаться быстрее, чем турбина - фактор, известный как «проскальзывание». «Пробуксовку необходимо контролировать; в противном случае автомобиль может никогда не двинуться с места. Вот тут и вступает в игру скорость сваливания. Скажем, гидротрансформатор имеет скорость сваливания 2500 об / мин. крыльчатка) достигает 2500 об / мин, произойдет одно из двух: либо транспортное средство начнет двигаться, либо частота вращения двигателя перестанет увеличиваться (если транспортное средство не будет двигаться к тому времени, когда преобразователь достигнет скорости сваливания, либо это произойдет. перегружен или водитель тормозит.)

Скорость остановки является ключевым фактором, поскольку она определяет, как и когда мощность будет подаваться на трансмиссию при любых условиях. Двигатели для дрэг-рейсинга вырабатывают мощность при высоких оборотах, поэтому дрэг-рейсеры часто используют преобразователь с высокой скоростью сваливания, который будет проскальзывать до тех пор, пока двигатель не будет развивать максимальную мощность. Дизельные грузовики вырабатывают большую часть своей мощности на низких оборотах, поэтому гидротрансформатор с низкой скоростью остановки является лучшим способом двигаться с большой нагрузкой. (Для получения дополнительной информации см. «Общие сведения о скорости сваливания».)

И теперь мы подходим к одному из наиболее охраняемых секретов производительности: изменив конструкцию гидротрансформатора, можно настроить скорость сваливания в соответствии с кривой мощности двигателя.

Пробуксовка гидротрансформатора важна при ускорении, но становится помехой, когда автомобиль достигает крейсерской скорости. Вот почему практически во всех современных гидротрансформаторах используется муфта блокировки.

Назначение муфты блокировки - прямое соединение двигателя и трансмиссии, когда проскальзывание больше не требуется.Когда муфта блокировки включена, пластина, прикрепленная к турбине, гидравлически прижимается к передней крышке (которая, как вы помните, связана с крыльчаткой), создавая прочное соединение между двигателем и трансмиссией. Прямое соединение двигателя и трансмиссии снижает частоту вращения двигателя для данной скорости автомобиля, что увеличивает экономию топлива.

Если автомобиль имеет достаточно большую нагрузку, возможно проскальзывание муфты блокировки, что может вызвать чрезмерный нагрев и износ.Как предотвратить пробуксовку сцепления? Поскольку муфта гидротрансформатора удерживается на месте давлением масла, можно увеличить давление для более прочной блокировки, хотя слишком высокое давление может повредить сальники трансмиссии. Другой способ - использовать многоэлементное сцепление, которое помещает дополнительный слой фрикционного материала между диском сцепления и передней крышкой. Третий метод - использовать более качественный материал на поверхности сцепления, четвертый - увеличить поверхность сцепления. Гидротрансформатор ASNU Taipan использует два последних метода, если это применимо.Поверхность сцепления покрыта углеродно-керамическим материалом, который тонко протравлен, чтобы масло могло стекать во время блокировки. Это улучшает удерживающую способность муфты блокировки. В моделях Dodge общая площадь сцепления также увеличивается на 33%.

Какие еще есть способы улучшить гидротрансформатор? Мы уже обсуждали использование настроенной скорости сваливания и более прочной муфты блокировки. Еще одна область, которую можно улучшить, - это передняя крышка, то есть сторона преобразователя, обращенная к маховику двигателя или гибкой пластине (и прикрепленная к нему).

Поскольку передняя крышка соединяется непосредственно с двигателем, она подвергается невероятным нагрузкам. Многие серийные гидротрансформаторы используют штампованную стальную переднюю крышку, потому что они дешевле, но при высоких нагрузках они могут гнуться или деформироваться. Решение - использовать переднюю крышку заготовки.

С технической точки зрения деталь заготовки - это то, что изготовлено из цельного куска материала. Некоторые производители гидротрансформаторов используют сплошной диск и приваривают его к боковой стенке, в то время как другие просто приваривают усиливающее кольцо к стандартной крышке из штампованной стали.Это снижает прочность покрытия и может привести к его деформации под нагрузкой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *