Что такое турбина – Турбина.ру — туристическое сообщество. Фотографии со всего мира, отзывы туристов и путешественников об отелях, ресторанах и достопримечательностях.

Содержание

Турбина — это… Что такое Турбина?

Монтаж паровой турбины, произведённой Siemens, Германия.

Турби́на (фр. turbine от лат. turbo — вихрь, вращение) — ротационный двигатель с непрерывным рабочим процессом[1] и вращательным движением рабочего органа (ротора), преобразующий кинетическую энергию и/или внутреннюю энергию рабочего тела (пара, газа, воды) в механическую работу. Струя рабочего тела воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение.

Применяется в качестве привода электрического генератора на тепловых, атомных и гидро электростанциях, как составная часть приводов на морском, наземном и воздушном транспорте, а также гидродинамической передачи.

История

Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. до н. э.). Однако только в конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня, Густаф Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленности паровые турбины.

[2]

Хронология

Question book-4.svgВ этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 11 ноября 2011.
  • I в. н. э.: Паровая турбина Герона Александрийского (эолипил) — на протяжении столетий рассматривалась как игрушка и её полный потенциал не был изучен.
  • 1500: В чертежах Леонардо да Винчи встречается «дымовой зонт». Горячий воздух от огня поднимается через ряд лопастей, которые соединены между собой и вращают вертел для жарки.
  • 1551: Таги-аль-Дин придумал паровую турбину, которая использовалась для питания самовращающегося вертела.
  • 1629: Сильная струя пара вращала турбину, которая затем вращала ведомый механизм, позволяющий работать мельнице Джованни Бранка.
  • 1678: Фердинанд Вербейст построил модель повозки на основе паровой машины.
  • 1791: Англичанин Джон Барбер получил патент на первую настоящую газовую турбину. Его изобретение имело большинство элементов, присутствующих в современных газовых турбинах. Турбина была разработана для приведения в действие безлошадной повозки.
  • 1872: Франц Столц разработал первый настоящий газотурбинный двигатель.
  • 1894: Сэр Чарльз Парсонс запатентовал идею корабля, приводимого в действие паровой турбиной и построил демонстрационное судно Турбиния. Этот принцип тяги используется до сих пор.
  • 1895: Три четырёхтонных 100 кВт генераторов радиального потока Парсонса были установлены на электростанции в Кэмбридже и использовались для электрического освещения улиц города.
  • 1903: Норвежец, Эджидиус Эллинг, смог построить первую газовую турбину, которая могла произвести больше энергии, чем требовалось для её работы, что рассматривалось как значительное достижение в те времена, когда знания о термодинамике были ограничены. Используя вращающиеся компрессоры и турбины, она производила 11 л.с. (существенно для того времени). Его работа впоследствии была использована сэром Фрэнком Уиттлом.
  • 1913: Никола Тесла запатентовал турбину Тесла, основанную на эффекте граничного слоя.
  • 1918: General Electric, один из ведущих производителей турбин в настоящее время, запустил своё подразделение газовых турбин.
  • 1920: Практическая теория протекания газового потока через каналы была переработана в более формализованную (и применяемую к турбинам) теорию течения газа вдоль аэродинамической поверхности доктором Аланом Арнольдом Грифицем.
  • 1930: Сэр Фрэнк Уиттл запатентовал газовую турбину для реактивного движения. Впервые этот двигатель был успешно использован в апреле 1937.
  • 1934: Рауль Патерас Пескара запатентовал поршневой двигатель в качестве генератора для газовой турбины.
  • 1936: Ханс фон Охайн и Макс Хан в Германии разработали собственный патентованный двигатель в то же самое время, когда сэр Фрэнк Уиттл разрабатывал его в Англии.

Разработки Густафа Лаваля

Первую паровую турбину создал шведский изобретатель Густаф Лаваль. По одной из версий, Лаваль создал его для того, чтобы приводить в действие сепаратор молока собственной конструкции. Для этого нужен был скоростной привод. Двигатели того времени не обеспечивали достаточную частоту вращения. Единственным выходом оказалось сконструировать скоростную турбину. В качестве рабочего тела Лаваль выбрал широко используемый в то время пар. Изобретатель начал работать над своей конструкцией и в конце концов собрал работоспособное устройство. В 1889 году Лаваль дополнил сопла турбины коническими расширителями, так появилось знаменитое сопло Лаваля, которое стало прародителем будущих ракетных сопел. Турбина Лаваля стала прорывом в инженерии. Достаточно представить себе нагрузки, которые испытывало в ней рабочее колесо, чтобы понять, как нелегко было изобретателю добиться стабильной работы турбины. При огромных оборотах турбинного колеса даже незначительное смещение в центре тяжести вызывало сильную вибрацию и вызывало перегрузку подшипников. Чтобы избежать этого, Лаваль использовал тонкую ось, которая при вращении могла прогибаться.

Разработки Чарлза Парсонса

В 1884 году английский инженер Чарлз Парсонс получил патент на многоступенчатую турбину. Турбина предназначалась для приведения в действие электрогенератора. В 1885 году он разработал усовершенствованную версию, которая получила широкое применение на электростанциях. В конструкции турбины был применен выравнивающий аппарат, представляющий из себя набор неподвижных венцов (дисков) с лопатками, имевшими обратное направление. Турбина имела три ступени разного давления с разной геометрией лопаток и шагом их установки. Таким образом, в турбине использовалась как активная, так и реактивная его сила.

В 1889 году уже около трехсот таких турбин использовалось для выработки электроэнергии. Парсонс старался расширить сферу применения своего изобретения и в 1894 году он построил опытное судно Турбиния с приводом от паровой турбины. На испытаниях оно продемонстрировало рекордную скорость — 60 км/ч.

Question book-4.svg

Невозможность получить большую агрегатную мощность и очень высокая частота вращения одноступенчатых паровых турбин Лаваля (до 30 000 об/мин у первых образцов) привели к тому, что они сохранили своё значение только для привода вспомогательных механизмов. Активные паровые турбины развивались в направлении создания многоступенчатых конструкций, в которых расширение пара осуществлялось в ряде последовательно расположенных ступеней. Это позволило значительно повысить единичную мощность, сохранив умеренную частоту вращения, необходимую для непосредственного соединения вала турбины с вращаемым ею механизмом.

Реактивная паровая турбина Парсонса некоторое время применялась (в основном, на военных кораблях), но постепенно уступила место более компактным комбинированным активно-реактивным турбинам, у которых реактивная часть высокого давления заменена одно- или двухвенчатым активным диском. В результате уменьшились потери на утечки пара через зазоры в лопаточном аппарате, турбина стала проще и экономичнее.

Конструкция турбин

Question book-4.svg Модель одной ступени паровой турбины Question book-4.svg
Паровая турбина с раскрытым статором. На верхней части статора видны лопатки выравнивающего аппарата

Турбина состоит из двух основных частей. Ротор с лопатками — подвижная часть турбины. Статор с выравнивающим аппаратом — неподвижная часть.

По направлению движения потока рабочего тела различают аксиальные паровые турбины, у которых поток рабочего тела движется вдоль оси турбины, и радиальные, направление потока рабочего тела в которых перпендикулярно оси вала турбины. Центробежные турбины (турбокомпрессоры) также выделяют как отдельный тип турбин.

По числу контуров турбины подразделяют на одноконтурные, двухконтурные и трёхконтурные. Очень редко турбины могут иметь четыре или пять контуров. Многоконтурная турбина позволяет использовать большие тепловые перепады энтальпии, разместив большое число ступеней разного давления.

По числу валов различают одновальные, двухвальные, реже трёхвальные, связанных общностью теплового процесса или общей зубчатой передачей (редуктором). Расположение валов может быть как коаксиальным так и параллельным с независимым расположением осей валов.

В местах прохода вала сквозь стенки корпуса установлены концевые уплотнения для предупреждения утечек рабочего тела наружу и засасывания воздуха в корпус.

На переднем конце вала устанавливается предельный регулятор (регулятор безопасности), автоматически останавливающий (замедляющий) турбину при увеличении частоты вращения на 10—12 % сверх номинальной.

Выравнивающий аппарат

Выравнивающий аппарат (англ. fixed nozzles) — лопатки, закрепленные на статоре (неподвижны), задача которых выравнивать воздушный поток между вентиляторными ступенями. Выравнивание шаговой неравномерности потока за лопаточным венцом рабочего колеса производится для повышения аэродинамической эффективности вентиляторных ступеней и снижения уровня шума.[3]

Классификация

Question book-4.svg
Устройство гидротурбины

По типу рабочего тела

Примечания

  1. Техническая энциклопедия / Главный редактор Л. К. Мартенс. — М: Государственное словарно-энциклопедическое издательство «Советская энциклопедия», 1934. — Т. 24. — 31 500 экз.
  2. Константин Владиславович Рыжов [lib.aldebaran.ru/author/ryzhov_konstantin/ryzhov_konstantin_100_velikih_izobretenii/ 100 великих изобретений]. — М., 2006. — ISBN 5‑9533‑0277‑0
  3. ВЕНТИЛЯТОРНАЯ СТУПЕНЬ КОМПРЕССОРА (ВАРИАНТЫ)

См. также

Ссылки

Турбокомпрессор — это… Что такое Турбокомпрессор?

Турбокомпрессор или газотурбинный нагнетатель — центробежный или осевой компрессор, работающий в паре с турбиной.[1] Являются основным конструктивным элементом газотурбинных двигателей.[2]

Газотурбинные двигатели

Схема двигателя с турбовентилятором.
1 — Вентилятор.
2 — Компрессор низкого давления.
3 — Компрессор высокого давления.
4 — Камера сгорания.
5 — Турбина высокого давления.
6 — Турбина низкого давления.
7 — Сопло.
8 — Вал ротора высокого давления.
9 — Вал ротора низкого давления.

Основной агрегат, состоящий из центробежного или осевого компрессора и газовой турбины для его привода, установленных на одном валу, называется турбокомпрессором. Основным назначением турбокомпрессора является повышения давления рабочего тела газотурбинного двигателя за счет его нагнетания компрессором, который получает мощность от турбины. Турбокомпрессор в совокупности с камерой сгорания, расположенной между турбиной и компрессором, называется газогенератором. Турбокомпрессор низкого давления турбореактивного двигателя (ТРДД), состоящий из компрессора низкого давления (вентилятора) и турбины, иногда называют турбовентилятором.[2][3]

Автомобильные

Разрез автомобильного турбокомпрессора

В автомобилях турбокомпрессор, используется для нагнетания воздуха или топливовоздушной смеси в двигатель внутреннего сгорания за счет энергии выхлопных газов для повышения его характеристик.

Для двигателей малой мощности[источник не указан 402 дня] применяют турбокомпрессоры с центростремительной турбиной, а на двигателях большой мощности[источник не указан 402 дня] (тракторные, тепловозные, судовые) — с осевой турбиной.[источник не указан 402 дня] Компрессор всегда центробежный,[источник не указан 402 дня] так как осевой компрессор имеет более сложную конструкцию и склонность к помпажу. Наименьшие размеры имеют турбокомпрессоры для двигателей легковых автомобилей — диаметр их колес порядка 50 мм. Наибольшие размеры у судовых турбокомпрессоров — диаметр колес — до 1,2 м.

Примечания

См. также

Ссылки

Турбины и механизмы с турбинами в составе

 

Газовая турбина — это… Что такое Газовая турбина?

Промышленная газовая турбина в разобранном виде.

Га́зовая турби́на (фр. turbine от лат. turbo вихрь, вращение) — это двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и/или нагретого газа преобразуется в механическую работу на валу.[1][2] Горение топлива может происходить как вне турбины, так и в самой турбине.[источник не указан 404 дня] Основными элементами конструкции являются ротор (рабочие лопатки, закреплённые на дисках) и статор, выполненный в виде выравнивающего аппарата (направляющие лопатки, закреплённые в корпусе).

Газовые турбины используются в составе газотурбинных двигателей, стационарных газотурбинных установок (ГТУ) и парогазовых установок (ПГУ).

История

Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. до н. э.). В восемнадцатом веке англичанин Джон Барбер получил патент на устройство, которое имело большинство элементов, присутствующих в современных газовых турбинах. В 1872 году Франц Столц разработал газотурбинный двигатель.[источник не указан 404 дня] Однако только в конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня, Густаф Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленного использования паровые турбины.[3]

Принцип работы

Question book-4.svgВ этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 11 ноября 2011.

Газ под высоким давлением поступает через сопловой аппарат турбины в область низкого давления, при этом расширяясь и ускоряясь. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Газовая турбина чаще всего используется как привод генераторов.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Более сложные турбины (которые используются в современных турбореактивных двигателях), могут иметь несколько валов, сотни турбинных и статорных лопаток, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Упорные подшипники и радиальные подшипники являются критическими элементом разработки. Традиционно они были гидродинамические, или охлаждаемые маслом шарикоподшипники. Их превзошли воздушные подшипники, которые успешно используются в микротурбинах и вспомогательных силовых установках.

Типы газовых турбин

Газовые турбины часто используются во многих ракетах на жидком топливе, а также для питания турбонасосов, что позволяет использовать их в легковесных резервуарах низкого давления, хранящих значительную сухую массу.

Промышленные газовые турбины для производства электричества

Question book-4.svg Газовая турбина серии GE H. Эта 480-мегаваттная турбинная установка имеет тепловой кпд 60 % в конфигурациях комбинированного цикла.

Отличие промышленных газовых турбин от авиационных в том, что их массогабаритные характеристики значительно выше, они имеют каркас, подшипники и лопастную систему более массивной конструкции. По размерам промышленные турбины варьируются от монтируемых на грузовики мобильных установок до огромных комплексных систем. Парогазовые турбины могут иметь высокий КПД — до 60 % — при использовании выхлопа газовой турбины в рекуперативном генераторе пара для работы паровой турбины. С целью увеличения КПД они также могут работать в когенераторных конфигурациях: выхлоп используется в системах теплоснабжения — ГВС и отопления, а также с использыванием абсорбционных холодильных машинах в системах хладоснабжения. Одновременное использование выхлопа для получения тепла и холода называется режимом тригенерации. Коэффициент использования топлива в тригенераторном режиме, в сравнении с когенераторным может достигать более 90 %.[источник не указан 404 дня]

Турбины в больших промышленных газовых турбинах работают на синхронных с частотой переменного тока скоростях — 3000 или 3600 оборотов в минуту (об./мин.).[источник не указан 404 дня]

Газовые турбины простого цикла могут выпускаться как для большой, так и для малой мощности. Одно из их преимуществ — способность входить в рабочий режим в течение нескольких минут, что позволяет использовать их как мощность во время пиковых нагрузок. Поскольку они менее эффективны, чем электростанции комбинированного цикла, они обычно используются как пиковые электростанции и работают от нескольких часов в день до нескольких десятков часов в год, в зависимости, от потребности в электроэнергии и генерирующей емкости. В областях с недостаточной базовой нагрузкой и на электростанциях, где электрическая мощность выдается в зависимости от нагрузки, газотурбинная установка может регулярно работать в течение большей части суток. Типичная турбина простого цикла может выдавать от 100 до 300 мегаватт (МВт) мощности и иметь тепловой КПД 35-40 %.[источник не указан 404 дня] Максимальные КПД турбин простого цикла достигает 41 %.[источник не указан 404 дня]

Микротурбины

Отчасти, успех микротурбин обусловлен развитием электроники, делающей возможной работу оборудования без вмешательства человека. Микротурбины применяются в самых сложных проектах автономного электроснабжения.

Преимущества и недостатки газотурбинных двигателей

Question book-4.svgВ этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 11 ноября 2011.

Преимущества газотурбинных двигателей

  • Очень высокое отношение мощности к весу, по сравнению с поршневым двигателем;
  • Возможность получения большего количества пара при работе (в отличие от поршневого двигателя)
  • В сочетании с паровым котлом и паровой турбиной более высокий КПД по сравнению с поршневым двигателем
  • Перемещение только в одном направлении, с намного меньшей вибрацией, в отличие от поршневого двигателя.
  • Меньшее количество движущихся частей, чем у поршневого двигателя.
  • Существенно меньше выбросов вредных веществ по сравнению с поршневыми двигателями
  • Низкие эксплуатационные нагрузки.
  • Низкая стоимость и потребление смазочного масла.
  • Низкие требования к качеству топлива. ГТД потребляют любое горючее, которое можно распылить: газ, нефтепродукты, органические вещества и пылеобразный уголь.

Недостатки газотурбинных двигателей

  • Стоимость намного выше, чем у аналогичных по размерам поршневых двигателей, поскольку материалы применяемые в турбине должны иметь высокую жаростойкость и жаропрочность, а также высокую удельную прочность. Машинные операции также более сложные;
  • Имеют меньший КПД при любом режиме работы, чем поршневые двигатели. (Официальные данные (стр.3) КПД на максимальной нагрузке 25-33%, при этом Официальные данные по поршневым двигателям — 41-42%)
  • Низкий механический и электрический КПД (потребление газа более чем в 1.5 раза больше на 1 кВтЧ электроэнергии по сравнению с поршневым двигателем)
  • Резкое снижение КПД на малых нагрузках (в отличие от поршневого двигателя)
  • Необходимость использования газа высокого давления, что обуславливает необходимость применения дожимных компрессоров с дополнительным расходом энергии и падением общей эффективности системы.
  • Задержка отклика на изменения настроек мощности.
  • Медленный запуск и выход на режим
  • Существенное влияние пусков-остановов на ресурс

Эти недостатки объясняют, почему дорожные транспортные средства, которые меньше, дешевле и требуют менее регулярного обслуживания, чем танки, вертолеты и крупные катера, не используют газотурбинные двигатели, несмотря на неоспоримые преимущества в размере и мощности. А также то, почему в аэропортах при короткой стыковке двигатели самолета не останавливают — излишне потребленное топливо дешевле ремонта турбин из-за пусков-остановов.

Примечания

  1. ГОСТ Р 51852-2001 Установки газотурбинные. Термины и определения  (рус.) (2003). — «Газовая турбина: компонент газотурбинного двигателя, преобразующий потенциальную энергию нагретого рабочего тела под давлением в механическую работу.»  Архивировано из первоисточника 25 июня 2012. Проверено 11 ноября 2011.
  2. Д. Н. Ушаков. Толковый словарь Ушакова. — 1940.
  3. Константин Владиславович Рыжов. [lib.aldebaran.ru/author/ryzhov_konstantin/ryzhov_konstantin_100_velikih_izobretenii/ 100 великих изобретений]. — М., 2006. — ISBN 5‑9533‑0277‑0

Литература

  • Дейч М. Е. Техническая газодинамика. — М.: Энергия, 1974.
  • Дейч М. Е. Газодинамика решёток турбомашин. — М.: Энергоатомиздат, 1996.

См. также

Ссылки

Question book-4.svgВ этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 13 мая 2011.

Газовая турбина — это… Что такое Газовая турбина?

Промышленная газовая турбина в разобранном виде.

Га́зовая турби́на (фр. turbine от лат. turbo вихрь, вращение) — это двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и/или нагретого газа преобразуется в механическую работу на валу.[1][2] Горение топлива может происходить как вне турбины, так и в самой турбине.[источник не указан 404 дня] Основными элементами конструкции являются ротор (рабочие лопатки, закреплённые на дисках) и статор, выполненный в виде выравнивающего аппарата (направляющие лопатки, закреплённые в корпусе).

Газовые турбины используются в составе газотурбинных двигателей, стационарных газотурбинных установок (ГТУ) и парогазовых установок (ПГУ).

История

Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. до н. э.). В восемнадцатом веке англичанин Джон Барбер получил патент на устройство, которое имело большинство элементов, присутствующих в современных газовых турбинах. В 1872 году Франц Столц разработал газотурбинный двигатель.[источник не указан 404 дня] Однако только в конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня, Густаф Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленного использования паровые турбины.[3]

Принцип работы

Question book-4.svgВ этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 11 ноября 2011.

Газ под высоким давлением поступает через сопловой аппарат турбины в область низкого давления, при этом расширяясь и ускоряясь. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Газовая турбина чаще всего используется как привод генераторов.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Более сложные турбины (которые используются в современных турбореактивных двигателях), могут иметь несколько валов, сотни турбинных и статорных лопаток, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Упорные подшипники и радиальные подшипники являются критическими элементом разработки. Традиционно они были гидродинамические, или охлаждаемые маслом шарикоподшипники. Их превзошли воздушные подшипники, которые успешно используются в микротурбинах и вспомогательных силовых установках.

Типы газовых турбин

Газовые турбины часто используются во многих ракетах на жидком топливе, а также для питания турбонасосов, что позволяет использовать их в легковесных резервуарах низкого давления, хранящих значительную сухую массу.

Промышленные газовые турбины для производства электричества

Question book-4.svg Газовая турбина серии GE H. Эта 480-мегаваттная турбинная установка имеет тепловой кпд 60 % в конфигурациях комбинированного цикла.

Отличие промышленных газовых турбин от авиационных в том, что их массогабаритные характеристики значительно выше, они имеют каркас, подшипники и лопастную систему более массивной конструкции. По размерам промышленные турбины варьируются от монтируемых на грузовики мобильных установок до огромных комплексных систем. Парогазовые турбины могут иметь высокий КПД — до 60 % — при использовании выхлопа газовой турбины в рекуперативном генераторе пара для работы паровой турбины. С целью увеличения КПД они также могут работать в когенераторных конфигурациях: выхлоп используется в системах теплоснабжения — ГВС и отопления, а также с использыванием абсорбционных холодильных машинах в системах хладоснабжения. Одновременное использование выхлопа для получения тепла и холода называется режимом тригенерации. Коэффициент использования топлива в тригенераторном режиме, в сравнении с когенераторным может достигать более 90 %.[источник не указан 404 дня]

Турбины в больших промышленных газовых турбинах работают на синхронных с частотой переменного тока скоростях — 3000 или 3600 оборотов в минуту (об./мин.).[источник не указан 404 дня]

Газовые турбины простого цикла могут выпускаться как для большой, так и для малой мощности. Одно из их преимуществ — способность входить в рабочий режим в течение нескольких минут, что позволяет использовать их как мощность во время пиковых нагрузок. Поскольку они менее эффективны, чем электростанции комбинированного цикла, они обычно используются как пиковые электростанции и работают от нескольких часов в день до нескольких десятков часов в год, в зависимости, от потребности в электроэнергии и генерирующей емкости. В областях с недостаточной базовой нагрузкой и на электростанциях, где электрическая мощность выдается в зависимости от нагрузки, газотурбинная установка может регулярно работать в течение большей части суток. Типичная турбина простого цикла может выдавать от 100 до 300 мегаватт (МВт) мощности и иметь тепловой КПД 35-40 %.[источник не указан 404 дня] Максимальные КПД турбин простого цикла достигает 41 %.[источник не указан 404 дня]

Микротурбины

Отчасти, успех микротурбин обусловлен развитием электроники, делающей возможной работу оборудования без вмешательства человека. Микротурбины применяются в самых сложных проектах автономного электроснабжения.

Преимущества и недостатки газотурбинных двигателей

Question book-4.svgВ этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 11 ноября 2011.

Преимущества газотурбинных двигателей

  • Очень высокое отношение мощности к весу, по сравнению с поршневым двигателем;
  • Возможность получения большего количества пара при работе (в отличие от поршневого двигателя)
  • В сочетании с паровым котлом и паровой турбиной более высокий КПД по сравнению с поршневым двигателем
  • Перемещение только в одном направлении, с намного меньшей вибрацией, в отличие от поршневого двигателя.
  • Меньшее количество движущихся частей, чем у поршневого двигателя.
  • Существенно меньше выбросов вредных веществ по сравнению с поршневыми двигателями
  • Низкие эксплуатационные нагрузки.
  • Низкая стоимость и потребление смазочного масла.
  • Низкие требования к качеству топлива. ГТД потребляют любое горючее, которое можно распылить: газ, нефтепродукты, органические вещества и пылеобразный уголь.

Недостатки газотурбинных двигателей

  • Стоимость намного выше, чем у аналогичных по размерам поршневых двигателей, поскольку материалы применяемые в турбине должны иметь высокую жаростойкость и жаропрочность, а также высокую удельную прочность. Машинные операции также более сложные;
  • Имеют меньший КПД при любом режиме работы, чем поршневые двигатели. (Официальные данные (стр.3) КПД на максимальной нагрузке 25-33%, при этом Официальные данные по поршневым двигателям — 41-42%)
  • Низкий механический и электрический КПД (потребление газа более чем в 1.5 раза больше на 1 кВтЧ электроэнергии по сравнению с поршневым двигателем)
  • Резкое снижение КПД на малых нагрузках (в отличие от поршневого двигателя)
  • Необходимость использования газа высокого давления, что обуславливает необходимость применения дожимных компрессоров с дополнительным расходом энергии и падением общей эффективности системы.
  • Задержка отклика на изменения настроек мощности.
  • Медленный запуск и выход на режим
  • Существенное влияние пусков-остановов на ресурс

Эти недостатки объясняют, почему дорожные транспортные средства, которые меньше, дешевле и требуют менее регулярного обслуживания, чем танки, вертолеты и крупные катера, не используют газотурбинные двигатели, несмотря на неоспоримые преимущества в размере и мощности. А также то, почему в аэропортах при короткой стыковке двигатели самолета не останавливают — излишне потребленное топливо дешевле ремонта турбин из-за пусков-остановов.

Примечания

  1. ГОСТ Р 51852-2001 Установки газотурбинные. Термины и определения  (рус.) (2003). — «Газовая турбина: компонент газотурбинного двигателя, преобразующий потенциальную энергию нагретого рабочего тела под давлением в механическую работу.»  Архивировано из первоисточника 25 июня 2012. Проверено 11 ноября 2011.
  2. Д. Н. Ушаков. Толковый словарь Ушакова. — 1940.
  3. Константин Владиславович Рыжов. [lib.aldebaran.ru/author/ryzhov_konstantin/ryzhov_konstantin_100_velikih_izobretenii/ 100 великих изобретений]. — М., 2006. — ISBN 5‑9533‑0277‑0

Литература

  • Дейч М. Е. Техническая газодинамика. — М.: Энергия, 1974.
  • Дейч М. Е. Газодинамика решёток турбомашин. — М.: Энергоатомиздат, 1996.

См. также

Ссылки

Question book-4.svgВ этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 13 мая 2011.

Что такое и зачем нужна турбина, и что такое турбонаддув?

Принцип работы основан на использовании энергии отработавших газов. Поток выхлопных газов попадает на крыльчатку турбины (закреплённой на валу) , тем самым раскручивая её и находящиеся на одном валу с нею лопасти компрессора, нагнетающего воздух в цилиндры двигателя. Так как при использовании наддува воздух в цилиндры подаётся принудительно (под давлением) , а не только за счёт разрежения, создаваемого поршнем (это разрежение способно взять только определённое количество смеси воздуха с топливом) , то в двигатель попадает большая смесь воздуха с топливом. Как следствие, при сгорании увеличивается объём сгораемого топлива с воздухом, образовавшийся газ занимает больший объём и соответственно возникает больше давящей силы на поршень. Как правило, у турбодвигателей меньше удельный эффективный расход топлива (грамм на киловатт-час, г/(кВт·ч)) , и выше литровая мощность (мощность, снимаемая с единицы объёма двигателя — кВт/л) , что даёт возможность увеличить мощность небольшого мотора без увеличения оборотов двигателя. Вследствие увеличения массы воздуха, сжимаемой в цилиндрах, температура в конце такта сжатия заметно увеличивается и возникает вероятность детонации. Поэтому, конструкцией турбодвигателей предусмотрена пониженная степень сжатия, применяются высокооктановые марки топлива, а также в системе предусмотрен промежуточный охладитель наддувочного воздуха (интеркулер) , представляющий собой радиатор для охлаждения воздуха. Уменьшение температуры воздуха требуется также и для того, чтобы плотность его не снижалась вследствие нагрева от сжатия после турбины, иначе эффективность всей системы значительно упадёт. Особенно эффективен турбонаддув у дизельных двигателей тяжёлых грузовиков. Он повышает мощность и крутящий момент при незначительном увеличении расхода топлива. Находит применение турбонаддув с изменяемой геометрией лопаток турбины, в зависимости от режима работы двигателя. <img src=»//otvet.imgsmail.ru/download/8b2f6bf1f1a4a50498edb0e876dbc2d5_i-9.jpg» >

Турбина нужна для получения электричества. На Саяно-Шушенской ГЭС так наддуло, что ГЭС развалилась!

Турбина это лопатки на роторе из спец. материала- термостойкого.. . она нагнетает воздух в цилиндры двигателя, соответственно чем больше воздуха, тем больше нужно топлива. Поэтому при одном обьеме двигателя можно добиться большей мощьности двигла- это и есть тюнинг. Также в зависимости от конструкции турбина одновременно помогает отработанным газам покинуть цилиндры быстрее.. . ну это все в двух словах и грубо… но смысл такой

Турбины бывают нескольких типов и отличаются способом приведения в действие. От выхлопных газов – это турбокомпрессор, посредством механического (ременного) привода – турбонагнетатель и т. д. Наиболее широкое применение в автомобильной промышленности получил турбокомпрессор из-за простоты конструкции и эксплуатационных характеристик. Турбоннаддув позволяет повысить мощность двигателя на 20-35%, при этом двигатель обладает более высоким крутящим моментом на средних и высоких оборотах, что делает автомобиль более динамичным и экономичным при движении

ТУРБИН — это… Что такое ТУРБИН?

ТУРБИН — герой романа М.А.Булгакова «Белая гвардия» (1922-1924) и его пьесы «Дни 415 Турбиных» (1925-1926). Фамилия героя указывает на автобиографические мотивы, присутствующие в этом образе: Турбины — предки Булгакова по материнской линии. Фамилию Турбина в сочетании с тем же именем-отчеством (Алексей Васильевич) носил персонаж утраченной пьесы Булгакова «Братья Турбины», сочиненной в 1920-1921 гг. во Владикавказе и поставленной в местном театре.

Герои романа и пьесы связаны единым сюжетным пространством и временем, хотя обстоятельства и перипетии, в которых они оказываются, разные. Место действия — Киев, время — «страшный год по Рождестве Христовом 1918, от начала же революции второй». Герой романа — молодой врач, пьесы — полковник-артиллерист. Врачу Т. 28 лет, полковник на два года старше. Оба попадают в водоворот событий гражданской войны и поставлены перед историческим выбором, который они понимают и оценивают скорее как личный, относящийся более к внутреннему бытию личности, нежели к ее внешнему существованию.

В образе доктора Т. прослеживается развитие лирического героя Булгакова, каким он представлен в «Записках юного врача» и в других ранних произведениях. Герой романа — наблюдатель, видение которого постоянно сливается с авторским восприятием, хотя и не тождественно последнему. Романный герой втянут в вихрь происходящего. Если и участвует в событиях, то помимо своей воли, в результате рокового стечения обстоятельств, когда он, например, попадает в плен к петлюровцам. Герой драмы в значительной мере определяет события. Так, от его решения зависит участь юнкеров, брошенных в Киеве на произвол судьбы. Это лицо действующее, буквально-сценически и сюжетно. Самые действующие во время войны люди — это военные. Действующие на стороне побежденных — самые обреченные. Оттого погибает полковник Т., тогда как доктор Т. выживает.

Между романом «Белая гвардия» и пьесой «Дни Турбиных» пролегает огромная дистанция, не слишком долгая по времени, но весьма значительная в содержательном отношении. Промежуточным звеном этого пути явилась инсценировка, представленная писателем в Художественный театр, которая в дальнейшем была подвергнута существенной переработке. Процесс превращения романа в пьесу, в который были вовлечены многие лица, протекал в условиях двойного «нажима»: со стороны «художественников», добивавшихся от писателя большей (в их понятиях) сценичности, и со стороны цензуры, инстанций идейного слежения, требовавших показать со всей определенностью «конец белых» (один из вариантов названия). «Окончательная» редакция пьесы явилась следствием серьезного художественного компромисса. Оригинальный авторский слой в ней покрыт множеством посторонних наслоений. Более всего это заметно в образе полковника Т., ко торый периодически скрывает свое лицо под маской резонера и как бы выходит из роли, чтобы заявить, обращаясь более к партеру, чем к сцене: «Народ не с нами. Он против нас».

В первой постановке «Дней Турбиных» на сцене МХАТа (1926) роль Т. играл Н.П.Хмелев. Он же оставался единственным исполнителем этой роли в продолжение всех последующих 937 представлений.

Лит.: Смелянский А. Михаил Булгаков в Художественном театре. М., 1989. С. 63-108; см. также Лит. к статье «МАСТЕР».

С.В.Стахорский

Литературные герои. — Академик. 2009.

Турбина — это… Что такое Турбина?

Монтаж паровой турбины, произведённой Siemens, Германия.

Турби́на (фр. turbine от лат. turbo — вихрь, вращение) — ротационный двигатель с непрерывным рабочим процессом[1] и вращательным движением рабочего органа (ротора), преобразующий кинетическую энергию и/или внутреннюю энергию рабочего тела (пара, газа, воды) в механическую работу. Струя рабочего тела воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение.

Применяется в качестве привода электрического генератора на тепловых, атомных и гидро электростанциях, как составная часть приводов на морском, наземном и воздушном транспорте, а также гидродинамической передачи.

История

Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. до н. э.). Однако только в конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня, Густаф Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленности паровые турбины.[2]

Хронология

Question book-4.svgВ этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 11 ноября 2011.
  • I в. н. э.: Паровая турбина Герона Александрийского (эолипил) — на протяжении столетий рассматривалась как игрушка и её полный потенциал не был изучен.
  • 1500: В чертежах Леонардо да Винчи встречается «дымовой зонт». Горячий воздух от огня поднимается через ряд лопастей, которые соединены между собой и вращают вертел для жарки.
  • 1551: Таги-аль-Дин придумал паровую турбину, которая использовалась для питания самовращающегося вертела.
  • 1629: Сильная струя пара вращала турбину, которая затем вращала ведомый механизм, позволяющий работать мельнице Джованни Бранка.
  • 1678: Фердинанд Вербейст построил модель повозки на основе паровой машины.
  • 1791: Англичанин Джон Барбер получил патент на первую настоящую газовую турбину. Его изобретение имело большинство элементов, присутствующих в современных газовых турбинах. Турбина была разработана для приведения в действие безлошадной повозки.
  • 1872: Франц Столц разработал первый настоящий газотурбинный двигатель.
  • 1894: Сэр Чарльз Парсонс запатентовал идею корабля, приводимого в действие паровой турбиной и построил демонстрационное судно Турбиния. Этот принцип тяги используется до сих пор.
  • 1895: Три четырёхтонных 100 кВт генераторов радиального потока Парсонса были установлены на электростанции в Кэмбридже и использовались для электрического освещения улиц города.
  • 1903: Норвежец, Эджидиус Эллинг, смог построить первую газовую турбину, которая могла произвести больше энергии, чем требовалось для её работы, что рассматривалось как значительное достижение в те времена, когда знания о термодинамике были ограничены. Используя вращающиеся компрессоры и турбины, она производила 11 л.с. (существенно для того времени). Его работа впоследствии была использована сэром Фрэнком Уиттлом.
  • 1913: Никола Тесла запатентовал турбину Тесла, основанную на эффекте граничного слоя.
  • 1918: General Electric, один из ведущих производителей турбин в настоящее время, запустил своё подразделение газовых турбин.
  • 1920: Практическая теория протекания газового потока через каналы была переработана в более формализованную (и применяемую к турбинам) теорию течения газа вдоль аэродинамической поверхности доктором Аланом Арнольдом Грифицем.
  • 1930: Сэр Фрэнк Уиттл запатентовал газовую турбину для реактивного движения. Впервые этот двигатель был успешно использован в апреле 1937.
  • 1934: Рауль Патерас Пескара запатентовал поршневой двигатель в качестве генератора для газовой турбины.
  • 1936: Ханс фон Охайн и Макс Хан в Германии разработали собственный патентованный двигатель в то же самое время, когда сэр Фрэнк Уиттл разрабатывал его в Англии.

Разработки Густафа Лаваля

Первую паровую турбину создал шведский изобретатель Густаф Лаваль. По одной из версий, Лаваль создал его для того, чтобы приводить в действие сепаратор молока собственной конструкции. Для этого нужен был скоростной привод. Двигатели того времени не обеспечивали достаточную частоту вращения. Единственным выходом оказалось сконструировать скоростную турбину. В качестве рабочего тела Лаваль выбрал широко используемый в то время пар. Изобретатель начал работать над своей конструкцией и в конце концов собрал работоспособное устройство. В 1889 году Лаваль дополнил сопла турбины коническими расширителями, так появилось знаменитое сопло Лаваля, которое стало прародителем будущих ракетных сопел. Турбина Лаваля стала прорывом в инженерии. Достаточно представить себе нагрузки, которые испытывало в ней рабочее колесо, чтобы понять, как нелегко было изобретателю добиться стабильной работы турбины. При огромных оборотах турбинного колеса даже незначительное смещение в центре тяжести вызывало сильную вибрацию и вызывало перегрузку подшипников. Чтобы избежать этого, Лаваль использовал тонкую ось, которая при вращении могла прогибаться.

Разработки Чарлза Парсонса

В 1884 году английский инженер Чарлз Парсонс получил патент на многоступенчатую турбину. Турбина предназначалась для приведения в действие электрогенератора. В 1885 году он разработал усовершенствованную версию, которая получила широкое применение на электростанциях. В конструкции турбины был применен выравнивающий аппарат, представляющий из себя набор неподвижных венцов (дисков) с лопатками, имевшими обратное направление. Турбина имела три ступени разного давления с разной геометрией лопаток и шагом их установки. Таким образом, в турбине использовалась как активная, так и реактивная его сила.

В 1889 году уже около трехсот таких турбин использовалось для выработки электроэнергии. Парсонс старался расширить сферу применения своего изобретения и в 1894 году он построил опытное судно Турбиния с приводом от паровой турбины. На испытаниях оно продемонстрировало рекордную скорость — 60 км/ч.

Question book-4.svg

Невозможность получить большую агрегатную мощность и очень высокая частота вращения одноступенчатых паровых турбин Лаваля (до 30 000 об/мин у первых образцов) привели к тому, что они сохранили своё значение только для привода вспомогательных механизмов. Активные паровые турбины развивались в направлении создания многоступенчатых конструкций, в которых расширение пара осуществлялось в ряде последовательно расположенных ступеней. Это позволило значительно повысить единичную мощность, сохранив умеренную частоту вращения, необходимую для непосредственного соединения вала турбины с вращаемым ею механизмом.

Реактивная паровая турбина Парсонса некоторое время применялась (в основном, на военных кораблях), но постепенно уступила место более компактным комбинированным активно-реактивным турбинам, у которых реактивная часть высокого давления заменена одно- или двухвенчатым активным диском. В результате уменьшились потери на утечки пара через зазоры в лопаточном аппарате, турбина стала проще и экономичнее.

Конструкция турбин

Question book-4.svg Модель одной ступени паровой турбины Question book-4.svg Паровая турбина с раскрытым статором. На верхней части статора видны лопатки выравнивающего аппарата

Турбина состоит из двух основных частей. Ротор с лопатками — подвижная часть турбины. Статор с выравнивающим аппаратом — неподвижная часть.

По направлению движения потока рабочего тела различают аксиальные паровые турбины, у которых поток рабочего тела движется вдоль оси турбины, и радиальные, направление потока рабочего тела в которых перпендикулярно оси вала турбины. Центробежные турбины (турбокомпрессоры) также выделяют как отдельный тип турбин.

По числу контуров турбины подразделяют на одноконтурные, двухконтурные и трёхконтурные. Очень редко турбины могут иметь четыре или пять контуров. Многоконтурная турбина позволяет использовать большие тепловые перепады энтальпии, разместив большое число ступеней разного давления.

По числу валов различают одновальные, двухвальные, реже трёхвальные, связанных общностью теплового процесса или общей зубчатой передачей (редуктором). Расположение валов может быть как коаксиальным так и параллельным с независимым расположением осей валов.

В местах прохода вала сквозь стенки корпуса установлены концевые уплотнения для предупреждения утечек рабочего тела наружу и засасывания воздуха в корпус.

На переднем конце вала устанавливается предельный регулятор (регулятор безопасности), автоматически останавливающий (замедляющий) турбину при увеличении частоты вращения на 10—12 % сверх номинальной.

Выравнивающий аппарат

Выравнивающий аппарат (англ. fixed nozzles) — лопатки, закрепленные на статоре (неподвижны), задача которых выравнивать воздушный поток между вентиляторными ступенями. Выравнивание шаговой неравномерности потока за лопаточным венцом рабочего колеса производится для повышения аэродинамической эффективности вентиляторных ступеней и снижения уровня шума.[3]

Классификация

Question book-4.svg Устройство гидротурбины

По типу рабочего тела

Примечания

  1. Техническая энциклопедия / Главный редактор Л. К. Мартенс. — М: Государственное словарно-энциклопедическое издательство «Советская энциклопедия», 1934. — Т. 24. — 31 500 экз.
  2. Константин Владиславович Рыжов [lib.aldebaran.ru/author/ryzhov_konstantin/ryzhov_konstantin_100_velikih_izobretenii/ 100 великих изобретений]. — М., 2006. — ISBN 5‑9533‑0277‑0
  3. ВЕНТИЛЯТОРНАЯ СТУПЕНЬ КОМПРЕССОРА (ВАРИАНТЫ)

См. также

Ссылки

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *