Схема гидравлического привода сцепления – Схема гидравлического привода сцепления | Avto-Science.ru Все автомобильные науки на одном сайте

Привод сцепления — Энциклопедия журнала «За рулем»

Схема гидравлического привода сцепления:
1 — педаль;
2 — толкатель;
3 — главный цилиндр;
4 — поршень толкателя;
5 — поршень главного цилиндра;
6 — бачок;
7 — трубопровод;
8 — рабочий цилиндр;
9 — поршень;
10 — пружина;
11 — вилка;
12 — опора вилки;
13 — выжимной подшипник

Привод фрикционного сцепления может быть механическим, гидравлическим или электромагнитным. На большинстве автомобилей применяются механические и гидравлические приводы. Электромагнитный привод применяется редко, в основном при необходимости автоматизации процесса управления сцеплением. Для облегчения управления на некоторых автомобилях в приводе сцепления используют пневматические и вакуумные усилители.
автомобилях в приводе сцепления используют пневматические и вакуумные усилители. В качестве привода сцепления небольших легковых автомобилей часто используют механический тросовый привод. Его преимуществами являются простота и дешевизна. Однако износ фрикционных накладок при таком типе привода приводит к изменению положения педали сцепления. Поэтому в конструкции тросового привода обычно предусмотрена возможность ручной или автоматической регулировки.

Гидравлический привод сцепления использует свойство несжимаемости жидкости. В качестве рабочей жидкости используют такую же, что и в гидравлическом тормозном приводе. Привод имеет главный и рабочий цилиндры, соединенные между собой трубопроводом. Плунжер рабочего цилиндра через толкатель действует на вилку включения сцепления, связанную с выжимным подшипником. Для удаления воздуха из привода в цилиндрах гидравлического привода установлены специальные клапаны.
Иногда в гидравлическом приводе сцепления устанавливают демпфирующее устройство, которое гасит колебания, возникающие при взаимодействии выжимного подшипника с элементами выключения сцепления.


Смотрите также:
Устройство сцепления
Сцепление

Привод сцепления.


Ступенчатые трансмиссии

Привод сцепления




Привод сцепления служит для дистанционного управления сцеплением. Наибольшее распространение получили механический и гидравлический приводы.

Применение на автомобиле того или иного привода определяется типом сцепления, компоновкой автомобиля и рядом требований по обеспечению легкости и удобства управления.
Так, полный ход педали сцеплении не должен превышать 190 мм, а усилие на педали – 150 Н для легкового автомобиля и 250 Н для грузового автомобиля. Поэтому общее передаточное число в существующих конструкциях привода сцепления находится в пределах от 25 до 50.
В случае, если для обеспечения работы сцепления необходимо более высокое передаточное число, применяют усилители разных типов.

***

Механический привод сцепления

Механический привод сцепления прост по конструкции и надежен в эксплуатации, но обладает меньшим КПД по сравнению с гидравлическим приводом, поскольку в шарнирных сочленениях составляющих привод тяг, рычагов, в оболочках гибких валов теряется много энергии из-за сил трения. Поэтому такой тип привода применяется, как правило, если сцепление находится вблизи от органов управления (педали сцепления).

Существуют тросовый и рычажный механические приводы сцепления.

Тросовый привод (рис. 1, а) применяется на легковых переднеприводных автомобилях. Педаль 14 имеет верхнюю опору на кронштейне 16 и соединена с наконечником 10 троса. Трос заключен в оболочку 1, имеющую два наконечника. Верхний наконечник 12 оболочки выведен в салон автомобиля и упирается в упорную пластину 11, а нижний наконечник 2 оболочки закреплен в кронштейне 3 на картере сцепления.
Нижний наконечник 5 троса через поводок 8 соединен с рычагом 9 вилки выключения сцепления.
Регулировка хода педали осуществляется шайбами

6.

При нажатии на педаль сцепления трос перемещается внутри оболочки и перемещает рычаг вилки выключения сцепления, которая в дальнейшем воздействует на муфту выключения сцепления.




Рычажный привод грузового автомобиля (рис. 1, б) обеспечивает передачу усилия на сцепление при его выключении следующим образом.
При воздействии на педаль 14, закрепленную на валу 20, поворачивается рычаг 18, связанный с противоположным концом вала. Рычаг вала перемещает прикрепленную к нему на оси тягу 19, которая связана с рычагом 17 вилки выключения сцепления. Вместе с вилкой перемещается прижатая к ней с помощью пружины муфта выключения сцепления. После выбора зазора между подшипником выключения сцепления и рычагами начнется выключение сцепления.

Зазор в сцеплении должен быть равен 3…4 мм, что соответствует 35…50 мм свободного хода педали сцепления. Регулировка зазора осуществляется изменением длины тяги

19 (рис. 1) с помощью регулировочной гайки 22.
Отсутствие зазора или его недостаточная величина в приводе такой конструкции может привести к неполному включению сцепления и, как следствие, к пробуксовке сцепления. Увеличение зазора больше нормы приводит к неполному выключению сцепления, в результате чего возникает шум и треск зубчатых колес при переключении передач.

***

Гидравлический привод сцепления

Гидравлический привод выключения сцепления позволяет передавать усилие на большое расстояние с высоким КПД, снизить усилие на педали сцепления в результате наличия передаточного числа гидравлической части привода и способствует плавному включению сцепления из-за сопротивления перетеканию жидкости в элементах гидропривода. Он удобен для применения на легковых автомобилях, а также на грузовых автомобилях с опрокидывающейся кабиной.

Гидравлический привод (рис. 2) состоит из педали 6 сцепления с оттяжной пружиной, главного цилиндра

3, соединенного трубкой 2 с бачком 1, рабочего цилиндра, трубопроводов и шлангов для подачи рабочей жидкости от главного цилиндра к рабочему цилиндру и вилки выключения сцепления с пружиной 11.

При нажатии на педаль сцепления поршень 16 главного цилиндра перемещается влево и после перекрытия компенсационного отверстия 20 вытесняет жидкость через нагнетательный клапан 16 и трубопроводы в рабочий цилиндр. Поршень 14 рабочего цилиндра перемещает толкатель 9, который воздействует на вилку выключения сцепления 7.

При отпускании педали жидкость перетекает из рабочего цилиндра в главный цилиндр через обратный клапан 19 под действием усилия нажимных пружин сцепления и оттяжной пружины вилки 11. Обратный клапан устанавливается для создания небольшого избыточного давления в трубопроводах, которое исключает попадание воздуха в привод в результате возможного повышения давления окружающей среды при выключении сцепления и ускоряет время срабатывания привода при выключении сцепления.

При резком отпускании педали сцепления магистраль пополняется жидкостью через перепускное отверстие 21 и отверстие в поршне 18 главного цилиндра, прикрытое манжетой 19, что также не дает возможности снижения давления в приводе.
Избыток жидкости перетекает в бачок 1 через компенсационное отверстие 20, что позволяет возвратить детали привода в исходное положение.

***

Усилители привода сцепления



Заполнение рабочей жидкостью гидравлической системы привода выключения сцепления

В систему гидравлического привода выключения сцепления заливают только специальную тормозную жидкость (ТУ MXП 1608-47, ТУ 35-ХП-430—62 или ТУ 35-ХК-482-64).

Нельзя смешивать тормозные жидкости разных марок и добавлять в систему хотя бы самое незначительное количество минеральных масел, глицерина, бензина, керосина или их смесей, вызывающих разбухание, а затем полное разрушение резиновых деталей и вследствие этого выход системы из строя. Применение этиленгликоля также недопустимо ввиду вызываемой им коррозии металлических деталей.

При отсутствии специальной тормозной жидкости можно пользоваться смесью 50% (по весу) касторового масла и 50% бутилового спирта. Допускается замена бутилового спирта изобутиловым или этиловым. Необходимо иметь в виду, что этиловый спирт легче испаряется, чем бутиловый, и состав смеси будет изменяться (особенно в жаркую погоду).

При переходе на другой сорт рабочей жидкости необходимо удалить прежнюю и тщательно промыть всю систему гидропривода сцепления спиртом или новой тормозной жидкостью. Тормозную жидкость заливают в корпус питательного бачка 3, не вынимая из него сетчатого фильтра 2, чтобы избежать попадания в систему посторонних примесей. Уровень тормозной жидкости должен быть на 10—15 мм ниже верхней кромки бачка.

Необходимо помнить, что тормозная жидкость оставляет пятна на окрашенной поверхности кузова автомобиля; поэтому заполнять систему нужно аккуратно, не допуская попадания жидкости на кузов.

Наблюдать за уровнем жидкости в питательном бачке весьма просто, так как бачок изготовлен из полупрозрачной пластмассы.

Заполнять систему гидравлического привода выключения сцепления тормозной жидкостью и удалять из нее воздух необходимо в следующем порядке:

  1. Заполнить бачок жидкостью через сетчатый фильтр до нормального уровня. Для более быстрого заполнения бачка рекомендуется несколько приподнять сетчатый фильтр.
  2. Очистить от пыли и грязи клапан выпуска воздуха на рабочем цилиндре и, сняв с головки клапана резиновый защитный колпачок 2, надеть на головку клапана резиновый шланг (прилагаемый к автомобилю). Свободный конец шланга погрузить в тормозную жидкость, налитую в чистый стеклянный сосуд емкостью не менее 0,5 л, который должен быть заполнен на половину его высоты.
  3. Резко нажать ногой па педаль сцепления последовательно 4—5 раз (с интервалом между нажатиями в 1—2 сек), а затем, оставляя педаль нажатой, отвернуть на 1/2—1 оборот клапан выпуска воздуха. Под действием давления, созданного в системе, часть жидкости и содержащийся в ней воздух выйдут через шланг в сосуд с жидкостью (воздух из шланга будет выходить в виде пузырьков).
  4. После того как прекратится истечение жидкости из шланга, завернуть клапан выпуска воздуха до отказа.
  5. Повторить операции 3 и 4 до тех нор, пока полностью не прекратится выделение воздуха из шланга, погруженного в сосуд с жидкостью (для этого потребуется до 75—80 нажатий на педаль).

В процессе выполнения операции удаления воздуха из системы гидропривода добавляют тормозную жидкость в питательный бачок, не допуская снижения уровня в нем более чем на 2/3 от нормальной величины. Недостаточная высота столба жидкости над перепускным и компенсационным отверстиями в корпусе главного цилиндра может привести к подсасыванию в цилиндр (и в систему) атмосферного воздуха.

После того как прекратится выход из шланга пузырьков воздуха, следует, удерживая педаль нажатой, завернуть до отказа клапан выпуска воздуха и только после этого снять с его головки шланг. Далее надеть на головку клапана защитный колпачок, добавить в бачок жидкость до нормального уровня и поставить на место крышку бачка.

После окончания прокачки следует протереть поверхности деталей гидропривода сцепления тряпочкой.

Для полного заполнения системы гидропривода сцепления требуется 150 г тормозной жидкости.

Тормозная жидкость, выпущенная в сосуд при прокачивании системы, может быть вновь использована для ее заправки лишь после того, как она отстоится (не менее суток) и из нее полностью удалится воздух, затем ее необходимо профильтровать.

О качестве проведенной прокачки системы следует судить по величине полного хода штока поршня рабочего цилиндра сцепления при нажатии на педаль сцепления до упора ее в резиновый коврик пола кузова.

При полностью прокачанной системе величина хода штока поршня, как указано выше, должна быть не менее 10 мм. При меньшей величине перемещения штока, если система исправна и полный ход педали сцепления равен не менее 150 мм, следует продолжить прокачку, как указывалось выше, до полного удаления воздуха из системы и получения нормального хода штока поршня.

Правильно прокачанная система гидропривода сцепления должна обеспечить безударное включение первой передачи в коробке передач.

Если при выжатой до упора педали сцепления имеет место ударное включение первой передачи, следует убедиться в правильности установки свободного хода наружного конца вилки выключения сцепления и исправности механизма сцепления.

Усилитель привода сцепления.


Ступенчатые трансмиссии

Усилители привода сцеплений




Усилители привода сцепления вводятся в привод, если требуемое для выключения сцепления усилие на педали превышает 150 Н для легковых автомобилей и 250 Н для грузовых автомобилей. Их назначение – облегчить работу водителю по управлению сцеплением автомобиля при переключении передач либо при необходимости удержания сцепления в выключенном состоянии для временного разъединения трансмиссии от двигателя (например, при кратковременном движении накатом).
Наиболее часто в конструкциях автомобильных трансмиссий применяют механические и пневматические (пневмогидравлические) усилители сцепления.
Электрические усилители привода сцепления в настоящее время применения не нашли.

***

Механические усилители сцепления

Наиболее простым по конструкции является механический усилитель привода сцепления, в качестве которого используется сервопружина. Она позволяет снизить максимальное усилие на педали сцепления на 30…40%.
Сервопружина может устанавливаться как в механическом, так и в гидравлическом приводах и работать на сжатие или растяжение.

На рис. 1 приведена конструкция механического усилителя привода сцепления сервопружиной и схема ее работы. При включенном сцеплении сервопружина 2, воздействуя на рычаг 3, удерживает педаль 1 сцепления в верхнем положении, обеспечивая тем самым зазор между подшипником выключения сцепления (выжимным подшипником) и рычагами сцепления. При этом ось пружины Оа (рис. 2, б) находится выше оси поворота педали Оb.

При нажатии на педаль пружина сжимается и противодействует перемещению до тех пор, пока ось пружины Оа не займет положение ниже оси Оb. С этого момента пружина начнет создавать момент на рычаге 3, способствуя дальнейшему перемещению педали и выключению сцепления.

***

Пневматические (пневмогидравлические) усилители сцепления

Другим типом усилителей привода сцепления являются пневматические усилители, которые вводятся в гидроприводы грузовых автомобилей (рис. 2), поэтому их часто называют пневмогидравлическими усилителями, или, сокращенно, ПГУ.
Основные элементы привода такие же, как и на рассмотренных ранее конструкциях гидроприводов.
Иногда пневматические усилители сцепления грузовых автомобилей называют пневмогидравлическими усилителями, или ПГУ.

Пневматический усилитель 5 совмещается с рабочим цилиндром 9. Усилие, создаваемое усилителем, может передаваться на поршень рабочего цилиндра или непосредственно на вилку выключения сцепления.
Суммарное усилие, создаваемое гидравлической частью привода и усилителем, позволяет значительно облегчить выключение сцепления и удержание его в выключенном состоянии.
В случае отсутствия воздуха в пневмосистеме автомобиля возможна работа гидравлического привода без усиления, но при этом усилие на педаль при выключении сцепления существенно возрастает.

Пневматические усилители, как правило, в своей конструкции имеют так называемые следящие устройства, обеспечивающие пропорциональность между усилием на педали сцепления и усилием, развиваемым усилителем.
Отсутствие следящего устройства приведет к тому, что малейшее нажатие на педаль вызовет прогрессирующее ее перемещение за счет возрастающего дополнительного усилия, развиваемого пневматическим усилителем, что создаст неудобства и даже невозможность управления сцеплением.


Пневматический усилитель «КамАЗ»

Пневматический усилитель автомобилей марки «КамАЗ» (рис. 3) состоит из переднего 15 алюминиевого и заднего 18 чугунного корпусов.
В цилиндре переднего корпуса расположен пневмопоршень 14 с манжетой и возвратной пружиной 13. Пневмопоршень напрессован на толкатель 2, выполненный как одно целое с гидравлическим поршнем 17 рабочего цилиндра, который установлен в заднем корпусе.

В верхней части обоих корпусов находится следящее устройство, которое обеспечивает кинематическое и силовое слежение. К основным частям следящего устройства относятся следящий поршень 4 с уплотнительной манжетой 3, мембрана 7 с пружиной 9, впускной 11 и выпускной 10 клапаны и их седла 8, 12.

При включенном сцеплении пневмопоршень 14 находится в крайнем правом положении под действием возвратной пружины 13. Давление перед поршнем и за поршнем соответствует давлению окружающей среды. Полость перед поршнем соединяется с окружающей средой выходом 6 через открытый выпускной клапан 10 и отверстие б в седле выпускного клапана 8, а полость за поршнем – через отверстие а в корпусе. Поршень 17 рабочего цилиндра также находится в правом положении, так как он связан с пневмопоршнем.




При нажатии на педаль сцепления рабочая жидкость поступает под давлением в полость А рабочего цилиндра и одновременно к торцу следящего поршня 4, который перемещаясь, воздействует на клапанное устройство таким образом, что выпускной клапан 10 закрывается, а впускной 11 открывается, пропуская сжатый воздух в пневмоцилиндр.

Под давлением сжатого воздуха пневмопоршень 14 начинает перемещаться, оказывая воздействие на поршень 17 рабочего цилиндра. В результате на толкатель 2 поршня рабочего цилиндра действует суммарное усилие, обеспечивающее выключение сцепления.
Одновременно воздух через отверстие в в переднем корпусе 15 попадает в полость справа от мембраны 7 и, воздействуя на нее, оказывает противодавление перемещению следящего поршня 4, благодаря которому осуществляется силовое слежение.
Для полного выключения сцепления необходимо нажать на педаль с силой 200 Н.

При отпускании педали давление жидкости перед следящим поршнем 4 падает, под действием пружины 9 происходит смещение следящего поршня 4 влево, при этом впускной клапан 11 перекрывается, а выпускной открывается.
Сжатый воздух из полости перед пневмопоршнем 14 постепенно стравливается в окружающую среду, воздействие поршня на толкатель 2 уменьшается, и осуществляется плавное включение сцепления.

Если в процессе включения или выключения сцепления педаль будет остановлена, произойдет стабилизация давления в полости А рабочего цилиндра и в результате незначительного смещения следящего поршня 4 и мембраны 7 оба клапана закроются, а давление в полости пневмопоршня 14 также станет стабильным.

При отсутствии сжатого воздуха в пневматической системе сохраняется возможность управления сцеплением за счет давления только в гидравлической части усилителя, при этом усилие на педали, создаваемое водителем, будет составлять примерно 600 Н.

Пневмогидравлический усилитель сцепления автомобилей марки «КамАЗ» крепится на картере сцепления с правой стороны силового агрегата.


Пневматический усилитель «КрАЗ»

Пневматический усилитель автомобиля КрАЗ-260 (рис. 4) работает следующим образом.

При нажатии на педаль сцепления давление жидкости в рабочем цилиндре возрастает. Поршень 9 рабочего цилиндра вместе с воздушным клапаном 5 и его седлом 11 смещаются влево до тех пор, пока клапан не упрется в торец хвостовика 4 превмопоршня.
Дальнейшее перемещение гидропоршня открывает доступ воздуха через радиальное отверстие в нем и зазор между клапаном и седлом в полость пневматического цилиндра 3. Пневмопоршень, перемещаясь через шток 15 и рычаг 10 (рис. 2, б) выключает сцепление.

При отпускании сцепления давление жидкости в рабочем цилиндре снижается и поршень под действием возвратной пружины 12 (рис. 4) перемещается вправо, а воздушный клапан садится в седло, открывая выход воздуху через осевое отверстие в хвостовике 4 и сапун 1 в окружающую среду. Пневмопоршень смещается вправо под действием пружины 11 (рис. 2, б), сцепление включается.

Если педаль сцепления, а следовательно, поршень рабочего цилиндра будут остановлены в каком-нибудь промежуточном положении, хвостовик 4 (рис. 4), продолжая смещаться вправо, упрется в клапан 5 и выход воздуха прекратится.
Суммарное усилие пневматического и гидравлического поршней будут равно моменту сопротивления нажимного устройства сцепления и оттяжной пружины, наступит равновесное положение, и перемещение деталей прекратится. Выход из этого положения возможен при изменении усилия на педали сцепления.
Такая способность усилителя обеспечивать пропорциональность между усилием на педали и давлением воздуха на пневмопоршень называется слежением.

***

Коробка передач



Сцепление и приводы управления сцеплением — Мегаобучалка

 

Назначение и принцип действия сцепления. Сцепление автомобиля служит для кратковременного разъединения коленча­того вала двигателя от коробки передач и их плавного соединения, которые необходимы при переключении передач и трогания авто­мобиля с места.

На легковых и грузовых автомобилях наиболее распространено однодисковое сцепление фрикционного типа. Сцепление (рис.71) состоит из механизма и привода выключения. Механизм сцепления собран на маховике 1 двигателя, а привод — на невращающихся деталях, установленных на раме или кузове автомобиля.

Основными деталями механизма сцепления являются ведомый диск 2, установленный на шлицы ведущего вала 8 коробки передач, нажимный диск 3 с пружинами 4, размещенными на кожухе 12, который жестко прикреплен к маховику. На кожухе 12 сцепления установлены на шаровых опорах отжимные рычаги 11, соединенные шарнирно с нажимным диском 3.

Привод выключения сцепления состоит из муфты 10 с выжимным подшипником и возвратной пружиной 9, вилки 5, тяги 6 и педали 7.

При отпущенной педали сцепления ведомый диск 2 зажат пружинами 4 между маховиком и нажимным диском. Такое состо­яние сцепления называется включенным, так как при работе двига­теля крутящий момент от маховика и нажимного диска передается за счет сил трения на ведомый диск и дальше на ведущий вал 8 коробки передач. Если нажать на педаль 1 сцепления, тяга 6 перемещается и поворачивает вилку 5 относительно места ее крепления. Свободный конец вилки давит на муфту 10, в результате чего она перемешается к маховику и нажимает на рычаги 11, которые отодвигают нажимный диск 3. При этом ведомый диск освобождается от сжимающего усилия, отходит от маховика и сцеп­ление выключается.

Для включения сцепления необ­ходимо плавно отпускать педаль 7. При этом усилие на ведомом диске будет нарастать постепенно, вслед­ствие чего будет происходить прос­кальзывание диска относительно маховика и плавное их соединение до момента полного включения. С целью отвода теплоты, выделя­ющейся при включении сцепления, на кожухе выполняют отверстия для циркуляции воздуха.



Рассмотренный на схеме фрикционного сцепления привод вы­ключения сцепления прост по конструкции, содержит жесткие рычаги и тяги и называется механическим. На многих легковых автомобилях в настоящее время применяют гидравлический привод выключения сцепления. В таком приводе усилие от педали к механизму сцепления передается жидкостью, заключенной в гидроцилиндрах и трубопроводах. На грузовых автомобилях для облегчения управления сцеплением в приводе его выключения иногда применяют пневматический усилитель (автомобили МАЗ, КамАЗ).

Устройство сцеплений. Однодисковый механизм сцепления автомобиля ГАЗ-24 «Волга» (рис.72) состоит из ведомого диска 4, установленного на шлицевом конце ведущего вала 8 коробки передач, и стального штампованного кожуха 11, прикрепленного к маховику 2 болтами. Внутри к кожуху на опорных вилках прикреплены рычаги 10 выключения сцепления, шарнирно соединенные с нажимным диском 5. Опорные вилки также шарнирно крепятся к кожуху 11, что обеспечивает отвод нажимного диска при выключении без перекосов.

Между кожухом 11 и нажимным диском по окружности разме­щены нажимные цилиндрические пружины 6, установленные для центровки на бобышках по периферии нажимного диска.

Ведомый диск сцепления (рис.73) выполнен раздельно со ступицей 6, крутящий момент на которую передается через демп­ферные пружины 5. Они расположены в окнах ступицы 6 и дисков 2 и 8, скрепленных через вырез в ступице пальцами 7. К диску 2 прикреплены волнистые пружинные пластины 4 с двумя фрик­ционными накладками 3. При включении сцепления волнистые пружины распрямляются постепенно, обеспечивая более плавное включение. Ведомый диск имеет также гаситель крутильных коле­баний, выполненный в виде пружины 1, прижимающей диск 2 к ступице 6 с некоторым усилием.

Крутильные колебания, возникающие на маховике двигателя в основном за счет пульсации его работы при включенном сцеплении, передаются ведомому диску и заставляют его поворачиваться на некоторый угол относительно ступицы 6, сжимая пружины 5. При этом возникает трение диска 2 о фланец ступицы, к которой он прижимается пружиной 1 гасителя, и энергия крутильных коле­баний гасится, превращаясь в теплоту. В целом гаситель способст­вует мягкости, включения сцепления и повышает долговечность шестерен коробки передач и карданного вала.

Механизм сцепления с двумя ведомым и дисками отличается от однодискового фрикционного механизма сцепления наличием среднего нажимного диска, распо­лагаемого между двумя ведомыми дисками. Конструкция нажим­ного диска и других элементов двухдискового механизма сцепления принципиальных отличий от однодискового механизма не имеет.

Однодисковый механизм сцепления с центральной диафрагменной нажимной пружиной (рис.74) имеет только одну нажимную пружину. Она выполнена в форме усеченного конуса. В выштамповке пружины расположено 18 лепестков, которые являются не только упругими элементами, но и одновременно отжимными рычагами. Основное преимущество диафрагменной пружины — ее нелиней­ная характеристика. Она обеспечивает практически постоянное усилие независимо от степени нажатия. У цилиндрических пружин характеристика линейная — усилие прямо пропорционально их сжатию. Применение диафрагменной пружины улучшает износос­тойкие свойства сцепления, исключает возможность пробуксовки и позволяет уменьшить габаритные размеры и массу.

В конструкции сцепления диафрагменная пружина 5 крепится заклепками 6 и двумя опорными кольцами 9 на кожухе 4 сцепления. Наружный край пружины передает сжимающее усилие на нажимный диск 3.

При выключении сцепления подшипник 8 через упорный фла­нец воздействует на лепестки пружины и перемещает ее в сторону маховика. Наружный край пружины отгибается в обратную сторону и фиксаторами 10 отводит нажимный диск 3 от ведомого диска 2 — сцепление выключается. Ведомый диск 2 в данной конструкции сцепления имеет гаситель крутильных колебаний.

Приводы управления сцеплением. Механический при­вод выключения сцепления применяют на большин­стве отечественных грузовых автомобилей, так как он наиболее прост по конструкции и удобен в эксплуатации. Основными дета­лями (рис.75) привода выключения сцепления автомобиля ЗИЛ-130 являются педаль 1, которая закреплена на валу 5, связанном тягой 6 с рычагом 7 и вилкой 3 выключения сцепления.

При нажатии на педаль 1 все детали привода приходят во взаимодействие, в результате чего подшипник 2 муфты нажимает на внутренние концы рычагов выключения, нажимный диск отводится, а ведомый освобождается от усилия нажатия и сцепления выключается.

При включении сцепления педаль отпускают, муфта с подшипником под действием возвратной пружины 4 занимает исходное положение, освобождая рычаги выключения и сцепление включается.

Гидравлический привод выключения сцеп­ления сложнее по конструкции, чем механический, но он обес­печивает более плавное включение и допускает свободное расположение педали привода по отношению к механизму сцепления.

На автомобиле ГАЗ-24 гидропривод сцепления (см. рис.72) включает педаль 16, главный 15 и рабочий 14 цилиндры, а также толкатель 12, действующий на вилку 9 выключения сцепления. Главный и рабочий цилиндры привода соединены трубопроводом.

Педаль подвешена на оси к кронштейну кузова. К педали шарнирно присоединен толкатель главного цилиндра, действу­ющий на поршень. Перемещение поршня при нажатии на педаль, показанное на рис.72 штрихпунктирной линией, вызывает перетекание жидкости по трубопроводу и повышение давления в рабо­чем цилиндре. В результате поршень рабочего цилиндра тоже начинает двигаться и через толкатель 12 действует на вилку 9, которая перемещает выжимный подшипник и выключает сцеп­ление. Возврат педали в исходное положение после ее отпускания происходит под действием оттяжной пружины.

Пневматический усилитель в приводе сцепления применяют на грузовых автомобилях, чтобы уменьшить усилие нажима на педаль при выключении сцепления. Устройство пневматического усилителя гидравлического привода выключения сцепления автомобиля КамАЗ показано на рис.76.

Пневматический усилитель состоит из двух корпусов, между ко­торыми зажаты диафрагмы следящего устройства. В переднем корпусе расположены пневмопоршень 6, клапаны управления 5 и диафрагма 4. В заднем корпусе установлены гидропоршень 2 выключения сцеп­ления и поршень 3 следящего устройства. Следящее устройство автоматически изменяет давление на пневмопоршень в соответствии с изменением усилия в гидроприводе педали сцепления.

Работает пневмоусилитель следующим образом. При нажатии на педаль сцепления давление жидкости из главного цилиндра передается под гидропоршень усилителя и следящий поршень.

Последний перемещается и действует на клапаны управления, закрывая выпускной и открывая впускной. При этом сжатый воздух из системы начинает поступать в полость пневмопоршня, который перемещается, оказывая дополнительное усилие на шток 1 выклю­чения сцепления. В результате суммарное усилие от давления воздуха и педали на штоке выключения сцепления возрастает и сцепление выключается. При пускании педали давление в гидроприводе исчезает и поршни под действием пружин отходят в исходное положение, сцепление включается, а воздух из пневмоусилителя выходит в атмосферу.

Коробка передач.

 

Назначение и принцип действия коробки передач. Короб­ка передач служит для изменения в широком диапазоне крутящего момента, передаваемого от двигателя на ведущие колеса автомобиля при трогании с места и его разгоне. Помимо этого коробка передач обеспечивает автомобилю движение задним ходом и позволяет длительно разъединять двигатель и ведущие колеса, что необходимо при работе двигателя на холостом ходу во время движения или при стоянке автомобиля.

На современных отечественных автомобилях применяют преимущественно механические ступенчатые коробки передач с зубчатыми шестернями. Количество передач переднего хода обычно равно четырем или пяти, не считая передачи заднего хода.

Пятая передача чаще всего выполняется с передаточным числом менее 1,0 и является «ускоряющей» или «экономичной», так как позволяет на скоростях автомобиля, приближенных к максималь­ной, понизить частоту вращения двигателя и получить некоторую экономию топлива.

Переключение передач в механических коробках осуществляет­ся передвижением шестерен, которые входят поочередно в зацеп­ление с другими шестернями, или блокировкой шестерен на валу с помощью синхронизаторов. Синхронизаторы выравнивают час­тоты вращения включаемых шестерен и блокируют одну из них с ведомым валом. Управление передвижением шестерен или синхронизаторов осуществляет водитель при выключенном сцеп­лении. В зависимости от числа передач переднего хода коробки передач бывают трехступенчатыми, четырехступенчатыми и т.д.

Принцип действия коробки передач можно рассмотреть на схеме трехступенчатой коробки передач (рис.77). Основными деталями коробки являются ведущий вал 1, ведомый вал 5, промежуточный вал 6, установленный в корпусе коробки. На первичном валу жестко закреплена шестерня z2 находящаяся в постоянном зацеплении с шестерней z’3, жестко закрепленной на промежуточном валу. Другие шестерни промежуточного вала z’2, z’1 и z’3x также жестко закреплены. На ведомом валу 5 установлена свободно вращающаяся шестерня z2, находящаяся в постоянном за­цеплении с шестерней z’2, шестер­ня z1 и синхронизатор 2 соединены с валом 5 посредством шлиц и имеют возможность перемещаться по ним в направлениях, указанных стрелками. Шестерня z0 обес­печивает изменение направления вращения ведомого вала в обрат­ную сторону при включении пере­дачи заднего хода.

Каждая передача характеризуется передаточным числом, под которым понимают отношение числа зубьев ведомой шестерни к ведущей. Если в передаче участ­вует Несколько пар зубчатых шестерен, то для определения переда­точного числа следует перемножить значения передаточных отношений всех пар.

В рассматриваемой схеме коробки передач для включения пер­вой передачи шестерню z1 передвигают вилкой 4 влево до зацеп­ления ее с шестерней z’1. Тогда крутящий момент будет передаваться с первичного вала 1 через шестерни постоянного зацепления z3 и z’3 на шестерни z’1 и z1, образующие первую передачу.

Передаточное число для нее можно определить по формуле iI = = (z’3/z3)*(z1/z’1), где z1, z’1, z3, z’3 — число зубьев соответствующих шестерен.

Вторая передача включается перемещением синхронизатора 2 с помощью вилки 3 вправо. При этом шестерня z2 блокируется на ведомом валу, а крутящий момент на нем будет определяться Передаточным числом iII = (z’3/z3)*(z2/z’2).

Третью передачу можно получить, если передвинуть синхронизатор 2 влево. В этом случае ведомый и ведущий валы жестко соединяются, а передаточное число в коробке не изменяется и становится равным единице, такую передачу называют прямой. Она используется для движения автомобиля с большой скоростью.

Устройство коробок передач. Четырехступенчатая коробка передач автомобиля ГАЗ-53А имеет четыре передачи для движения вперед и одну назад. Она выполнена по трехвальной схеме и действует аналогично трехступенчатой коробке передач (рис.77). Конструктивными особенностями коробки передач автомобиля ГA3-53A является постоянное зацепление шестерен ведущего и проме­жуточного вала, шестерен второй и третьей передач. Передачи переднего хода включаются передвижением шестерни первой передачи и синхронизатора по шлицам ведомого вала, а задний ход включается перемещением блока шестерен заднего хода.

Пятиступенчатая коробка передач авто­мобилей МАЗ-5335 приведена на рис.78. Основными частями коробки передач являются картер, ведущий вал, промежуточный вал с шестернями, ведомый вал с шестернями и синхронизаторами, механизм переключения передач.

Ведущий вал 2 установлен на шариковом подшипнике в перед­ней стенке картера 13 и имеет на переднем конце шлицы для установки диска сцепления, а на заднем конце — шестерню, нахо­дящуюся в постоянном зацеплении с шестерней 24 на промежуточ­ном валу 18. Шестерни 11, 9 и 8 ведомого вала 16 установлены на нем свободно на гладких стальных втулках и зацеплены с соответ­ствующими шестернями на промежуточном валу. При включении второй, третьей, четвертой и пятой передач блокировка шестерен с ведомым валом осуществляется с помощью синхронизаторов 5 и 10. Первая передача и задний ход включаются перемещением шестерни 12 вдоль оси ведомого вала.

Стальные опорные втулки шестерен ведомого вала смазываются под давлением от насоса 25, приводимого хвостовиком валика, вставленного в паз промежуточного вала. Подача масла произ­водится от насоса по каналам в крышке подшипника вала, через переходную втулку в осевой канал ведомого вала и далее по радиальным сверлениям к втулкам шестерен. Зубья шестерен сма­зываются за счет разбрызгивания масла, забираемого зубьями из масляной ванны картера коробки передач.

Безударное включение передач переднего хода в рассматрива­емой коробке обеспечивается синхронизаторами инерционного типа. Синхронизатор 10 включает вторую и третью передачу, а синхронизатор 5 — четвертую (прямую) и пятую (ускоряющую) передачи.

Устройство синхронизатора показано на рис.79. Основными деталями синхронизатора являются корпус 5 с бронзовыми коническими кольцами 10, запрессованными в него с обоих концов. Внутри корпуса установлена муфта 8 с зубчатыми венцами 9. Фланец муфты имеет выступы 6, которые входят в фигурные вырезы 3 корпуса. В те выступы фланцы, которые не входят в вырезы, вставлены шариковые фиксаторы 7. Пальцы муфты 4 проходят через вырез в корпусе и вставлены во внутренний паз кольца 2 переключения, соединенного с вилкой переключения передач.

При включении передачи муфта 8 под действием вилки переключения передвигается в сторону включаемой шестерни 1. Конусная поверхность конического блокирующего кольца начинает соприкасаться с конусной поверхностью шестерни. Поскольку в начальный момент соприкосновения частоты вращения кольца и шестерни не совпадают, на их поверхностях возникают силы трения, поворачивающие корпус на некоторый угол, вследствие чего выступы фланца муфты упираются в края фигурных вырезов и осевое перемещение муфты дальше не происходит.

В результате трения между коническими поверхностями кольца и шестерни их частота вращения выравнивается. В этот момент выступы муфты выходят из прорезей фигурных вырезов и больше не препятствуют осевому перемещению муфты. Муфта перемещается дальше в сторону включения и ее зубья входят в зацепление с зубчатым венцом шестерни, блокируя ее на валу.

Выключение передачи осуществляется простым перемещением муфты в нейтральное положение, в результате чего зубчатые венцы шестерни и муфты синхронизатора оказываются разъединенными.

Механизм переключения передач размещает­ся в верхней крышке коробки передач и приводится в действие рычагом, установленным на шаровой опоре. Нижний конец рычага при отклонении входит в пазы вилок переключения. Вилки закреплены на штоках, которые могут перемещаться в осевом направлении и удерживаются фиксаторами 7 (рис.78).

Для защиты от случайного включения двух передач одновре­менно служит блокирующее устройство (замок), которое состоит из двух плунжеров и штифта, заложенных в горизонтальное сверление в крышке и среднем ползуне. При перемещении одного из крайних ползунов блокирующее устройство стопорит средний и другой крайний ползун в нейтральном положении, а при перемещении среднего ползуна стопорятся оба крайних ползуна.

Для предохранения от включения заднего хода служит пружинный предохранитель, который задает в момент включения заднего хода ощутимо большее усилие на рычаге переключения, чем при включении передач переднего хода.

На грузовых автомобилях КамАЗ, работающих в качестве тяга­чей, устанавливают пятиступенчатую коробку передач с передним приставным двухступенчатым редуктором-делителем передач, который в сочетании с основной коробкой позволяет получить 10 передач переднего хода и 2 передачи заднего хода. При включении делителя происходит уменьшение общего передаточного числа каждой передачи примерно в 1,225 раза.

Делитель передач (рис.80) представляет по конст­рукции дополнительный редуктор, картер 7 которого жестко пристыкован к картеру коробки передач. В картере делителя размещены ведущий 2 и промежуточный 6 валы, пара зубчатых шестерен 3 и 1, синхронизатор 5 и механизм переключения. Промежуточный вал делителя постоянно соединен шлицами с промежуточным валом коробки передач. Шестерня 3 ведущего вала вращается на нем свободно и имеет зубчатый венец для взаимодействия с синхронизатором, закрепленным с помощью зубчатой муфты 4.

Делитель обеспечивает две передачи: прямую и повышающую. Прямая передача не изменяет передаваемого момента от двигателя к коробке передач. Она включается перемещением синхронизатора вправо, в результате чего ведущий вал делителя и ведущий вал коробки передач жестко блокируются.

Повышающая передача делителя включается при перемещении синхронизатора влево. В этом случае шестерня 3 блокируется синхронизатором на ведущем валу делителя, а крутящий момент передается с шестерни 3 на шестерню 1 промежуточного вала и далее на промежуточный вал коробки передач. При этом происходит уменьшение передаваемого крутящего момента на передаточное число делителя и частота вращения возрастает на такую же величину. Это дает возможность работать автомобилю при небольших нагрузках с повышенной скоростью движения, что способствует экономии топлива.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *