Система зажигания двс – Система зажигания:описание,принцип работы,устройство,фото,видео. | НЕМЕЦКИЕ АВТОМАШИНЫ

Система зажигания. Виды и устройство

Любой транспорт имеет важный элемент эксплуатации. Систему, позволяющую запускать его в любой удобный для хозяина момент времени без особых усилий. В машинах такая система называется система зажигания и именно о ней пойдет речь.

Зажигание — это часть полной схемы электроники в транспорте оно имеет устройство, позволяющие создать искру, в мгновение пуска движка. Для его прерывания происходит использование трамблера.

Оно служит как воспламенитель топлива. Устройство работает благодаря передаче энергии горения. По методу использования, оно разделяется на контактное, бесконтактное и электронное. Есть вариант применения и газотурбинных систем.

Все типы запуска подразумевают присутствие одних и тех же блоков (питание, выключатель, зарядка, накопитель, распределитель, провода, свечи)

Современная машина заводится разными способами, но большинство производителей уходят от механического зажигания, позволяющего контролировать запуск своими руками, превращая систему в электронного монстра, интегрированного в автомобиль.

Две системы механического зажигания чаще используют на более старых машинах, без установленных cdi или «Совек».

Зажигание контактного типа.

Машина нуждается в энергии. Она создается из аккумулятора в паре с генератором, создающие ток от 12 до 14 вольт и используемые на поддержание работы того же трамблера.

На свечи, чтобы создать искру промеж двумя электродами, нужно перекинуть ток высокого напряжения от восемнадцати до тридцати тысяч вольт. Следовательно, устройство создает цепочку низкого и высокого напряжения, к примеру, как в системе «Совек».

Контактная система зажигания состоит из блоков, энергию которых можно увеличивать для трамблера, до того момента пока её не будет хватать для запуска.

Система зажигания

Схема 1. Катушка зажигания

Система зажигания

Схема 1. Катушка зажигания

Прерыватель-распределитель

Схема 2

 

С катушки ток подаётся на главный контакт распределителя, а с него на ротор, пластина которого вращается. Сквозь воздушный клапан маленького размера передается на боковины корпуса и по проводам отправляется в свечи.

Для четырёхцилиндровых двигателей это расположение 1-3-4-2. Именно в таком положении зажигается топливо в движке. Цифры обозначают номер цилиндра. Это обеспечивает равную загрузку на вал.

В тот миг, когда поршень еще не дошел до верней точки в конце такта сжатия, на свечу отправляется напряжение, примерно на 4-6 градусов. Это измерение трамблера, этот миг и является определением угла зажигания в любой схеме, как «Совек», так и cdi. Прерыватель обладает двумя контактами. Мобильный контакт придавлен к немобильной пружинке и когда кулачок вдавливает молоточек мобильного контакта, происходит разжатие контактов трамблера.

Конденсатор подсоединён параллельно контактам внутри трамблера. Если он разрывается с контактом, то идёт процесс разрядки. Магнитное поле моментально пропадает, когда в цепи низкого напряжения образуется обратный ток. Использование трамблера на подобии системы «Совек» и cdi. Уничтожая разряд, конденсатор устраняет искрение между контактами трамблера. Прерыватель соединен контактами под обшивкой, в просторечие могут называться прерыватель или трамблёр. У них есть генератор при коленчатом валу. От свечей перераспределяется ток как в системе cdi.

Мощность движка определяется за счёт накопившихся газов, давящих на поршневую систему, даёт обгон момента зажигания. Подгон и корректировка начального угла осуществляется изменением в пространстве прерывателя с предпочтительным временем размыкания cdi. Смена режима работы движка влияет на процессы сгорания топливной смеси, они могут видоизменяться. Подстройка угла опережения происходит постоянно. Это контролируют

регуляторы, стоящие в системе запуска cdi. Перемещение коленвала гарантирует появление искры в головках свеч, это влияет на регулировку центробежным регулятором.

Расположение деталей регулятора

Схема 3

Регулятор обгоняющий зажигание cdi является конструкцией в которой есть два плоских грузика, закрепленных на стабильной пластинке, жёстко прикрепленной валику привода. Втулка прерывателя прикрепляется к мобильному элементу, отверстия соединяют с грузиками. Пластинка поворачивается вместе с грузом прерывателя. Чем больше движений, совершаемых движущимся валиком, тем больше скорость перемещения валика прерывателя. Из-за взаимодействия силы движения, грузик, отходит в другое место и использует свои силы для перемещения пробки от валика. Грузик движется по часовой стрелке, по пути грузов. Контакт, размыкается быстрее и угол ускользания в разы уменьшается.

Регулятор угла обгоняет зажигание создавая момент искры на свече необходимый при разной нагрузке на движок. Если такт вращения вала движка одинаков, педаль газа и заслонка дросселя не будут одинаковыми. Из-за этого в цилиндре появится бензин разного состояния, что изменит скорость его выгорания. Корпус регулятора, представляет собой две диафрагмы, разъединенные между собой. Первый, взаимодействует задвижкой, сквозь трубочку, а второй имеет выход к воздушному потоку. В связи с тем, что давление в трубке взаимодействует с нестационарным элементом, с закрепленном на ней прерывателем

 

Угол опережения зажигания

Схема 4. Вакуумный распределитель угла

Чем больше угол дроссельной заслонки, тем меньше разряжение под ней.

Свеча зажигания

Схема 5

Провода помогают току попасть к свечам через провода от накопителя. Системы зажигания автомобиля бывают следующих типов:

  1. система зажигания карбюраторного двигателя
  2. контактно транзисторная система зажигания
  3. система зажигания инжекторного двигателя
  4. классическая система зажигания
  5. контактная система зажигания
  6. плазменное зажигание
  7. контактное зажигание
  8. кулачковое зажигание
  9. зажигание на дизеле
  10. зажигание «Саруман»
  11. зажигание «Сонар»

Система бесконтактного завода

Бензин начинает гореть за счёт усиления передаваемой энергии, в итоге это приводит к особым плюсам бесконтактного завода. Так же она поднимает постоянство эффективного использования двигателя в любом его действии, тем самым делая его наиболее экономичным.

Отличия в проводах высокого напряжения у бесконтактных и контактных систем отсутствуют. Замена лишь произведена в сети пониженного напряжения, где контактный прерыватель подменен на бесконтактный датчик.

Бесконтактное включает в себя: Датчик бесконтактного воздействия, распределительный датчик, свечи, коммуникатор, катушка, блок монтажного элемента, реле, выключатель

Блок монтажного элемента не самодельное устройство, оно перемещается между катушкой и стартёром за счёт использования зажигания тока от батареи. Ток в обмотке воспроизводится путем замирания тока на катушке, в свою очередь это получается, когда датчика импульсов двигателя передает сигнал на транзисторный коммутатор. Подача тока идёт на накопитель напряжения, а после уже на распределитель.

 

Электронная система.

Она считается микропроцессорной, в отличие от газотурбинных систем. В её ответственности процессы завода двс и поджога бензина внутри цилиндров либо газотурбинных двигателях, так как она включена во всю систему управления зажиганием. Сложно недооценить её эффективность. При этом работает оно по двум направлениям:

  1. Прямое – с катушек на свечи.
  2. Электронное – на свечи сквозь распределитель даётся напряжения.

Система прямого электронного зажигания подразумевает использование индивидуальных или сдвоенных катушек, по-другому, она называется контактно транзисторная система зажигания. Управление накопителем энергии происходит за счёт того, что электронный блок считывает информацию и в конце

изменяет параметры коммуникатора. Блок управления подразумевает автоматизированную регулировку ускорения зажигания, что не подразумевает самодельное вмешательство. В микропроцессорных системах, коммутатор, можно назвать «зажигатель». Системы прямого электронного зажигания могут быть разделены два вида: независимое и синхронное. Эффективность двс при использовании воспламенения топлива осуществляется для одного цилиндра, в отличие от газотурбинных, а управление катушкой происходит независимо. Синхронное зажигание подразумевает работу одной катушки для двух цилиндров. Общая катушка применяется для зажигания с распределителем, в отличие от неё плазменное зажигание имеет другой способ розжига бензина. Плазменное зажигание использует более мощную искру.

Двс, при внедрении новейших систем самые прочные составляющие, поэтому старая технология vape существенно изменилась, став надежнее, чем в газотурбинных. Ушёл в прошлое контактный прерыватель vape. Всё это благодаря вводу микропроцессорной системы.

Одной из новинок стали блоки типа «Сонар», они позволили осовременить автомобили прошлых лет с классической контактной системой зажигания, но не газотурбинных системах. В отличие от той же «Совек», контактная система зажигания имеет более простую схему. Контактное зажигание происходит за счет прямого воздействия.

Система tci-батарейная система зажигания. «Сонар» содержит инфракрасный датчик и коммутатор системы зажигания, всё нужно установить под крышку трамблера. Можно использовать тиристорные регуляторы мощности. Тиристорное управление позволяет задержать включение. Использование трамблера, прерывателя-распределителя зажигания необходимо и в других системах, например tci, vape, двс, газотурбинных и cdi. Системы tci, cdi и vape используют для мототехники, а двс и «Совек» для разных видов транспорта, но не там, где есть газотурбинных система.  Наравне с «Сонар» идут системы «Саруман» и «Совек», их можно применить для обновления штатных систем зажигания на мотоциклах. «Совек» не требует специального профессионализма в установке, достаточно использовать подручное самодельное оборудование. Эффективность бесконтактной микропроцессорной системы очень значима и действительно ощутима. В процессе использования vape, она, безусловно, качественна и нет необходимости в дополнительном обслуживании. Самые последние технологии компонентов систем зажигания представляют не малый выбор, более двадцати вариантов. В таком разнообразии они отвечают качеству, надежности и современности, это не сделанные своими руками запчасти.

Сегодня всё чаще применяют tci или cdi, однако и старая проверенная двс, «Совек» и vape, так же используются.

opuske.ru

Системы зажигания | Система зажигания

Для принудительного воспламенения топливовоздушной смеси, поступившей в цилиндр бензинового двигателя, используется энергия искры высоковольтного электрического разряда, возникающего между электродами свечи зажигания. Системы зажигания предназначены для того, чтобы увеличить напряжение автомобильной аккумуляторной батареи до величины, необходимой для возникновения электрического разряда и, в требуемый момент, подать это напряжение на соответствующую свечу зажигания. Сведём основные системы в таблицу и опишем работу таких систем.

ОбозначениеОписание
ОтечественноеЗарубежное
ксзKSZКлассическая контактная с прерывателем-распределителем
ктсзHKZk, JFU4Электронная с накоплением энергии в системе и контактным датч.
БТСЗHKZi, TSZ-2Бесконтактная транзисторная с индукционным датчиком
БТСЗHKZh, EZK,TZ28HБесконтактная транзисторная с накоплением энергии в ёмкости с датчиком Холла
КТСЗTSZkКонтактная транзисторная с накоплением энергии в индуктивн.
БТСЗTSZiБесконтактная транзисторная с накоплением энергии в индуктивности с индукционным датчиком
БТСЗTSZhБесконтактная транзисторная с накоплением энергии в индуктивности с датчиком Холла
МСУДVSZ, EZLЭлектронная система зажигания статического типа

Подробно рассмотрим работу только использующихся в настоящее время систем зажигания.

В первой блок-схеме отдельно выделен Блок Управления Зажиганием (БУЗ). Раскроем этот прямоугольник и приведём несколько структурных схем построения систем зажигания.

БС1

В таких системах датчиком первичных импульсов (датчик вращения) являются контакты механического прерывателя, расположенного в распределителе зажигания(трамблёра), который механически связан коленвалом двигателя через шестерни. Один оборот вала трамблёра осуществляется за два оборота коленвала двигателя. Электрический разряд создаётся при помощи механического прерывателя, приводимого в действие двигателем. Для получения высокого напряжения применяется катушка зажигания. В зависимости от способа размыкания первичной цепи катушки зажигания, по которой проходит большой ток, различают классической батарейное зажигание, транзисторное зажигание и тиристорно-конденсаторное зажигание. В таких системах роль силового реле выполняют контакты прерывателя, транзистор или тиристор.

БС2

Схема контактной системы зажигания

Рис. Схема контактной системы зажигания: 1 — свечи зажигания, 2 — прерыватель-распределитель, 3 — выступ кулачка, 4 — упор, 5 — аккум. батарея, 6 — генератор, 7 — выключатель зажигания, 8 — катушка зажигания, 9 — конденсатор.

Нa приведённом выше рисунке показана схема самой простой контактной системы зажигания (КСЗ). Устройство катушки зажигания рассмотрим отдельно, а сейчас напомним, что катушка — это трансформатор с двумя обмотками намотанными на специальный сердечник. Вначале намотана вторичная обмотка тонким проводом и большим количеством витков, а сверху на неё намотана первичная обмотка толстым проводом и небольшим количеством витков. При замыкании контактов первичный ток постепенно нарастает и достигает максимального значения, определяемого напряжением аккумуляторной батареи и омическим сопротивлением первичной обмотки. Нарастающий ток первичной обмотки встречает сопротивление э.д.с. самоиндукции, направленное встречно напряжению аккумуляторной батареи.

Когда контакты замкнуты, по первичной обмотке протекает ток и создает в ней магнитное поле, которое пересекает и вторичную обмотку и в ней индуцируется ток высокого напряжения. В момент размыкания контактов прерывателя как в первичной, так и во вторичной обмотках индуцируется э.д.с. самоиндукции. Согласно закону индукции вторичное напряжение тем больше, чем быстрее исчезает магнитный поток, созданный током первичной обмотки, чем больше отношение чисел витков и чем больше первичный ток в момент разрыва.

Для повышения вторичного напряжения и уменьшения обгорания контактов прерывателя параллельно контактам включают конденсатор.

Ниже представлены осциллограммы электрических сигналов в цепях зажигания.

Осциллограммы электрических сигналов в цепях зажигания

Рис. Осциллограммы электрических сигналов в цепях зажигания: 1 — первичный ток, 6 — контакты прерывателя разомкнуты, 7 — контакты замкнуты.

При некотором значении вторичного напряжения между электродами свечи зажигания возникает электрический разряд. Из-за возрастания тока во вторичной цепи вторичное напряжение резко падает до, так называемого, напряжения дуги, которое поддерживает дуговой разряд. Напряжение дуги остается почти постоянным до тех пор, пока запас энергии не станет меньше некоторой минимальной величины. Средняя продолжительность батарейного зажигания составляет 1,4 мс. Обычно этого достаточно для воспламенения топливовоздушной смеси. После этого дуга исчезает, а остаточная энергия расходуется на поддержание затухающих колебаний напряжения и тока. Продолжительность дугового разряда зависит от величины запасённой энерги, состава смеси, частоты вращения коленвала, степени сжатия и пр. При увеличении частоты вращения коленвала время замкнутого состояния контактов прерывателя уменьшается и первичный ток не успевает нарасти до максимальной величины. Из-за этого уменьшается запас энергии, накопленной в магнитной системе катушки зажигания и понижается вторичное напряжение.

Отрицательные свойства систем зажигания с механическими контактами проявляются при очень малых и высоких частотах вращения юленвала. При малых частотах вращения между контактами прерывателя возникает дуговой разряд, поглощающий часть энергии, а при высоких частотах вращения вторичное напряжение уменьшается из-за «дребезга» контактов прерывателя. «Дребезг» возникает когда при замыкании контактов подвижный контакт ударяется о неподвижный с энергией, определяемой массой и скоростью подвижного контакта, а затем после незначительной упругой деформации соприкасающихся поверхностей отскакивает, разрывая уже замкнутую цепь. После размыкания, подвижный контакт под дейсткием пружины, снова ударяется о неподвижный контакт Из-за такого «дребезга» контактов уменьшается действительное время замкнутого состояния и, соответственно, энергия зажигания и величина вторичного напряжения.

Контактные системы зажигания перестали справляться со своими функциями при увеличении оборотов двигателей, числа цилиндров, использовании более бедных рабочих смесей. Появилась необходимость применения электронных систем зажигания. Формирование момента ценообразования может осуществляться как обычной контактной группой (КТСЗ), так и с использованием специальных датчиков(бесконтактные системы).

Схема контактнотранзисторной системы зажигания

Рис. Схема контактно-транзисторной системы зажигания: 1 — свечи зажигания, 2 — распределитель зажигания, 3 — коммутатор, 4 — катушка зажигания, К — коллектор, Э — эмиттер, Б — база, R — резистор.

Рассмотрим функциональную схему контактнотранзисторной системы зажигания. На рисунке, приведённом рядом показан фрагмент такой схемы. Механические контакты переключают только управляющий ток базы транзистора, который значительно меньше первичного тока, протекающего между эмиттером и коллектором. Для защиты полупроводникового устройства, названного коммутатором, приходилось уменьшать величину э.д.с. самоиндукции в первичной цепи путём снижения индуктивности первичной обмотки. Индуктивность первичной обмотки уменьшается быстрее, чем сё сопротивление. Уменьшается э.д.с. самоиндукции и меньше препятствует увеличению первичного тока.

Из-за уменьшения индуктивности первичной обмотки и величины э.д.с. самоиндукции для получения неизменного вторичного напряжения увеличивают и коэффициент трансформации катушки зажигания.

Изменение скорости нарастания и максимальной величины первичного тока в классической и транзисторной системах зажигания представлено наследующем графике.

График

Рис. График: 1 — транзисторное зажигание, 2 — катушечное зажигание, 3 — момент размыкания

Поскольку контакты прерывателя находятся под напряжением только аккумуляторной батареи, то образующаяся при размыкании незначительная дуга позволяет обойтись без конденсатора. Контакты подвержены механическому износу и сохраняется возможность «дребезга».

Отличие электронных систем зажигания состоит в том, что коммутирование и разрыв тока в первичной обмотке катушки зажигания осуществляется не замыканием и размыканием контактов, а открыванием(проводящее состояние) и запиранием (отсечкой) мощного выходного транзистора. Это позволяет увеличить значение тока разрыва до 8 — 10 А, что позволяет в несколько раз увеличить энергию, запасаемую катушкой зажигания. Бесконтактные системы зажигания используют для подачи сигнала различные типы датчиков. Ниже приведём блок-схемы построения систем зажигания.

БС3 БС4 БС5 БС6

В приведенных выше системах зажигания коммутатор находится внутри ЭБУ двигателем.

Приведённые выше схемы систем управления зажиганием применяют многокатушечное построение. Катушки могут быть индивидуальными, вставленными в свечной туннель(СОР) с коммутатором встроенным в ЭБУ двигателем. Иногда одна встроенная в свечной туннель катушка обслуживает два цилиндра (к другой свече идёт ВВ провод). Встречаются системы, в которых коммутатор интегрирован в единый МОДУЛЬ ЗАЖИГАНИЯ, причём такой модуль может быть индивидуальным на цилиндр или отдельным блоком обслуживающим все цилиндры. Встречаются системы у которых на свечи одевается единый модуль, объединяющий в себе систему зажигания и датчики вращения и детонации (СААБ, МЕРСЕДЕС). У каждой системы есть свой достоинства и недостатки и только производитель решает какую систему или симбиоз разных систем применить и создать головную боль диагностам и пользователям автомобилей.

Опишем кратко только основные типы датчиков:

  • индукционный (генераторного типа)
  • датчик Холла (на одноимённом эффекте)
  • оптический датчик

Функциональная схема системы зажигания, построенная на использовании индукционного датчика показана рядом.

Схема системы зажигания с испольованием индукционного датчика

Рис. Схема системы зажигания с использованием индукционного датчика: 1 — свечи зажигания, 2 — датчик-распределитель, 3 — коммутатор, 4 — катушка зажигания.

Индукционный датчик представляет собой однофоазный генератор переменного тока с ротором на постоянных магнитах, число которых равно числу цилиндров. Мощность выходного сигнала датчика мала, поэтому выходные сигналы предварительно формируются и усиливаются. Обычно такие датчики устанавливаются в распределителе зажигания. В настоящее время такие датчики не применяются.

Часто применяемым датчиком частоты вращения или положения является датчик на эффекте Холла. Рядом приведён фрагмент электросхемы системы зажигания, использующей такой датчик.

Схема системы зажигания с испольованием датчика на эффекте Холла

Рис. Схема системы зажигания с использованием датчика на эффекте Холла: 1 — свечи зажигания, 2 — датчик Холла, 3 — коммутатор, 4 — распределитель зажигания, 5 — катушка зажигания.

Принцип действия такого датчика основан на изменении выходного сигнала в результате прерывания магнитного потока (экранирование), воздействующего на чувствительный элемент Холла (электросхема с питающим напряжением 5 или 12 В). Расположен обычно в распределителе зажигания, но может быть установлен и в других местах (маркерный диск коленвала или распредвала).

Распространенными являются и оптические датчики (особенно на а\м производства Японии). Принцип действия оптических датчиков основан на периодическом прерывании светового потока, излучаемого светодиодом. Маркерный диск с отверстиями механически связан с механизмом ГРМ. Отверстия на диске проходят мимо излучателя и поток света попадает на фотодиод. После усиления напряжения фотодиода получается напряжение импульсной формы — обычно прямоугольные импульсы.

Разрабатывалась и ранее использовалась тиристорная система зажигания. Энергия для искрового разряда в тиристорных системах накапливается в конденсаторе, а в качестве силового реле применялся тиристор. Катушка зажигания в этих системах не накапливает энергию, а лишь преобразует напряжение. Тиристорные системы применялись на мощных и высокооборотных двигателях. Скорость нарастания вторичного напряжения в тиристорной системе примерное 10 раз больше, чем в классической или транзисторной системах зажигания, поэтому пробой искрового промежутка свечи надёжно обеспечивается даже при загрязненных и покрытых нагаром изоляторах свечи. Сравнивать различные системы зажигания можно по различным характеристикам:

  • зависимость вторичного напряжения от частоты вращения коленвала двигателя;
  • продолжительность электрического разряда;
  • расход мощности;
  • надёжность схемы;
  • потребность в обслуживании;
  • чувствительность к шунтированию искрового промежутка свечи.

На рядом приведённом графике показано изменение вторичного напряжения U2 в зависимости от частоты следования разрядов f для различных систем зажигания.

При тиристорной системе зажигания вторичное напряжение можно считать постоянным во всём диапазоне частот вращения, а наибольшее снижение вторичного напряжения наблюдается в классической системе зажигания. При сравнении потребляемой мощности различными системами, можно констатировать, что электронные системы потребляют значительно большую мощность, чем классическая система. В классической и транзисторной системах зажигания продолжительность электрического разряда почти одинакова (около 1 мс) и является достаточной, а при конденсаторной (тиристорно-транзисторной) очень мала и составляет около 300 мкс.

Терристорная система зажигания - график

Рис. Тирристорная система зажигания — график

Наименее чувствительна к шунтированию искрового промежутка свечи тиристорная (конденсаторная) система благодаря быстрому нарастанию вторичного напряжения.

В современных системах управления система зажигания не выделяется, а является частью единой системы управления двигателем. В таких системах используются индивидуальные или парные (работающие на два цилиндра одновременно) катушки зажигания, позволяющие создавать искровой разряд в цилиндре в конкретный вычисленный момент времени. При расчёте момента ценообразования учитывается температура двигателя, состав отработанных газов, скорость движения и другие параметры двигателя, а также учитывается информация полученная по сетевой шине от других электронных блоков управления. Одновременно с моментом искрообразования ЭБУ двигателем управляет моментом открытия впускных и выпускных клапанов, положением дроссельной заслонки, моментом и длительностью впрыска топлива и другими параметрами.

В заключении общего описания принципов построения систем зажигания отметим, что во всех системах используются катушки зажигания для формирования высоковольтного напряжения на электродах свечи зажигания. Более подробно описание процессов, проходящих в ЭБУ зажиганием, коммутаторах, катушках зажигания и формы осциллограмм будут приведены при описании конкретных элементов систем управления. У каждой системы есть свои преимущества и недостатки, поэтому различные разработчики и производители для конкретных систем управления и конкретных двигателей применяют те или иные системы зажигания. Иногда это синтез различных систем.

ustroistvo-avtomobilya.ru

Система зажигания автомобиля

Основным назначением системы зажигания автомобиля является подача искрового разряда на свечи зажигания в определённый такт работы бензинового двигателя. Для дизельных двигателей под зажиганием понимают момент впрыска топлива в такт сжатия. В некоторых моделях автомобилей система зажигания, а именно ее импульсы, подаются на блок управления погружным топливным насосом.

Систему зажигания, по мере своего развития, можно разделить на три типа. Контактная система зажигания, импульсы у которой создаются во время работы контактов на разрыв. Бесконтактная система зажигания, управляющие импульсы создаются электронным транзисторным управляющим устройством – коммутатором, (хотя правильно его назвать генератором импульсов). Микропроцессорная система зажигания — это электронное устройство, которое управляет моментом зажигания, а также другими системами автомобиля. Для двухтактных двигателей, без внешнего источника питания используются системы зажигания типа магнето. Основана на принципе создания ЭДС при вращении постоянного магнита в катушке зажигания по заднему фронту импульса.

 

Устройство системы зажигания

Схема системы зажигания: 1 — замок зажигания; 2 — катушка зажигания; 3 — распределитель, 4 — свечи зажигания; 5 — прерыватель, 6 — масса.

Все вышеперечисленные виды систем зажигания похожи между собой, отличаются только методом создания управляющего импульса. Так в систему зажигания входят:

  1. Источник питания для системы зажигания, это аккумуляторная батарея (в момент запуска двигателя), и генератор (во время работы двигателя).
  2. Выключатель зажигания – это механическое или электрическое контактное устройство подачи напряжения на систему зажигания, или по-другому – замок зажигания. Как правило, выполняет две функции: подачи напряжения на бортовую сеть и систему зажигания, подачи напряжения на втягивающее реле стартера автомобиля.
  3. Накопитель энергии – узел предназначенный для накопления, преобразования энергии достаточной для возникновения электрического разряда между электродами свечи зажигания. Условно  накопители энергии можно разделить на индуктивный и емкостный.
    1. Простейший индуктивный накопитель – это катушка зажигания, которая представляет собой автотрансформатор, первичная обмотка у него подключается к плюсовому полюсу и через устройство разрыва к минусовому. Во время работы устройства разрыва, например кулачков зажигания, в первичной обмотке возникает напряжение самоиндукции. Во вторичной обмотке образуется повышенное напряжение, достаточное для пробоя воздушного зазора свечи.
    2. Емкостный накопитель представляет собой емкость, которая заряжается повышенным напряжением и в нужный момент отдает свою энергию на свечу зажигания
      1. Свечи зажигания, представляют собой устройство с двумя электродами находящимися друг от друга на расстоянии 0,15-0,25 мм. Это фарфоровый изолятор, насаженный на металлическую резьбу. В центре находится центральный проводник, который служит электродом, вторым электродом является резьба.
      2. Система распределения зажигания предназначена для подачи в нужный момент энергии от накопителя к свечам зажигания. В состав системы входят распределитель, и(или) коммутатор, блок управления системой зажигания.
        1. Распределитель зажигания (трамблёр) – устройство распределения высокого напряжения по проводам, ведущим к свечам цилиндров. Обычно в распределителе собран и кулачковый механизм. Распределение зажигания может быть механическим и статическим. Механический распределитель представляет собой вал, который приводится в действие от двигателя и при помощи «бегунка» распределяет напряжение по высоковольтным проводам. Статическое распределение зажигания подразумевает под собой отсутствие вращающихся деталей. При таком варианте катушка зажигания присоединятся непосредственно к свече, а управление происходит от блока управления зажиганием. Если, например, двигатель автомобиля имеет четыре цилиндра, то и катушек будет четыре. Высоковольтные провода в данной системе отсутствуют.
        2. Коммутатор – электронное устройство для генерации импульсов управления катушкой зажигания, включается в цепь питания первичной обмотки катушки и по сигналу от блока управления разрывает питание, в результате чего возникает напряжение самоиндукции.
        3. Блок управления системой зажигания – микропроцессорное устройство, которое определяет момент подачи импульса в катушку зажигания, в зависимости от данных датчиков положения коленвала, лямбда-зондов, температурных датчиков и датчика положения распредвала.
      3. Высоковольтный провод — это одножильный провод с повышенной изоляцией. Внутренний проводник может иметь форму спирали, для исключения помех в радиодиапазоне.

       

      Принцип работы системы зажигания

      Рассмотрим принцип действия классической системы зажигания. При вращении вала привода трамблёра в действие приводятся кулачки, которые «разрывают» подаваемые на первичную обмотку автотрансформатора (бобину) 12 вольт. При пропадании напряжения на трансформаторе, в обмотке появляется ЭДС самоиндукции, соответственно на вторичной обмотке возникает напряжение порядка 30000 вольт. Высокое напряжение подается в распределитель зажигания (бегунок), который вращаясь попеременно подает напряжение на свечи в зависимости от такта работы двигателя внутреннего сгорания. Высокого напряжения достаточно для пробоя искровым разрядом воздушного зазора между электродами свечи зажигания.

      Опережение зажигания нужно для более полного сгорания топливной смеси. Из-за того, что топливо сгорает не сразу, поджечь его необходимо немного раньше, до прихода в ВМТ. Момент подачи искры должен быть точно отрегулирован, потому что в ином случае (раннее или позднее зажигание) двигатель потеряет свою мощность, возможна повышенная детонация.

       

      РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:

       

      autoustroistvo.ru

      Система зажигания бензиновых двигателей автомобиля

      Система зажигания предназначена для поджигания топливовоздушной смеси в бензиновых и газовых двигателях внутреннего сгорания. Поджог осуществляется за счет электрического разряда между электродами свечи при подведении к ней напряжения в 18000 – 20000 Вольт.

      Основные составные части системы зажигания (каждый из элементов описан подробно ниже):

      • выключатель зажигания;
      • катушка зажигания;
      • прерыватель-распределитель;
      • регуляторы опережения зажигания;
      • свечи зажигания;
      • провода, соединяющие данные элементы.

      Система зажигания с распределителем

      На рисунке 10.6 приведена типичная схема системы зажигания с распределителем.

      Контактная система зажигания двигателя с распределителем
      Рисунок 10.6 Контактная система зажигания двигателя с распределителем.

       Выключатель зажигания

      Выключатель зажигания собран в сборе с замком зажигания. Основная функция данного выключателя — запитывание потребителей электрическим током от источников питания. Система зажигания в целом — это тоже потребитель электротока. Как видно из схемы ниже, через выключатель от источника питания запитывается первичная обмотка катушки зажигания.

       Катушка зажигания

      По сути, катушка зажигания — это трансформатор, который преобразует низкое напряжение от бортовых источников питания (12 В) в напряжение, достаточное для получения мощной искры между электродами свечи, необходимой для поджигания топливовоздушной смеси в цилиндре двигателя. Достаточное напряжение – это 20 – 30, а то и 60 тысяч вольт.

      Для такого рода преобразования в корпусе катушки имеются две обмотки – первичная и вторичная, а также сердечник. Каждая обмотка имеет различное количество витков и сечение проводов.

      Когда вы поворачиваете ключ и включаете зажигание от аккумуляторной батареи, электрический ток поступает на первичную обмотку и через контакты замыкается на «массу». При прохождении через первичную обмотку тока вокруг катушки создается электромагнитное поле. Как только контакты разомкнутся и течение тока через первичную катушку резко прекратится, во вторичной катушке возникнет необходимое напряжение и ток. И уже ток в 30 и более тысяч вольт от вторичной обмотки катушки зажигания потечет через распределитель к свече зажигания.

       Прерыватель-распределитель

      Прерыватель-распределитель (в простонародии — «трамблер») предназначен для того, чтобы прерывать и распределять: прерывать — ток, текущий через первичную обмотку катушки зажигания, распределять – ток от вторичной катушки зажигания между свечами зажигания в той последовательности, которая предусмотрена порядком работы двигателя. В центр крышки распределителя подсоединен высоковольтный провод от вторичной обмотки катушки зажигания, а по периметру крышки расположены выводы, которые через высоковольтные провода соединены со свечами зажигания.

      Прерыватель может быть контактным и бесконтактным. В контактном прерывателе разрыв цепи первичной обмотки катушки зажигания происходит за счет контактов, что очень ненадежно.

      Примечание
      Причина ненадежности контактов в том, что исчезающее магнитное поле пересекает витки не только вторичной, но и первичной обмотки, вследствие чего в ней возникает ток самоиндукции и напряжение около 250-300 вольт. Это приводит к искрению и обгоранию контактов, кроме того, замедляется прерывание тока в первичной обмотке, что приводит к уменьшению напряжения во вторичной обмотке. Конечно, это решается установкой конденсатора (обычно емкостью в 0,25 мкф). Однако все-таки имеет место такое явление, как эрозия – постепенное разрушение поверхности контактов, вследствие которого контакты прилегают неплотно и понижается напряжение, возникающее во вторичной обмотке катушки зажигания.

      Чтобы исключить механическую составляющую прерывателя, вместо контактов установили специальное устройство, называемое датчиком Холла. Никаких контактов, только управляющие импульсы, которые контролируют работу катушки зажигания.

       Регуляторы опережения зажигания

      Для того чтобы топливовоздушная смесь успела сгореть, пока поршень движется от верхней мертвой точки к нижней, ее необходимо поджигать немного раньше. Основным показателем момента зажигания является угол опережения зажигания, который говорит нам о том, за сколько градусов до ВМТ на такте сжатия возникнет пробой между электродами свечи.

      В распределителях описанного выше типа изменение угла опережения зажигания осуществляется механическим путем — проворачиванием контактов относительно приводного вала в ту или иную сторону.

       Свечи зажигания

      Элемент, благодаря которому в цилиндре поджигается топливовоздушная смесь, называется свечой зажигания. Устройство этого элемента простейшее (смотрите рисунок 10.7): корпус с нарезанной резьбой и электродом (отрицательным, так как контактирует с «массой» — головкой блока цилиндров), изолятор, внутри которого проходит положительный электрод. К этому электроду с одной стороны через наконечник подсоединен высоковольтный провод системы зажигания. Положительный электрод расположен рядом с отрицательным электродом (воздушный зазор между ними составляет 0,8-1,2 мм — в зависимости от модели свечи). Когда от распределителя зажигания высоковольтный разряд по проводу подводится к положительному электроду, воздушный зазор пробивается, то есть возникает искра — довольно мощная, чтобы поджечь топливовоздушную смесь.

      Свеча зажигания
      Рисунок 10.7 Свеча зажигания.

      Микропроцессорная система зажигания

      Как уже не раз было сказано, развитие автомобилестроения движется семимильными шагами и на смену системе зажигания с распределителем пришли микропроцессорные системы. В них нет каких-либо вращающихся и подвижных частей (смотрите рисунок 10.8), но есть катушки зажигания (все чаще — по катушке на каждый цилиндр), электронный блок управления (с интегрированным блоком зажигания) и коммутатор (если блок катушки зажигания один) или коммутаторы (если катушек зажигания несколько).

      Система зажигания с микропроцессорным управлением
      Рисунок 10.8 Система зажигания с микропроцессорным управлением.

      В электронный блок управления стекаются данные от ряда датчиков, обрабатывая которые ЭБУ выдает управляющий сигнал на коммутатор (или коммутаторы), определяющий, в какой момент поджечь в цилиндре топливовоздушную смесь. Получение каждого искрового разряда производится по электронным сигналам с очень высокой точностью и без использования каких-либо подвижных частей. Во многих двигателях искра образуется не только во время такта сжатия (это значит, что каждая свеча генерирует искровой разряд каждый раз, когда поршень доходит до ВМТ). Содержание вредных компонентов в отработавших газах при этом несколько снижается.

      monolith.in.ua

      Подрубрика сайта: Система зажигания двигателя

      Система зажигания двигателя — это комплекс устройств, приборов и датчиков, необходимых для его запуска. Ее главной задачей является создание высокого

      Techautoport.ruTechautoport.ru

      Главным элементом системы зажигания, то есть воспламенения топливовоздушной смеси, в двигателях внутреннего сгорания является катушка зажигания или трансформатор.

      Techautoport.ruTechautoport.ru

      Свеча зажигания — это важнейший элемент системы зажигания двигателя, который непосредственно осуществляет воспламенение топливовоздушной смеси в

      Techautoport.ruTechautoport.ru

      В дизельном двигателе топливовоздушная смесь самовоспламеняется за счет сильного нагрева воздуха в процессе его сжатия в цилиндрах. Пока температура в

      Techautoport.ruTechautoport.ru

      techautoport.ru

      Система зажигания инжекторного двигателя

      Система зажигания служит для воспламенения топлива, что и позволяет ему превращаться в силу, приводящую автомобиль в движение. Искра зажигания должна появиться в правильный момент, быть достаточно длинной, сильной и долговременной. А от работы всей системы зависит мощность мотора, расход топлива и даже содержание вредоносных веществ в выхлопных газах.

      Воспламенение топлива

      При сжатии в цилиндре топливовоздушной смеси в камере сгорания образуется давление в 20-40 бар, а температура возрастает до 400-600°C. И хотя цифры впечатляют, но, оставаясь в покое, топливо при таких условиях не воспламенится. Для этого необходима искра.

      Искра образуется между боковыми и центральным электродами свечи зажигания. Расстояние между ними определяет мощность искры, а она прямо влияет на то, произойдет ли возгорание. При маломощном разряде, топливовоздушная смесь может не воспламениться.

      Для того чтобы в свече возникла искра, необходима энергия. В системе зажигания есть катушка, функция которой и заключается в аккумулировании энергии, а затем передаче на свечу ее часть. Напряжение, создаваемое катушкой зажигания, многократно превышает силу разряда, возникающего в свече. Она способна накопить 60-120 мДж энергии и обеспечить напряжение в 25-40 кВ.

      Чтобы воспламенение топлива произошло, необходимо сочетание нескольких факторов. Искра должна обладать действительно большой силой заряда. А какой именно, зависит от типа смеси. Так, для стехиометрической это 0,2 мДж, а для «бедной» или «богатой» — 3 мДж. В момент разряда возле свечи должно быть не слишком много и не слишком мало топлива и примешиваемых к нему газов, их количество должно быть оптимальным. Именно эта часть смеси и распространит горение на все остальное топливо.

      Необходимые условия

      Для качественного сгорания топлива необходимо соблюдение таких условий:

      • искра должна сохраняться достаточно долгий промежуток времени;

      • топливовоздушная смесь должна быть однородной и распыленной равномерно;

      • стехиометрический состав должен быть уравновешен.

      Длина самой искры так же немаловажна для процесса горения топлива. Чем она больше, тем лучше. Увеличить ее можно, увеличивая зазор между электродами свечи зажигания. Чтобы выставить это расстояние правильно, необходимо опираться на техническую документацию двигателя.

      Угол опережения зажигания (УОЗ)

      Момент зажигания — это важный фактор. От воспламенения топливной смеси до ее полного сгорания проходит примерно три миллисекунды. Именно поэтому зажигание должно произойти в определенный момент, так, чтобы смесь полностью сгорела до перехода поршнем верхней мертвой точки (ВМТ). Своевременное зажигание и диктует качественные свойства двигателя: экономию топлива, мощность мотора, вредность паров сгорания.

       

      Система зажигания инжекторного двигателя

       

      Важно понимать, что при увеличении интенсивности вращения коленвала, скорость движения поршня возрастает, но скорость горения топлива остается прежней. Так возникает ситуация, приводящая к падению давления: когда поршень находится далеко от верхней мертвой точки, объем пространства для горения смеси больше, что и снижает давление. А это, в свою очередь, снижает мощность двигателя.

      Если же интенсивность вращения коленвала остается неизменной, но увеличивается нагрузка на мотор, важно, чтобы зажигание происходило позже. Ведь объем топлива в цилиндры при таком режиме поступает больший, а вот количество остаточных газов, смешиваемых с ним, уменьшается. Это ведет к уменьшению времени, необходимого для полного сгорания смеси. Поэтому и искра должна возникать позже.

      Для правильной работы системы разряд должен возникать тогда, когда давление, вне зависимости от режима работы двигателя, оптимально. Поэтому воспламенение смеси до того, как поршень окажется в верхней мертвой точке, необходимо, но момент этот не одинаков.

      Определяющей здесь является позиция коленчатого вала по отношению к ВТМ: момент зажигания обозначается в градусах до мертвой точки. Этот угол и называется углом опережения зажигания.

      Если момент зажигания приближается к ВМТ — он называется поздним, УОЗ становится меньше. Если отдаляется — ранним, УОЗ становится больше. Чем интенсивнее движение коленвала, тем больше должен быть угол опережения зажигания.

      Инжекторные системы хороши тем, что сами определяют УОЗ в зависимости от трех основных факторов: режима работы, скорости вращения коленчатого вала и нагрузки на мотор. Анализируя эти показатели, система управления двигателем высчитывает оптимальный УОЗ.

      Детонация

      Детонация двигателя — это настолько же нехорошо, как и звучит. Этим термином обозначаются непредсказуемый взрыв, который случается в двигателе в случайный момент времени. Опасен он тем, что может стать причиной полного выхода двигателя из строя.

       

      Система зажигания инжекторного двигателя

       

      Детонация случается при слишком раннем УОЗ и высокой степени сжатия. Происходит она в результате самопроизвольного возгорания топливовоздушной смеси.

      Сила самого взрыва незначительна, но температура и давление возрастают, что и может привести к поломке деталей двигателя. Чаще всего возникают повреждения поршней и прокладки головки блока цилиндров, особенно возле клапанов.

      Вероятность возникновения детонации особенно высока при:

      • высокой нагрузке на мотор и приближающейся к критической частоте оборотов коленвала;

      • разгоне — когда нагрузка на двигатель большая, но обороты малые; такая детонация слышится как серия стуков и металлического звона, её принято считать самым опасным видом детонации, так как рёв мотора способен полностью заглушить звуки взрывов;

      • конструктивных дефектах двигателя;

      • некачественном топливе.

      avto.land

      Система зажигания автомобиля | Система зажигания

      Основными условиями воспламенения смеси являются превышение высокого (вторичного) напряжения над напряжением пробоя и достаточность энергии искрового разряда, выделяемой в искровом промежутке зажигательной свечи. Искровой разряд имеет емкостную и индуктивную фазы. Длительность емкостной фазы невелика и составляет 1—3 мкс. Поэтому энергия, выделяемая в данной фазе искрового разряда, обеспечивает воспламенение лишь однородной и полностью газифицированной рабочей смеси. При пуске холодного двигателя, когда паровой части топлива в смеси недостаточно, а температура ее низка, для воспламенения рабочей смеси кроме емкостной фазы разряда требуется индуктивная. Длительность индуктивной фазы искрового разряда существенно больше, чем емкостной, что способствует улучшению прогрева смеси и ее испарению. Это обеспечивает более качественное воспламенение смеси, находящейся по своему составу у границ воспламеняемости.

      У систем зажигания, предназначенных для двигателей с Э > 9, энергия искрового разряда достигает 0,05 Дж, а длительность 2,5 мс. При этом повышение вторичного напряжения над напряжением пробоя, характеризуемого коэффициентом запаса, составляет 1,4-1,5.

      Величина напряжения пробоя при пуске двигателя (особенно холодного) всегда больше, чем на его рабочих режимах. Это связано с низкой температурой электрода свечи и рабочей смеси в цилиндре. Напряжение пробоя зависит от давления сжатия в момент пробоя искрового промежутка и расстояния между электродами свечи. На величину напряжения пробоя влияет форма электродов свечи (результат электрической эрозии), при изменении которой оно увеличивается на 3-4 кВ за первые 25 тыс. км пробега автомобиля.

      Величина вторичного напряжения, развиваемого системой зажигания, зависит от конструктивных и эксплуатационных факторов.

      При пусковых частотах вращения коленчатого вала двигателя время замкнутого состояния контактов прерывателя достаточно велико, и сила тока в первичной электроцепи достигает максимального значения. При малой частоте размыкания контактов и большой силе тока разрыва, индуктируемого в первичной обмотке катушки, возможен пробой искрового воздушного промежутка между контактами, что вызывает ухудшение параметров искрового разряда.

      Вторичное напряжение уменьшается при снижении напряжения на зажимах аккумуляторной батареи, которое обусловливается низкой температурой аккумуляторной батареи и степенью ее разряженности. Для компенсации снижения напряжения в первичную электроцепь систем зажигания у отечественных автомобилей вводится дополнительный резистор, замыкаемый накоротко в момент включения стартера.

      Необходимо отметить влияние неравномерности электрострартерного прокручивания коленчатого вала на снижение вторичного напряжения систем зажигания. Вторичное напряжение падает при неравномерном прокручивании коленчатого вала на 0,2-1,5 кВ по сравнению с равномерным прокручиванием. Уменьшение вторичного напряжения возможно и при увеличении шунтирующего сопротивления и зазора между электродами зажигательной свечи. Шунтирование свечей при пуске двигателя происходит в результате переобогащения смеси и попадания между электродами влаги и остатков продуктов сгорания. Наибольшее шунтирование свечей наблюдается у роторно-поршневых двигателей (в силу конструктивных особенностей расположения свечи) и у двухтактных двигателей из-за плохой организации процесса смесеобразования и плохой очистки цилиндров от остаточных газов. Увеличить энергию искрового разряда и величину вторичного напряжения у систем зажигания можно только увеличением силы тока разрыва первичной электроцепи катушки зажигания. В классических электромеханических системах такая возможность ограничивается сроком службы контактов прерывателя. Наибольшая эксплуатационная надежность контактов имеет место при силе тока 1 А.

      Проблема роста вторичного напряжения и энергии искрового разряда за счет увеличения силы тока разрыва первичной цепи решается с помощью схем контактно-транзисторных и бесконтактных систем зажигания.

      Контактно-транзисторные системы зажигания обеспечивают более легкие условия работы контактов прерывателя при одновременном повышении силы тока разрыва первичной цепи.

      Вторичное напряжение, развиваемое контактно-транзисторной системой зажигания двигателя ЗИЛ-508.1000400, составляет 25 кВ, что обеспечивает коэффициент запаса 1,7-1,8 (1,35 для классической системы). Сила тока в первичной цепи катушки зажигания составляет около 7 А и разрываемого контактами прерывателя — 0,7-0,9 А. Положительным качеством контактно-транзисторной системы является увеличение по сравнению с классической длительностью и энергии искрового разряда (энергия до 0,024-0,025 Дж и длительность до 2,0-2,3 мс). К недостаткам данных систем относится влияние на их характеристики напряжения в первичной цепи и л, хотя оно несколько меньше, чем у классической системы.

      Лучшими системами с точки зрения пуска являются электронные бесконтактные системы с электронными или электромеханическими автоматами опережения зажигания, имеющие бесконтактное управление моментом зажигания с нормированным временем накопления энергии в магнитном поле. В таких системах время накопления энергии почти не зависит от п, что улучшает условия пуска двигателя. Энергия индуктивной фазы на пусковых режимах двигателя для отечественных электронных систем (бесконтактной и микропроцессорной) составляет от 0,03 до 0,05 Дж, а длительность разряда от 2,0 до 1,7 мс.

      Широко применяются электронные системы с накоплением энергии в электростатическом поле конденсатора и коммутирующем элементе (тиристоре). Резкий рост вторичного напряжения обеспечивает малую чувствительность к шунтированию свечей зажигания. Такой характер возрастания напряжения тиристорной системы, несмотря на малую длительность индуктивной составляющей, позволяет повысить надежность воспламенения топливомасляных смесей двухтактных и роторно-поршневых двигателей, а также газовоздушных смесей газовых двигателей.

      Двухтактные пусковые двигатели оборудуются системами зажигания от магнето, особенностью которых являются более низкие вторичное напряжение и энергия искрового разряда по сравнению с батарейной системой зажигания, особенно в интервале пусковых частот вращения коленчатого вала 200-300 мин-1. Для повышения коэффициента запаса по вторичному напряжению приходится повышать пусковую частоту вращения коленчатого вала, что ухудшает экономические показатели пусковой системы.

      Неравномерность вращения коленчатого вала пусковых двигателей при электростартерном пуске (5 достигает 1,85-1,90) приводит к снижению вторичного напряжения на 0,3-4,5 кВ. Это необходимо учитывать при выборе параметров систем зажигания от магнето.

      Улучшить пуск пусковых двигателей можно за счет применения электронных систем зажигания, минимальная частота устойчивого искрообразования которых должна составлять не более 100-150 мин

      ustroistvo-avtomobilya.ru

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *