Фазорегулятор что такое: Фазорегулятор | это… Что такое Фазорегулятор?

Содержание

Как работает фазорегулятор двигателя К4М

Для улучшения наполнения цилиндров топливной смесью на всех режимах двигатели 1,6л оборудованы фазорегулятором распределительного вала впускных клапанов

Смещение момента закрытия впускных клапанов оптимизирует наполнение цилиндров топливной смесью в зависимости от частоты вращения коленчатого вала.

В результате повышается крутящий момент на режиме средних нагрузок и мощность при высокой частоте вращения коленчатого вала.

При высокой частоте вращения коленчатого вала более позднее закрытие впускных клапанов обеспечивает поступление дополнительной порции топливной смеси за счет высокой скорости движения смеси.

Напротив, при невысокой частоте вращения инерция движения смеси невелика.

Поэтому желательно более раннее закрытие выпускных клапанов, чтобы избежать недостаточного наполнения цилиндров и потерю крутящего момента вследствие вытеснения части свежей смеси.

Чем выше частота вращения коленчатого вала, тем позднее должно происходить закрытие впускных клапанов.

Количество масла, подаваемого к фазорегулятору, определяется электромагнитным клапаном, установленным на головке блока цилиндров (см. рис. 2).

На клапан подается электропитание в виде переменного сигнала степени циклического открытия (амплитудой 12 В и  частотой 250 Гц,).

Это позволяет подавать масло в механизм фазорегулятора и таким образом изменять угол сдвига фаз.

Фазорегулятор распределительного вала постоянно изменяет фазы газораспределения.

ЭБУ посылает на электромагнитный клапан переменный сигнал степени циклического открытия, величина которого пропорциональна требуемому смещению фаз.

Фазы постоянно изменяются от 0˚ до 43˚ по углу поворота коленчатого вала.

При частоте вращения коленчатого вала в пределах 1500–4300 мин–1 ЭБУ подает напряжение питания на электромагнитный клапан.

При превышении 4300 мин–1 питание электромагнитного клапана прекращается. При этом положение механизма фазорегулятора способствует наполнению цилиндров при высокой частоте вращения коленчатого вала. В этом положении запорный плунжер блокирует механизм.

При частоте вращения до 1500 мин–1 напряжение питания не подается на электромагнитный клапан. Механизм заблокирован плунжером. С момента подачи питания на электромагнитный клапан при частоте вращения коленчатого вала более 1500 мин–1 под действием давления масла запорный плунжер отходит и высвобождает механизм.

Управление электромагнитным клапаном фазорегулятора распределительного вала происходит при соблюдении следующих условий:

— датчик частоты вращения коленчатого вала исправен;

— датчики положения распределительных валов исправны;

— система впрыска исправна;

— после запуска двигателя;

— Двигатель работает не на холостом ходу при нажатой педали акселератора;

— получено пороговое значение профиля впрыска, устанавливаемого с учетом нагрузки и частоты вращения коленчатого вала;

— температура охлаждающей жидкости находится в пределах 10 — 120˚ С;

— повышенная температура масла в двигателе.

Резервные режимы:

— возврат фазорегулятора в исходное положение;

— нулевое смещение фаз.

Примечание. При блокировке электромагнитного клапана в открытом положении двигатель на холостом ходу работает не устойчиво, давление во впускной трубе повышено. При этом отмечается более шумная работа двигателя.

Основные неисправности электромагнитного клапана фазорегулятора:

— разомкнутая цепь;

— замыкание на массу или на +12В;

— смещение или рассогласование запрограммированных значений;

— неправильное определение положения фазорегулятора;

— величина регулирования вне допустимых пределов.

А может, это датчик: почему трещит и отказывает фазорегулятор

13 января

Колеса.ру

Сейчас уже трудно представить машину без системы изменения фаз газораспределения. И это правильно: эта система делает мотор более экономичным, отчасти – тихим и в некоторых режимах даже более резвым. Есть у системы изменения фаз только один недостаток: иногда в ней что-то ломается и начинает трещать, особенно сразу после пуска холодного мотора.

Фото: depositphotosdepositphotos

Что там может трещать? Как правило, сам фазорегулятор, он же фазовращатель. А почему он это делает – это другой вопрос. Не всегда в треске виноват непосредственно фазовращатель, и найти истинную причину его треска иногда будет не только приятно, но и полезно для сохранения своего бюджета. Но для этого надо хотя бы в общих чертах понять, как эта система работает.

Видео дня

В поисках компромисса

Для чего нужна система изменения фаз в принципе? Для того, чтобы мотор работал всегда в оптимальном режиме. К сожалению, обычный распредвал с кулачками работает всегда очень усреднённо. Что на высоких, что на низких оборотах момент открытия и закрытия выпускных и впускных клапанов одинаковый, а это не очень хорошо. Суть дела в том, что есть такое понятие – перекрытие клапанов, в которое, кстати, некоторые люди не верят – мол, не может работать мотор, если у него в какой-то период времени открыты оба клапана, и впускной, и выпускной. Те же люди обычно не верят и в то, что пыль разрушенного катализатора не может попасть во впуск (потому что перекрытие клапанов в четырёхтактном моторе невозможно). Впрочем, перекрытию клапанов не важно, верит в него кто-то или нет. Оно просто существует. Выглядит это следующим образом.

На высоких и средних оборотах коленвала нужно очень быстро выводить отработавшие газы и успевать наполнить цилиндр топливовоздушной смесью. Для этого есть короткий период, когда выпускной клапан ещё открыт, но в то же время начинает открываться и впускной. В этот момент из-за разрежения в цилиндре, создаваемого инерцией потока отработавших газов, топливовоздушная смесь засасывается в цилиндр активнее, чем при полностью закрытом выпускном клапане. А это, само собой, приводит к более эффективной продувке цилиндра, к качественному наполнению и повышению КПД мотора.

Вроде бы польза от перекрытия налицо. Но не всё так просто: на минимальных оборотах коленвала эта схема работать не будет. В этом случае из-за пониженного давления на впуске будет происходить смешивание топливовоздушной смеси и отработавших газов, мотор будет работать неравномерно, а то и вовсе не сможет работать. Поэтому на холостых оборотах перекрытие клапанов принесёт только вред.

В идеале мотор должен уметь менять фазы – от узких фаз на холостых оборотах (без перекрытия клапанов) до широких – на высоких оборотах (для более быстрой продувки и наполняемости цилиндра топливовоздушной смесью). Раньше моторы менять фазы не умели, и КПД от этого страдал. Конечно, с этим пытались бороться, и кое-кто даже вспомнит, что для старых вазовских моторов предлагали довольно необычное решение – разрезные шестерни распредвалов. Это был такой своеобразный прообраз фазорегулятора: венец такой шестерни мог немного вращаться относительно центральной части, которая крепилась на распредвале неподвижно. Само собой, ни о какой автоматической регулировке фаз речь не шла, но можно было поставить эти шестерни и попытаться подобрать оптимальный угол фаз, а затем намертво затянуть болты, фиксирующие обе части шестерни относительно друг друга, и наслаждаться ездой. Конечно, всё это – полумера, которая не позволяла менять фазы в зависимости от частоты вращения коленвала, а лишь немного эти фазы настроить. Всё изменилось, когда в моторах появились полноценные автоматические системы изменения фаз.

Таких систем много, и многие производители называют систему по-своему: у Volkswagen эта система называется VVT, у Toyota – VVT-i, у Kia и Hyundai – CVVT и так далее. В деталях они имеют отличия, но в целом работают приблизительно одинаково, хотя некоторые производители со своими системами заходили куда-то очень далеко (например, Fiat со своим MultiAir, который валом, приводимым от выпуска, толкал впускные клапаны через отдельную довольно странную электрогидравлическую систему). Есть ещё и механизмы изменения подъема клапанов, которые тоже влияют на фазы, и ступенчатое изменение фаз газораспределения, которое особенно любят японцы, и некоторые другие решения, которые требуют отдельных рассказов. Но сегодня мы остановимся на самом массовом и простом подходе – на повороте распределительного вала гидроуправляемой муфтой системы фазорегулирования (то есть, с тем самым классическим «фазиком»). Итак, как это работает?

Система VVT-i Toyota

Чуть вперёд и чуть назад

Работает, в общем-то, не очень сложно. Вместо простой цельной звезды на распредвале стоит гидроуправляемая муфта (если она одна, то на впускном распредвале, если две – то на обоих). Центральная её часть (он же – ротор) крепится к распредвалу, внешняя (корпус) приводится в действие ремнём или цепью ГРМ, как и обычная звезда. Ротор может немного поворачиваться в корпусе муфты, а значит, изменять фазы. В случае с гидроуправляемой муфтой поворот ротора осуществляется с помощью моторного масла, которое при необходимости подаётся в «фазик» через распределитель. В целом – всё, но остаётся один вопрос: откуда муфта знает, что распредвал нужно немного повернуть?

Знает она это по подсказке ЭБУ. Блок управления анализирует сигналы от множества датчиков: оборотов коленвала, распредвалов, температуры антифриза, количества и температуры воздуха (набор датчиков может немного отличаться). В зависимости от оборотов коленвала и нагрузки ЭБУ командует клапану (или распределителю) открыть или закрыть проход масла в муфту. Вроде всё просто, но есть некоторая сложность: работа фазовращателя зависит от очень многих факторов, отчего причину ошибки устройства иногда приходится искать очень долго. А иногда вообще не сразу можно понять, что фазовращатель не работает совсем.

Нет, конечно, многое в работе мотора меняется. Но некоторые симптомы типичны для очень многих неисправностей, которые с фазовращателем никак не связаны.

Наиболее яркий признак отказа «фазика» – его специфический треск, особенно после пуска холодного мотора. Этот треск трудно спутать с чем-то другим, а источник звука довольно легко найти, так что ошибиться практически невозможно. Другое дело, что причину отказа надо будет ещё поискать, но об этом ниже.

Второй признак помимо треска – это нестабильная работа на холостом ходу. А ещё – снижение тяги на оборотах и рост расхода топлива. Вот тут сложнее: в этих бедах могут быть виноваты десятки неисправностей, не связанных с «фазиком». Чуть более точно на него укажут ошибки, связанные с синхронизацией фаз. Впрочем, ошибки могут быть разными, и не всегда сразу подозрение падает на фазовращатель. На некоторых автомобилях есть коды ошибок, которые указывают непосредственно на него, но часто будет общая ошибка рассинхронизации, причина которой может быть и в растянутой цепи, и в перескочившем ремне ГРМ. Однако и в этих случаях не надо забывать про фазорегулятор.

depositphotos

Что делать?

Если мы говорим про обычный гидроуправляемый фазовращатель, то в первую очередь проверять надо не саму муфту, а клапан-распределитель. Неисправность у электромагнитного клапана чаще всего одна: он клинит в одном из положений. Грубая проверка клапана довольно проста: можно на холодном моторе отключить разъём на клапан и подать на него напряжение напрямую от аккумулятора. Если мотор станет работать неустойчиво (или просто хуже), значит, клапан работает. Но так как он способен клинить, лучше будет его снять и убедиться, что шток не залипает ни в одном положении. Для более точной проверки нужно ещё измерить ход штока и сопротивление обмотки, но будем считать, что для нас это уже слишком сложно. Поэтому для начала просто убедимся, что клапан работает.

Если с ним всё в порядке, то есть смысл проверить проводку до клапана. Если и с ней всё хорошо, то есть два варианта развития событий.

Первый – это износ самой муфты. Неприятность достаточно дорогая, но не слишком частая. Тут вариантов проблемы несколько: могут износиться лопатки ротора, может – сам корпус. Муфта может люфтить или поворачивать на недопустимые углы, смещая фазы слишком сильно (или недостаточно сильно). Но выход в любом случае один – ставить новый «фазик».

depositphotos

Второй вариант связан с тем, что клапан по какой-то причине не получает команду от ЭБУ на изменение фаз. Вот тут диагностика может только начинаться. Фазорегулятор может перестать работать из-за отсутствия сигналов датчика положения коленвала, распредвалов, расхода или температуры воздуха. В общем-то, из-за любого датчика. При этом трещать он тоже не будет: нет сигнала – нет треска. Однако если подключить сканер, есть вероятность увидеть и ошибку рассинхронизации фаз, которая может натолкнуть на мысль о фазовращателе. Само собой, ремонтировать его в этом случае не надо, а надо искать причину, по которой ЭБУ решил управлять мотором в аварийном режиме.

С ним и без него

Можно ли ездить с неработающим фазовращателем? Можно. Бывает, его специально глушат, если надоедает менять его слишком часто или просто нет денег на замену прямо сейчас. Почти всегда мотор работать будет. Не всегда хорошо, не в полную силу, но будет. Но лучше, конечно, так не делать.

А вот чтобы подольше не встречаться с неисправностями фазорегулятора, достаточно лишь вовремя менять масло. И непосредственно муфта, и особенно клапан очень требовательны к чистоте масла. Поэтому рецепт сохранения здоровья «фазика» прост: требуется своевременная замена масла, и регламентные 15 тысяч пробега по городским пробкам – это, к сожалению, слишком редко.

И, конечно же, требуется нормальное давление в системе смазки. Если давление будет недостаточным, фазовращатель работать не сможет – он берёт масло от того же насоса из общей системы смазки. Правда, если давление слишком низкое, то и весь мотор долго не протянет. Но это уже другая история.

Автоэксперт,Hyundai,Kia,Toyota,Fiat,Volkswagen,

трехфазный регулятор напряжения: автоматический регулятор напряжения-SCIENTEK ELECTRICAL

09 июля 2020 г.

FacebookTwitterPrintEmailAddThis

Трехфазный регулятор напряжения:


Трехфазный регулятор напряжения переменного тока питает компьютеры, устройства с батарейным питанием и другое электрооборудование. Трехфазный регулятор напряжения переменного тока также известен как трехфазный регулятор. Есть два регулируемых выхода для однофазного выхода. Однонаправленный регулятор обычно используется для обеспечения резервного повышающего регулирования.

 

В компьютерных схемах автоматические регуляторы напряжения помогают подавать напряжение от источника питания. Он работает с регулируемым током в потоке сигнала, чтобы поддерживать его стабильным. Именно печатные платы помогают регулировать электрический ток. Они либо поставляют его по кабелям, которые могут быть кабелями, подключенными к переключателям или печатным платам.

 

Низкочастотный солнечный инвертор постоянного тока в переменный с зарядным устройством MPPT Серия TPS

Необходим в некоторых энергосистемах для подачи питания в электронные устройства. Так электричество передается электронным устройствам. Кроме того, это помогает в регулировании электрического тока.

 

Существуют три основных типа трехфазных регуляторов напряжения для современных энергосистем. Это импульсный источник питания, регулятор постоянного напряжения и импульсный регулятор постоянного напряжения. В этой статье мы обсудим разницу между тремя типами регуляторов напряжения.

3-фазный регулятор напряжения переменного тока:

Трансформатор — элемент, преобразующий электрическую энергию в электрический ток. Проще говоря, трансформатор может преобразовать постоянный ток в переменный. Электродвигатель электрического генератора преобразует мощность переменного тока в мощность постоянного тока (электронный регулятор напряжения: автоматический регулятор напряжения переменного тока). Это входной источник питания. Преобразователь используется для преобразования постоянного тока в переменный и наоборот.

 

С другой стороны, трехфазный преобразователь — это тип преобразователя, который может преобразовывать трехфазное напряжение в четыре фазы. Его еще называют биполярным или вращающимся трансформатором.

 

В трехфазном регуляторе напряжения он в основном используется в качестве генератора синусоидального сигнала. Как следует из названия, это серия соединенных между собой тороидальных катушек, которые создают синусоидальную волну переменного напряжения.

 

Трехфазный регулятор напряжения

Также используется для управления мощностью внешних источников питания. 9Трехфазный регулятор напряжения 0008 управляет входным напряжением, а также может использоваться в качестве выходного генератора. Помогает увеличить напряжение питания.

 

Этот тип источника питания используется для регулирования напряжения путем управления электрической мощностью, подаваемой источником питания. Его также можно назвать трехфазным двигателем. Этот тип двигателя разделен на три части, которые включают обмотку, блок управления и ротор.

 

Обмотка трехфазного двигателя устроена таким образом, что при вращении она создает крутящий момент или усилие. В этом случае питание подается из электрической энергии и превращается в электрический ток. Тот же механизм применяется к ротору.

 

В конструкции трехфазного регулятора напряжения первый компонент называется цепью управления. Это компонент, который контролирует напряжение и контролирует изменения напряжения. Второй компонент – схема защиты. Это используется для уменьшения колебаний напряжения.

 

Используется для увеличения напряжения для поддержания того же уровня мощности. Это устройство регулирует подаваемую мощность. Функция защиты заключается в защите устройства от тока, пониженного напряжения, коротких замыканий и низкого напряжения.

Об автоматическом стабилизаторе напряжения на продажу

Эти устройства чаще всего можно найти в интернет-магазинах и использовать для зарядки и разрядки электричества внутри себя. Это означает, что они портативны и легко перемещаются с места на место. Есть также много таких типов устройств, которые используются предприятиями для подключения к электропроводке или для зарядки аккумуляторов, которые будут использоваться электрическими устройствами для их зарядки в ночное время.

 

Тот факт, что эти устройства являются портативными, делает их еще более привлекательными для многих людей, которые хотят приобрести их для дома. Цена также намного ниже, чем покупка статического автоматического регулятора напряжения на продажу. Регуляторы статического типа не будут перемещаться так часто, как переносные, что делает их идеальными для использования на небольших площадях.

 

Они также относятся к пассивному типу устройств, что означает, что они не имеют активных или реактивных компонентов. Они очень хороши в поддержании постоянного уровня электричества для вас и вашей семьи. Существует несколько различных типов регуляторов , которые способны поддерживать поток электроэнергии.

 

Продаваемый автоматический стабилизатор напряжения active может одновременно заряжать аккумуляторы и устройства и делает это очень эффективно. Тот факт, что они могут выполнять несколько задач одновременно, является большим преимуществом для любого дома или владельца бизнеса. Тот факт, что они больше, чем пассивные типы, также является еще одним важным плюсом.

 

Также можно найти современный регулятор, который может регулировать электроэнергию для дома или предприятия с помощью шнура питания или беспроводной технологии. Это означает, что продаваемый автоматический стабилизатор напряжения не будет мешать работе электронных устройств дома или в офисе. Гибкость устройства позволяет использовать его с большим количеством электронных устройств в вашем доме или бизнес-среде.

При использовании 9 следует обратить внимание на следующее.0008 трехфазный стабилизатор напряжения , который может увеличить срок службы стабилизатора напряжения:

Если предохранитель перегорел, пожалуйста, как можно скорее разрешите использование оборудования, своевременно примите меры по ремонту и восстановите питание. ;

Если вы используете предохранитель с фиксированным номиналом, используйте указанную линию и не сопоставляйте ее случайным образом, чтобы не нанести больший ущерб;

Работая в указанных условиях, не используйте слишком большую нагрузку во избежание несчастных случаев;

Подготовьтесь к выбору переключателя входного напряжения, чтобы убедиться, что он соответствует напряжению источника питания;

Следует отметить, что выходное напряжение прибора и регулятора должно быть унифицировано;

Во избежание несчастных случаев используйте провод достаточной длины. Ремонт в срок;

При вводе и выводе будьте внимательны при подключении и не повредите оборудование, что приведет к рублю на установку;

Место установки стабилизатора напряжения трехфазного должен находиться в сухом и проветриваемом месте.

Типы регуляторов напряжения и принцип работы | Артикул

СКАЧАТЬ PDF

Получайте ценные ресурсы прямо на свой почтовый ящик — рассылка раз в месяц

Подписаться

Мы ценим вашу конфиденциальность


Как работает регулятор напряжения?

Регулятор напряжения — это схема, которая создает и поддерживает фиксированное выходное напряжение независимо от изменений входного напряжения или условий нагрузки.

Регуляторы напряжения (VR) поддерживают напряжение от источника питания в диапазоне, совместимом с другими электрическими компонентами. Хотя регуляторы напряжения чаще всего используются для преобразования мощности постоянного тока в постоянный, некоторые из них также могут выполнять преобразование мощности переменного тока в переменный или переменный в постоянный. В этой статье речь пойдет о регуляторах напряжения постоянного/постоянного тока.

Типы регуляторов напряжения: линейные и импульсные

Существует два основных типа регуляторов напряжения: линейные и импульсные. Оба типа регулируют напряжение в системе, но линейные стабилизаторы работают с низким КПД, а импульсные стабилизаторы — с высоким КПД. В высокоэффективных импульсных стабилизаторах большая часть входной мощности передается на выход без рассеяния.

Линейные регуляторы

В линейном регуляторе напряжения используется активное проходное устройство (такое как BJT или MOSFET), которое управляется операционным усилителем с высоким коэффициентом усиления. Чтобы поддерживать постоянное выходное напряжение, линейный регулятор регулирует сопротивление проходного устройства, сравнивая внутреннее опорное напряжение с дискретизированным выходным напряжением, а затем сводя ошибку к нулю.

Линейные регуляторы представляют собой понижающие преобразователи, поэтому по определению выходное напряжение всегда ниже входного. Однако у этих стабилизаторов есть несколько преимуществ: они, как правило, просты в конструкции, надежны, экономичны и обеспечивают низкий уровень шума, а также низкие пульсации выходного напряжения.

Для работы линейных стабилизаторов, таких как MP2018, требуется только входной и выходной конденсаторы (см. рис. 1) . Их простота и надежность делают их интуитивными и простыми устройствами для инженеров, и часто они очень рентабельны.

Рис. 1: Линейный регулятор MP2018

Импульсные регуляторы

Схема импульсного регулятора, как правило, более сложная для проектирования, чем линейный регулятор, и требует выбора номиналов внешних компонентов, настройки контуров управления для обеспечения стабильности и тщательной компоновки схемы.

Импульсные регуляторы могут быть понижающими преобразователями, повышающими преобразователями или их комбинацией, что делает их более универсальными, чем линейные регуляторы.

Преимущества импульсных стабилизаторов заключаются в том, что они высокоэффективны, имеют лучшие тепловые характеристики и могут поддерживать более высокие токи и более широкие приложения V IN / V OUT . Они могут достигать эффективности более 95% в зависимости от требований приложения. В отличие от линейных стабилизаторов, для импульсной системы питания могут потребоваться дополнительные внешние компоненты, такие как катушки индуктивности, конденсаторы, полевые транзисторы или резисторы обратной связи. ВЧ920 является примером импульсного стабилизатора, который обеспечивает высокую надежность и эффективное регулирование мощности (см. фиг. 2) .

Рис. 2. Импульсный регулятор HF920

Ограничения регуляторов напряжения

Одним из основных недостатков линейных регуляторов является то, что они могут быть неэффективными, поскольку в некоторых случаях рассеивают большое количество энергии. Падение напряжения линейного регулятора сравнимо с падением напряжения на резисторе. Например, при входном напряжении 5 В и выходном напряжении 3 В падение между выводами составляет 2 В, а КПД ограничен 3 В/5 В (60%). Это означает, что линейные регуляторы лучше всего подходят для приложений с более низким V IN / V OUT дифференциалы.

Важно учитывать предполагаемое рассеивание мощности линейного стабилизатора при применении, поскольку использование более высоких входных напряжений приводит к высокому рассеиванию мощности, что может привести к перегреву и повреждению компонентов.

Другим ограничением линейных стабилизаторов напряжения является то, что они способны только к понижающему (понижающему) преобразованию, в отличие от импульсных регуляторов, которые также обеспечивают повышающее (повышающее) и понижающе-повышающее преобразование.

Импульсные стабилизаторы очень эффективны, но некоторые недостатки включают то, что они, как правило, менее рентабельны, чем линейные регуляторы, больше по размеру, более сложны и могут создавать больше шума, если их внешние компоненты не выбраны тщательно. Шум может быть очень важен для данного приложения, так как шум может влиять на работу и характеристики схемы, а также на характеристики электромагнитных помех.

Топологии импульсных регуляторов: понижающий, повышающий, линейный, LDO и регулируемый

Существуют различные топологии линейных и импульсных регуляторов. Линейные регуляторы часто полагаются на топологии с малым падением напряжения (LDO). Импульсные стабилизаторы бывают трех распространенных топологий: понижающие преобразователи, повышающие преобразователи и повышающе-понижающие преобразователи. Каждая топология описана ниже:

Регуляторы LDO

Одной из популярных топологий для линейных регуляторов является регулятор с малым падением напряжения (LDO). Линейные стабилизаторы обычно требуют, чтобы входное напряжение было как минимум на 2 В выше выходного напряжения. Однако регулятор LDO предназначен для работы с очень небольшой разницей напряжений между входными и выходными клеммами, иногда всего 100 мВ.

Понижающие и повышающие преобразователи

Понижающие преобразователи (также называемые понижающими преобразователями) принимают более высокое входное напряжение и производят более низкое выходное напряжение. И наоборот, повышающие преобразователи (также называемые повышающими преобразователями) потребляют более низкое входное напряжение и производят более высокое выходное напряжение.

Понижающе-повышающие преобразователи

Понижающе-повышающий преобразователь — это одноступенчатый преобразователь, который сочетает в себе функции понижающего и повышающего преобразователя для регулирования выходного напряжения в широком диапазоне входных напряжений, которые могут быть больше или меньше выходного Напряжение.

Управление регулятором напряжения

Четыре основных компонента линейного регулятора — проходной транзистор, усилитель ошибки, источник опорного напряжения и резисторная цепь обратной связи. Один из входов усилителя ошибки устанавливается двумя резисторами (R1 и R2) для контроля выходного напряжения в процентах. Другой вход представляет собой стабильное опорное напряжение (V REF ). Если замеренное выходное напряжение изменяется относительно V REF , усилитель ошибки изменяет сопротивление проходного транзистора для поддержания постоянного выходного напряжения (V OUT ).

Для работы линейных регуляторов обычно требуется только внешний входной и выходной конденсаторы, что упрощает их реализацию.

С другой стороны, импульсный регулятор требует больше компонентов для создания цепи. Силовой каскад переключается между V IN и землей для создания пакетов заряда для доставки на выход. Подобно линейному регулятору, имеется операционный усилитель, который считывает выходное напряжение постоянного тока из сети обратной связи и сравнивает его с внутренним опорным напряжением. Затем сигнал ошибки усиливается, компенсируется и фильтруется. Этот сигнал используется для модуляции рабочего цикла ШИМ, чтобы вернуть выход в режим регулирования. Например, если ток нагрузки быстро увеличивается и вызывает падение выходного напряжения, контур управления увеличивает рабочий цикл ШИМ, чтобы обеспечить больший заряд нагрузки и вернуть шину в режим регулирования.

Применение линейных и импульсных регуляторов

Линейные регуляторы часто используются в приложениях, которые чувствительны к затратам, шумам, слабому току или ограниченному пространству. Некоторые примеры включают бытовую электронику, такую ​​как наушники, носимые устройства и устройства Интернета вещей (IoT). Например, в таких приложениях, как слуховой аппарат, может использоваться линейный регулятор, поскольку в них нет переключающего элемента, который может создавать нежелательные шумы и мешать работе устройства.

Более того, если разработчики в основном заинтересованы в создании недорогого приложения, им не нужно так беспокоиться о рассеиваемой мощности, и они могут положиться на линейный регулятор.

Импульсные регуляторы выгодны для более общих применений и особенно полезны в приложениях, требующих эффективности и производительности, таких как потребительские, промышленные, корпоративные и автомобильные приложения (см. рис. 3) . Например, если приложение требует большого понижающего решения, лучше подойдет импульсный регулятор, так как линейный регулятор может создать большую рассеиваемую мощность, которая может повредить другие электрические компоненты.

Рисунок 3: Понижающий регулятор MPQ4430-AEC1

Каковы основные параметры микросхемы регулятора напряжения?

Некоторые из основных параметров, которые следует учитывать при использовании регулятора напряжения, — это входное напряжение, выходное напряжение и выходной ток. Эти параметры используются для определения того, какая топология VR совместима с IC пользователя.

Другие параметры, включая ток покоя, частоту коммутации, тепловое сопротивление и напряжение обратной связи, могут иметь значение в зависимости от применения.

Ток покоя важен, когда эффективность в режиме малой нагрузки или в режиме ожидания является приоритетом. При рассмотрении частоты коммутации в качестве параметра максимизация частоты коммутации приводит к меньшим системным решениям.

Кроме того, тепловое сопротивление имеет решающее значение для отвода тепла от устройства и рассеивания его по системе. Если в состав контроллера входит внутренний МОП-транзистор, то все потери (кондуктивные и динамические) рассеиваются в корпусе и должны учитываться при расчете максимальной температуры ИС.

Напряжение обратной связи — еще один важный параметр, который необходимо проверить, поскольку он определяет минимальное выходное напряжение, которое может поддерживать регулятор напряжения. Стандартно смотреть на опорные параметры напряжения. Это ограничивает более низкое выходное напряжение, точность которого влияет на точность регулирования выходного напряжения.

Как выбрать правильный регулятор напряжения

Чтобы правильно выбрать регулятор напряжения, разработчик должен сначала понять его ключевые параметры, такие как V IN , V OUT , I OUT , системные приоритеты (например, эффективность, производительность, стоимость) и любые дополнительные ключевые функции, такие как индикация исправности (PG) или включение управления.

После того как разработчик определил эти требования, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее заданным требованиям. Таблица параметрического поиска является ценным инструментом для проектировщиков, поскольку она предлагает различные функции и пакеты, доступные для соответствия требуемым параметрам вашего приложения.

Каждое устройство MPS поставляется с техническим описанием, в котором указано, какие внешние детали необходимы, и как рассчитать их значения для достижения эффективной, стабильной и высокопроизводительной конструкции.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *