Инжектор механический: Что за механический инжектор? | Audi Club Russia

Содержание

Принцип работы инжектора. Механический инжектор: принцип действия

В данной статье будет рассмотрен принцип работы инжектора и всех его основных узлов. Это достаточно перспективная система, которая на данный момент используется на всех автомобилях, независимо от их ценовой группы. Но ведь не стоит забывать о том, что впервые такие конструкции начали использоваться массово в 70-х и 80-х годах. Причем поначалу инжекторы были без использования электронных компонентов. Конечно, они могли присутствовать, но в минимальном количестве. Также стоит провести сравнение инжекторной и карбюраторной системы впрыска топлива.

Карбюратор против инжектора

Пожалуй, среди поклонников карбюратора остаются лишь те, которые любят стартовать со светофора. Причина – карбюратор позволяет на низах развить большой крутящий момент и мощность. Инжекторная система впрыска, даже идеально настроенная, рядом не стоит. Простота карбюратора и стоимость обслуживания тоже дают небольшое преимущество. Но вот что касается мощности и крутящего момента на высоких оборотах, то инжектор здесь выигрывает, причем с большим отрывом. Другими словами, при совершении обгона ваш автомобиль более приемистым будет в том случае, если установлен инжекторный впрыск. Также имеется возможность увеличения мощности путем установки турбины – устройства, способного нагнетать в систему впрыска избыточное давление воздуха. За счет этого повышается мощность двигателя во много раз. Конечно же, страдает ресурс, но чем не пожертвуешь ради эффектной езды?

Этапы развития инжекторного впрыска

На знаменитых «сигарах» «Ауди 100» использовался механический инжектор. Принцип работы его можно сравнить с системой топливоподачи в дизельных моторах. При помощи механического насоса и такого же привода форсунок производилась подача топливовоздушной смеси в камеры сгорания. Конечно, нельзя не упомянуть и о переходном звене – карбюраторах с электронным управлением. Использовались они на малом количестве автомобилей, причем исключительно японского производства. Жители Страны восходящего солнца очень любят разнообразные электронные гаджеты и по сей день. Но электронные карбюраторы были недолго популярны, в конце 80-х началась их эра и моментально закончилась. Между прочим, на автомобилях ВАЗ-2110, например, устанавливались карбюраторы без тросика «подсоса». Регулировка подачи воздуха осуществлялась автоматически, при помощи специальной заслонки, которая меняла свое положение по мере прогрева двигателя. Но сегодня большую популярность получили инжекторы, конструкции которых стали уже классическими. Вот их и стоит рассмотреть более детально, разобрать по составляющим.

Топливный насос

Это сердце всей топливной системы, так как с его помощью происходит циркуляция бензина. Состоит он из следующих элементов:

  1. Фильтр (в народе называется он «памперс», так как имеет завидное сходство).
  2. Электродвигатель постоянного тока.
  3. Помпа, приводимая в движение двигателем.
  4. Датчик уровня (конструктивно он объединен с топливным насосом).

Располагается насос непосредственно в баке, крепится при помощи гаек. Доступ к нему можно получить, если поднять заднее сиденье. Во всех автомобилях, будь то старенькая «десятка» либо же новая «японка», находится бензонасос именно под сиденьем. Конечно, снятие и установка будут производиться на всех машинах по-разному. От насоса к рампе проложена топливная магистраль. Она должна выдерживать большое давление, поэтому всегда следите за ее состоянием. Параллельно этой магистрали прокладывается трубка, которая возвращает избытки бензина обратно в бак. Довольно прост принцип работы бензонасоса. Инжектор функционирует за счет избыточного давления, создаваемого помпой.

Топливная рампа

Она устанавливается непосредственно на двигателе. Ее миссия заключается в том, чтобы удерживать в себе смесь бензина и воздуха под определенным давлением. Именно в ней происходит процесс соединения двух составляющих горючей смеси – бензина и воздуха. Причем пропорция всегда должна быть одинаковой – 14 частей воздуха на одну бензина. Только в таком случае двигатель будет работать максимально устойчиво, стабильно, экономично. К рампе произведено подключение таких механизмов, как дроссельная заслонка, электромагнитные форсунки, клапан сброса. Между прочим, именно в топливной рампе производится установка датчика давления топлива. Но про него и все остальные электронные компоненты будет рассказано дальше. Стоит заметить, что инжектор Вентури, принцип работы которого аналогичен рассмотренной в статье системе, имеет очень широкое применение, причем не только в автомобилях.

Форсунки

При помощи этих устройств производится подача топливовоздушной смеси в камеры сгорания всех цилиндров. Что же это за механизмы? Если вы знаете сносно конструкцию карбюраторов, то вспомните про электромагнитный клапан. Вот именно у него конструкция очень похожа на ту, которую вы можете видеть у форсунок. У них имеется обмотка, на которую подается постоянное напряжение. Игольчатый клапан при подаче напряжения открывает путь для прохождения топлива. Вся эта смесь под давлением распыляется в камеры сгорания. Обратите внимание, что форсунки должны распылять топливо таким образом, чтобы оно заполняло как можно больше камеру сгорания. Прост в понимании принцип работы форсунки инжектора, с ее помощью производится распыление. Топливовоздушная смесь в этот момент похожа на туман, в определенном объеме воздуха бензин находится во взвешенном состоянии. Следовательно, воспламенение происходит намного быстрее и лучше, нежели в случае с карбюраторной системой.

Дроссельная заслонка

Откройте капот автомобиля и внимательно посмотрите, что находится под ним. Вы увидите воздушный фильтр, который обычно прикручен к «телевизору» – передней части машины. От него идет небольшой патрубок, соединенный с отрезком пластиковой трубы, к которому подключены провода. Это датчик, который измеряет расход двигателем воздуха. А вот после него находится заслонка. С ее помощью происходит регулировка подачи воздуха в топливную рампу. Но тут нужно взглянуть на принцип работы инжектора. Ведь необходимо заметить, что при полностью закрытой заслонке небольшая часть воздуха все равно поступает в топливную систему, чтобы обеспечить оптимальное значение числа оборотов двигателя. И происходит это при помощи одного специфического исполнительного механизма – регулятора холостого хода (неправильно его называть датчиком, так как это шаговый электродвигатель, он никаких измерений не производит). Этот механизм открывает и закрывает при необходимости канал, по которому поступает воздух в топливную рампу.

Электронный блок управления

Без этого элемента инжекторной системы впрыска двигатель работать не сможет. Впрочем, иногда, даже если он и стоит, то это вовсе не означает, что двигатель будет заводиться и отменно работать. А дело все в том, что электронный блок управления построен на микропроцессоре. И он специально программируется для работы в качестве модуля управления всеми исполнительными устройствами на основании данных, полученных от датчиков. Следовательно, электронный блок управления должен иметь программу, написанную по определенному алгоритму. Причем этот алгоритм должен быть четким, чтобы микроконтроллер точно знал, что ему необходимо сделать, если, например, появится сигнал с датчика детонации, без которого не может существовать ни один современный инжектор. Принцип работы двигателя как с инжектором, так и с карбюратором остается неизменным.

Датчики в автомобиле

Чтобы правильно и своевременно подать топливо во все цилиндры, а также импульсы на электроды свечей зажигания, необходимо максимально точно считывать все параметры работы двигателя. В частности, важно знать, какая частота вращения у коленчатого вала. Также не помешают данные о том, какое давление в топливной рампе. Если же необходима остановка двигателя в автоматическом режиме при недостаточной смазке, то производится подключение датчика давления масла. При этом нужно прописывать его функции в алгоритме блока управления, конечно же, принцип работы инжектора в таком случае немного изменится. Также следует знать и про детонацию, ведь она многое может сказать о том, насколько правильно функционирует двигатель внутреннего сгорания.

В современных автомобилях контролируется даже состав газа в выхлопной системе. Это происходит при помощи двух датчиков кислорода. И самое главное – это, конечно же, расход воздуха. Без знания этого параметра попросту невозможно осуществить правильное смесеобразование.

Заключение

Несмотря на кажущуюся сложность конструкции, принцип работы инжектора ВАЗ-2110, как и любого другого автомобиля, очень простой. Можно даже провести аналогию с обычным компрессором, оснащенным краскопультом. Конечно, это будет упрощенный вариант системы, форсунка только одна, блока управления сложного нет. Но суть примерно такая же. Проще разобраться с процессами, протекающими в двигателе с инжекторной системой впрыска, нежели исследовать разнообразные завихрения и перепады давления в карбюраторной. А если досконально изучить конструкцию, то вам не будет страшна никакая поломка датчиков всей системы управления.

Ремонт KE-Jetronic. Ремонт механического инжектора. Ремонт инжектора Audi 100, 80, 90.

Ремонт инжектора ауди 100, ауди 80, ауди 90.

Ремонт дозаторов топлива Audi 100, Audi 90, Audi 80.

Ремонт потенциометра напорного диска (ПНД)

МЫ ДАВНО НЕ РАБОТАЕМ В ДАННОМ НАПРАВЛЕНИИ, САЙТ СУЩЕСТВУЕТ КАК БАЗА ЗНАНИЙ !!!


 Мы специализируемся на ремонте механического инжектора KE-Jetronic, KE-Motronic, KE3-Jetronic, ремонте дозаторов топлива систем КЕ-Джетроник, КЕ-Мотроник, КЕ3-Джетроник, К-Джетроник автомобилей Audi и VW.

КРОМЕ МЕХАНИЧЕСКИХ СИСТЕМ BOSCH МЫ НИЧЕГО НЕ РЕМОНТИРУЕМ !

.

Стаж нашей работы по этим системам более 10 лет, а это более тысячи автомобилей. На ремонт к нам едут не только из Москвы и МО, но и из Твери, Калуги, Нижнего-Новгорода, Ржева, Рязани, даже Курска и пр. городов.

Ремонт у нас как правило не занимает более 3 часов (если неисправность не связана к примеру с плохим "холодным" запуском, когда мотор требуется несколько раз охлждать и нагревать) , т. е. Вам не придется оставаться без «колес» на несколько дней.

Весь процесс ремонта механического инжектора Вы будете наблюдать самостоятельно.

Оплата услуг ТОЛЬКО за результат.

Мы работаем по записи, а это значит вы сможете спланировать свое время.

У нас часто есть в наличии дозаторы топлива и др. узлы системы врыска настроенные и с гарантией, т.е. Вам не придется ездить на неисправном авто по разборкам на которых есть вариант купить неисправную запчасть.

  Так же на нашем сайте вы найдете много информации для самостоятельного ремонта инжектора KE-Jetronic, KE-Motronic, KE3-Jetronic, K-Jetronic (КЕ-Джетроник, КЕ-Мотроник, КЕ3-Джетроник, К-Джетроник)

, мануалы, статьи и отчеты по ремонту автомобилей Audi 80, Audi 100, а так же, можете пообщаться с единомышленниками и задать вопрос по ремонту вашей Audi на нашем форуме.

-----------------------------------------------------------------------------------------

НЕМНОГО ПРО РЕМОНТ МЕХИНЖЕКТОРА . ..

  Ох уж этот механический инжектор, при одном упоминании о нем специалисты автосервисов разворачивают Вас на 180 градусов не желая даже смотреть под капот, хотя попадаются и товарищи которые как то прочитав мануал, решают попробовать «вылечить» Ваш авто, но к сожалению ни к чему хорошему это не приводит и зачастую машина приехавшая своим ходом отправляется к следующему "специалисту" уже на эвакуаторе. Из этого можно сделать несколько выводов: во-первых – что бы успешно ремонтировать механический инжектор нужны определенные знания и навыки, нужно отлично понимать устройство дозатора топлива, а главное принцип его работы, к сожалению такими знаниями м навыками владеют только специалисты отремонтировавшие тысячи автомобилей с такой системой впрыска, а таких даже в Москве можно пересчитать по пальцам одной руки не говоря уже про регионы в которых спецыалистов по KE-шкам просто нет, во-вторых: не отдавайте в ремонт свою машину если не уверены в квалификации мастера, и уж точно не позволяйте разбирать дорогостоящий
Дозатор топлива
без четко поставленного обоснованного диагноза, почему же требуется его разборка и что там в нем сломалось и главное что этот специалист собирается с ним сделать что бы вернуть его к жизни, обычно мастера которые отдаленно знают систему KE-Jetronic , KE-Motronic или KE3-Jetronic четко не могут ответить на такие вопросы, разводя руками и утверждая что он точно сломан, но вот что в нем сломалось к сожалению остается загадкой даже после разборки агрегата. Все бы ничего, но такой мастер даже если и удачно разобрал дозатор-распределитель топлива не порвав мембрану, правильно собрать его все равно врятли сможет, и после таких манипуляций 80% дозаторов идут на помойку. Ну а если мастер Вам сказал что надо разобрать дозатор K-Jetronic, тут сразу бегите пока не случилось непоправимого т.к. эти дозаторы вообще не ремонтопригодны в следствие их существенных отличий от KE-Jetronic, если вдаваться в подробности, то в дозаторе топлива системы KE-Jetronic мембрана разделяющая нижнюю и верхнюю камеры сделана из прорезиненного армированного материала, такая мембрана легко обжимается повторно, если конечно очумелые ручки не порвали ее при разборке дозатора-распределителя, а в дозаторе топлива системы K-Jetronic мембрана сделана из нержавеющей стали и повторно она не обожмется, что повлечет за собой течь топлива по периметру дозатора-распределиителя, так что такой дозатор можно только прочистить и отполировать некоторые внутренние детали, добраться к которым можно без разборки самого топливного дозатора.
Другой частовстречающийся случай "попадоса" это когда мастер начинает менять за ваш счет все что можно поменять, результат такого ремонта - у вас на машине стоят новые форсунки, лямбда-зонд, бензонасос, в кармане пусто, а мотор как не работал как положено, так и не работает. Как только пошла замена узлов по методу научного тыка, забирайте машину пока вас не разорили.
Что касается узлов с разборок, не нужно себя обманывать, как бы вас не уговаривала "зеленая жаба", не поддавайтесь, т.к. чаще всего это тоже деньги на ветер. Не стоит экономить на таких узлах как бензонасос или механические форсунки, слова продавцов на разборе "с рабочей машины" чистой воды развод, вдумайтесь, ваша машина тоже работает, вопрос лишь в том, как она работает, хотя некоторые узлы действительно можно брать с разбора, это касается например катушки зажигания, трамблера, дроссельной заслонки, ЭБУ, т.к. эти узлы крайне редко выходят из строя, а на новый оригинал совершенно неадекватные цены, естественно перед покупкой необходимо проверить запчасть или потребовать гарантию.
Так же, последнее время, очень распространены выездные услуги, 90% это очередной развод, подумайте сами, серьезные крупные автосервисы отказываются ремонтировать эти системы имея огромные площади, поставщиков запчастей, квалифицированных специалистов, неужели вы верите что можно провести качественный ремонт у вашего подъезда, да и просто если прикинуть сколько будет стоить эвакуатор - приблизительно как и выезд подобного "специалиста". Решать вам, сразу скажу что мы подобные услуги не оказываем.

САМЫЕ ЧАСТЫЕ НЕИСПРАВНОСТИ СИСТЕМ МЕХАНИЧЕСКОГО ВПРЫСКА
KE-Jetronic , KE-Motronic, KE3-Jetronic
(КЕ-Джетроник, КЕ-Мотроник, КЕ3-Джетроник)
:


 Главный враг механического инжектора это наш «супер качественный бензин», тут уж спасения нет. Могу только порекомендовать заправляться на проверенных заправках 92-ым бензином (95-го у нас просто нет, сплошные антидетонационные присадки в виде железа и пр. тяжелых металлов которые осаждаются на электроде свечи зажигания в виде рыжего налета и выпадают в осадок после непродолжительного времени), менять топливный фильтр раз в 15-20 тыс. км и приезжать к нам на ТО, т.е. комплексную промывку системы впрыска, и проблем станет значительно меньше.

 Следующая группа неисправностей механического инжектора КЕ-Джетроник, КЕ-Мотроник, КЕ3-Джетроник это выход из строя бензонасоса и форсунок в следствии все того же некачественного топлива, несвоевременной замены фильтрующих элементов, да и просто из за выработки ресурса. Увы, эти узлы не очень дешевые, но и им можно продлить срок службы. Что касается погружных насосов, им рекомендую раз в 30 тыс. км. делать ТО, т.е. доставать его из бака и чистить все сетки и фильтра. С магистральными насосами дело обстоит сложнее, фильтр грубой очистки стоит не на насосе (хотя в насосах фирмы Pierburg во входном фланце есть доп. фильтр), а в бензобаке и достать его невозможно, но тут есть пару хитростей, которые мы обычно используем для устранения этой недоработки :). Подробно процедуру описывать не буду, могу сказать, что заключается она в удалении сетки из бака с последующей установкой внешнего топливного фильтра, который можно будет в последствии легко менять на ТО в сервисе, или самостоятельно при наличии гаража с ямой. Что касается форсунок, то тут совет старый, вовремя меняйте топливный фильтр и приезжайте на промывку системы впрыска.

 Еще одна страшная болячка механических инжекторных систем, а точнее систем KE-Motronic и KE3-Jetronic (Audi с моторам AAR, NG,NF, 3A, AAD, ACE и VW с мотором 9А) это износ Потенциометра расходомера воздуха или Потенциометра напорного диска (ПНД), в следствии износа графитовых дорожек датчик утрачивает заводскую характеристику, что влечет за собой несколько неприятностей: пропадают прогревочные обороты, мотор не хочет держать холостой ход, ухудшается динамика, самое неприятное ждет владельцев авто с автоматической трансмиссией, при неисправности ПНД контроллер переводит регулятор ХХ в аварийный режим и начиются «прогазовки» на ХХ, мотор сам газует от 900 до 1200 оборотов, что естественно очень не полезно для АКПП.

Ремонт инжектора - | Auto Just36

Устройство современных автомобилей постоянно совершенствуется. Сегодня почти на всех автомобилях устанавливаютсяинжекторные бензиновые двигатели (инжектор)

Что касается работ по ремонту и обслуживанию инжектора, то можно отметить, что это наиболее трудоемкие, узкопрофильные работы.

Что такое инжектор? Можно ли отремонтировать инжектор своими руками?

Инжектор представляет собой комплекс форсунок, которые выполняют оптимизированный впрыск топлива в воздушный поток. Подача топлива в цилиндр двигателя, таким образом, и называется инжекторной системой подачи топлива.

Почему инжекторные системы подачи топлива так популярны в автомобилестроении?

Инжекторные системы подачи топлива максимально приближены к оптимальному техническому решению, которое исключает большинство недостатков других топливных систем. Но и здесь можно найти свои минусы, а именно недостатки инжекторных систем подачи топлива.

Главным недостатком инжекторных систем можно считать необходимость использования топлива высокого качества. То есть требования к бензину при использовании инжектора в качестве элемента топливной системы резко возрастают.

Ремонт инжектора своими руками проводить достаточно сложно, так как обслуживание инжектора выполняется на специальном дорогостоящем оборудовании.

Неисправности инжекторных систем подачи топлива и ремонт инжектора

Основные неисправности инжектора предполагают выход из строя блока управления двигателя и его датчиков.

Причины неисправности инжектора

1)Нарушение правил эксплуатации инжектора;

2)Заправка бензина плохого качества;

3)Не соблюдение правил технического обслуживания инжекторов.

Инжекторные системы очень чувствительны к плохому топливу, поэтому водитель должен максимально соблюдать рекомендации производителя по обслуживанию инжектора, во избежание технических проблем.

Своевременная техническая диагностика инжекторной системы не только позволит предотвратить поломку инжектора, но сэкономят ваше время в дальнейшем.

Обязательно надо отметить, что диагностика инжекторной системы подачи топлива проводится на специальном оборудовании, как и промывка инжектора. Своевременное техническое обслуживание инжектора это залог длительной и правильной работы инжекторной системы.

Технический прогресс производства современных автомобилей диктует свои правила. Революцией в мире автомобилей стало использование электронных систем управления узлов и агрегатов автомобиля. Современные технологии позволяют проводить компьютерную диагностику автомобиля, что значительно увеличивает точность диагностирования инжекторных систем и остальных агрегатов, механизмов. После проведения компьютерной диагностики владелец автомобиля получает распечатку с предполагаемыми дефектами и мастер-приемщик по ремонту автомобилей должен объяснить дальнейшие действия, последовательность устранения дефектов и неисправностей и ориентировочное время для их устранения.

Перечень работ по ремонту и обслуживанию инжекторной системы:

  1. Диагностика инжектора;
  2. Диагностика электронных систем автомобиля;
  3. Компьютерная диагностика двигателя;
  4. Ремонт инжекторных систем подачи топлива;
  5. Ремонт проводки инжекторных систем.

Наверное каждый водитель понимает, что двигатель работает правильно только тогда, когда каждая из систем выполняет поставленные перед ней задачи. Если двигатель работает неравномерно, и какая то его система не выполняет требуемых операций это значительно сокращает срок службы двигателя в целом. В дальнейшем такая ситуация может привести к сбоям системы. В этом случае необходимо срочно обратиться в автосервис для диагностики инжекторной системы или системы в которой произошел сбой.

Специалисты автосервиса должны произвести несколько этапов диагностики двигателя и предоставить отчет по перечню неисправностей, которые необходимо устранить.

Диагностика инжекторного двигателя:

  1. Компьютерная диагностика двигателя;
  2. Замер компрессии в цилиндрах двигателя;
  3. Замер давления в системе питания;
  4. Проверка на посторонние шумы;
  5. Диагностика приводных ремней;
  6. Диагностика расходных материалов (трубок, прокладок, резиновых уплотнителей).

На основании результатов диагностики двигателя делают заключение о техническом состоянии двигателя.И только на этом этапеможно говорить о расчете стоимости ремонтных работ. Ремонт инжектора лучше всего производить своевременно, ведь мастерских по ремонту инжекторов в нашем городе уже достаточно много.

Ремонт механического инжектора

Ремонт механического инжектора достаточно сложная в техническом плане задача, поэтому выполняется только в специализированных автосервисах, каких в нашем городе не много.

Вся сложность ремонта механического инжектора состоит в технически сложном устройстве механического инжектора. За ремонт механического инжектора может взяться только «действительно» квалифицированный автомеханик, который имеет опыт в ремонте механических инжекторов. Механический инжектор представляет собой сложную систему подачи топлива в двигатель.

Как ремонтировать механический инжектор?

Ремонт механического инжектора своими руками практически не реальная задача, но выполнимая. Ремонт механического инжектора состоит следующих этапов:

  1. Разборка механического инжектора;
  2. Очистка механического инжектора;
  3. Замена изношенных деталей механического инжектора;
  4. Сборка механического инжектора.

Ремонт механического инжектора довольно сложная задача даже для профессионалов, поэтому автомобили с механическим инжектором не пользуются спросом на автомобильном рынке. А если кто и покупает автомобили с механическим инжектором, то самые настоящие любители этой модели автомобиля.

Настройка механического инжектора на Мерседесе | Logovaz Auto


Mercedes BenzТюнинг На старинных Мерседесах с механическим впрыском бывают проблемы его починить, дорого и никто не умеет и как правило после локального ремонта ломается в соседнем месте, а целиком все очень дорого менять. Поэтому налажена установка электронного впрыска и блока усправления Январь 7.

Для переделки во первых нужно доработать шкив коленвала и установить датчик на него датчик положения коленвала. Шкив протачивается и на него устанавливается зубчатый венец.

Корпус снизу имеет резиновую часть, гермитизирующую корпус и служащую для соединения корпуса с дроссельной заслонкой. Разберемся в куче проводочков системы впрыска и что к ним подключено, но не было рассмотрено нами ранее: Механический инжектор мерседес 124 с двумя проводами и с тремя проводами.

Служит для сигналов: Если блок зажигания TSZ пишется прямо на блоке — датчик одноконтактный, если EZL — двух контактный два штырька вверх, оба вывода идентичны, просто механический инжектор мерседес 124 для управления блоком зажигания. А что мы не увидели в процессе осмотра КЕ просто осмотрев мотор? Бензонасос для двигателей объемом свыше 2. механический инжектор мерседес 124

Рядом справа мы найдем небольшого размера металлическое реле с предохранителем вверху крышки — это реле защиты ЭБУ от перенапряжения. Заводом устанавливается в положение 1 все ОК и опечатывается.

Заводская лямбда имеет 3 провода, если перекучивали на аналог — бывает с 4-мя проводами. Уф, вот и все… Правда если оценивать объем элементов системы впрыска КЕ в сравнении с другими, то система ВАЗ окажется проще, правда ее диагностика прямо на авто может оказаться несколько затруднительна, а иногда и невозможна без спецприспособ. Можно делать диагностику и частично, можно просто отрегулировать ряд параметров механический инжектор мерседес 124 авто поедет, правда качество езды или расход вряд ли будут в норме.

А теперь посмотрим что мы можем проверить прямо на машине: Для всего этого нам понадобятся: Я уже отмечал, что КЕ в первую очередь механическая система, поэтому диагностировать электронику механический инжектор мерседес 124 проверки и настройки мех системы может обернуться потерей времени и полной разрегулировкой впрыска.

Начальные профилактические работы перед полной настройкой системы. Особое внимание уделить чистоте боковых поверхностей. Ход тарелки легкий без заеданий. Внутри механический инжектор мерседес 124 находится входной фильтр тонкой очистки. При чистом фильтре он продувается ртом с небольшим усилием. Если загрязнен — менять механический инжектор мерседес 124 под.

Собрать топливопровод с фильтром обратно. Диагностика мех системы: При этом включится бензонасос. Диагностика бензонасос работает. До появления сопротивления люфт хода тарелки должен находиться в диапазоне 1,5 мм. Не допускается очень большой люфт или его отсутствие. Регулируется нижней гайкой дозатора при этом дозатор необходимо снимать. Контролируется по манометру, подключенному к дозатору вместо пусковой форсунки.

Системное давление должно находиться в пределах 5,1 — 5,6 атм. Если давление выше — менять регулятор системного давления. При колебаниях давления выше нормы — заменить бензофильтр под авто либо бензонасос.

Снять манометр и прикрутить назад трубку к пусковой форсунке он более не нужен. Поставить бутылочки опять под форсунки. Нажать и удерживать тарелку расходомера в крайнем положении в течение 45 или 60 сек.

Так ли страшен механический инжектор

Время контролировать секундомером. Записать объем налитого топлива на каждый канал. При большом разбросе провести налив только с трубочками без форсунок. Если разброс наблюдается только с форсунками механический инжектор мерседес 124 необходимо промывка форсунок имеют внутренние сеточные фильтра. Технология промывки описана в интернете.

Mercedes w124 2.3л M102 установка Январь 7.2 вместо KE-Jetronic

Записать данные мл. Наличие капания либо боковых струек — форсунку меняют.

При наличии струек при большой подаче, если факел идет вбок или механический инжектор мерседес 124 конус очень широк — форсунку рекомендуется заменить. Будем считать, что все хорошо и разброс налива, а также факелы форсунок в норме. Форсунки должны распылять в облако. Мои форсунки не "пели", если после установки на трубку постепенно нажимать на дозатор, но вот если один раз нажать до конца на дозатор, отпустить и попробовать снова — все начинали петь.

Все форсунки распыляли достаточно хорошо, 2 из них распяляли прям идеально, остальные с небольшой погрешностью. На малом открытии дозатора просматривались струки.

Дальше сделал замер налива с форсунками. Сколько точно они должны наливать я не помню, но главное что б небыло разницы по цилиндрам. После механический инжектор мерседес 124 все ок. На этом проверка гидравлической части закончена. Проверяем электронную составляющую КЕ.

Проверил сопротивление ЭГРД — идеал С ним все ок, тем более что поддаеться регулировке. Подключем вольтметр последовательнона плюс ЭГРД контакт. На прогретом авто ток должен быть около 0А.

Механический инжектор капитальный ремонт комплект 2430136206 позиционирования

Отзывы покупателей

*о других товарах

Монохромный лазерный принтер Brother HLL2375DWY...

Цена
Стоимость
Качество

Заказывали такой принтер на aliexpress. Печатает четко черным, без полос. Радует короткое время разогрева, да и скорость печати для такого принтера очень даже хорошая. Печатает даже на плотной бума... (Опубликован: 20.06.2021)


Оригинальный Vernee Mix 2 смартфон с двумя каме...

Цена
Стоимость
Качество

Продавца рекомендую.Микс2 пришел за 20 дней.Первое впечатление хорошее.Батарея была 16% так что сразу на зарядку.Будут проблемы добавлю отзыв. (Опубликован: 20.06.2021)


Uslion чехол для телефона iPhone 7 6 6S плюс 5 ...

Цена
Стоимость
Качество

Заказала голубой чехол на AliExpress и осталась очень довольна. Пришел довольно быстро в Москву, за 2,5-3 недели, при получении на почте никаких проблем не было. Никаких дефектов или брака нет, чех... (Опубликован: 20.06.2021)


BEEBASE противоударный чехол для телефона iphon...

Цена
Стоимость
Качество

Чуть не загубила Айфон, оборонив на землю. Укутав его в такой симпатичный яркий чехольчик, хожу гулять спокойно - даже если уроню, ничего не случится. Пленка, закрывающая сам дисплей, оказалась чув... (Опубликован: 20.06.2021)


Oukitel C8 5 дюймов 18:9 HD Экран мобильного те...

Цена
Стоимость
Качество

Решил купить себе телефон, так как пошлый сломался(просто не включался) в ремонте сказали, что  он не подлежит ремонту, поэтому решил обновить и заказал этот телефон. Модель не старая, да и цена ад... (Опубликован: 20.06.2021)


турбина на механический инжектор — Автосайт

Задача повышения мощности и крутящего момента двигателя была актуальна всегда. Мощность двигателя напрямую связана с рабочим объемом цилиндров и количеством подаваемой в них топливо-воздушной смеси. Т.е., чем больше в цилиндрах сгорает топлива, тем

Задача повышения мощности и крутящего момента двигателя была актуальна всегда. Мощность двигателя напрямую связана с рабочим объемом цилиндров и количеством подаваемой в них топливо-воздушной смеси

Т.е., чем больше в цилиндрах сгорает топлива, тем более высокую мощность развивает силовой агрегат. Однако самое простое решение - повысить мощность двигателя путем увеличения его рабочего объема приводит к увеличению габаритов и массы конструкции.

Количество подаваемой рабочей смеси можно поднять за счет увеличения оборотов коленчатого вала (другими словами, реализовать в цилиндрах за единицу времени большее число рабочих циклов), но при этом возникнут серьезные проблемы, связанные с ростом сил инерции и резким увеличением механических нагрузок на детали силового агрегата, что приведет к снижению ресурса мотора. Наиболее действенным способом в этой ситуации является наддув.

Представим себе такт впуска двигателя внутреннего сгорания: мотор в это время работает как насос, к тому же весьма неэффективный - на пути воздуха находится воздушный фильтр, изгибы впускных каналов, в бензиновых моторах - еще и дроссельная заслонка. Все это, безусловно, снижает наполнение цилиндра. Ну а что требуется, чтобы его повысить? Поднять давление перед впускным клапаном - тогда воздуха в цилиндре "поместится" больше.

При наддуве улучшается наполнение цилиндров свежим зарядом, что позволяет сжигать в цилиндрах большее количество топлива и получать за счет этого более высокую агрегатную мощность двигателя.

Виды наддува

В ДВС применяют три типа наддува:

резонансный –при котором используется кинетическая энергия объема воздуха во впускных коллекторах (нагнетатель в этом случае не нужен) механический – в этом варианте компрессор приводится во вращение ремнем от двигателя газотурбинный (или турбонаддув) – турбина приводится в движение потоком отработавших газов.

У каждого способа свои преимущества и недостатки, определяющие область применения.

Резонансный наддув

Как уже отмечалось в начале статьи, для лучшего наполнения цилиндра следует поднять давление перед впускным клапаном. Между тем повышенное давление необходимо вовсе не постоянно - достаточно, чтобы оно поднялось в момент закрытия клапана и «догрузило» цилиндр дополнительной порцией воздуха

Для кратковременного повышения давления вполне подойдет волна сжатия, «гуляющая» по впускному трубопроводу при работе мотора. Достаточно лишь рассчитать длину самого трубопровода, чтобы волна, несколько раз отразившись от его концов, пришла к клапану в нужный момент. Теория проста, а вот воплощение ее требует немалой изобретательности: клапан при разных оборотах коленчатого вала открыт неодинаковое время, а потому для использования эффекта резонансного наддува требуются впускные трубопроводы переменной длины.

При коротком впускном коллекторе мотор лучше работает на высоких оборотах , при низких оборотах более эффективен длинный впускной тракт. Переменные длины впускных трубопроводов можно создать двумя способами: или путем подключения резонансной камеры, или через переключение на нужный впускной канал или его подключение. Последний вариант называют еще динамическим наддувом.

Как резонансный, так и динамический наддув могут ускорить течение впускного столба воздуха. Эффекты наддува, создаваемые за счет колебаний напора воздушного потока, находится в диапазоне от 5 до 20 миллибар. Для сравнения: с помощью турбонаддува или механического наддува можно получить значения в диапазоне между 750 и 1200 миллибар. Для полноты картины отметим, что существует еще инерционный наддув, при котором основным фактором создания избыточного давления перед клапаном является скоростной напор потока во впускном трубопроводе.

Дает незначительную прибавку мощности при высоких (больше 140 км/ч) скоростях движения. Используется в основном на мотоциклах.

Механический наддув

Механические нагнетатели (по англ. percharger) позволяют довольно простым способом существенно поднять мощность мотора. Имея привод непосредственно от коленчатого вала двигателя, компрессор способен закачивать воздух в цилиндры при минимальных оборотах и без задержки увеличивать давление наддува строго пропорционально оборотам мотора. Но у них есть и недостатки.

Они снижают КПД ДВС, так как на их привод расходуется часть мощности, вырабатываемой силовым агрегатом. Системы механического наддува занимают больше места, требуют специального привода (зубчатый ремень или шестеренчатый привод) и издают повышенный шум.

Существует два вида механических нагнетателей: объемные и центробежные.

Типичными представителемя объемных нагнетателей являются нагнетатель Roots и компрессор Lysholm.

Конструкция Roots напоминает масляный шестеренчатый насос. Два ротора вращаются в противоположные стороны внутри овального корпуса. Оси роторов связаны между собой шестернями. Особенность такой конструкции в том, что воздух сжимается не в нагнетателе, а снаружи – в трубопроводе, попадая в пространство между корпусом и роторами. Основной недостаток – в ограниченном значении наддува.

Как бы безупречно ни были подогнаны детали нагнетателя, при достижении определенного давления воздух начинает просачиваться назад, снижая КПД системы. Способов борьбы немного: увеличить скорость вращения роторов либо сделать нагнетатель двух- и даже трехступенчатым. Таким образом можно повысить итоговые значения до приемлемого уровня, однако многоступенчатые конструкции лишены своего главного достоинства – компактности.

Еще одним минусом является неравномерное нагнетание на выходе, ведь воздух подается порциями. В современных конструкциях применяются трехзубчатые роторы спиральной формы, а впускное и выпускное окна имеют треугольную форму. Благодаря этим ухищрениям нагнетатели объемного типа практически избавились от пульсирующего эффекта. Невысокие скорости вращения роторов, а следовательно, долговечность конструкции вкупе с низким шумом привели к тому, что ими щедро оснащают свою продукцию такие именитые бренды, как DaimlerChrysler, Ford и General Motors. Объемные нагнетатели поднимают кривые мощности и крутящего момента, не изменяя их формы.

Они эффективны уже на малых и средних оборотах, а это наилучшим образом сказывается на динамике разгона. Проблема лишь в том, что подобные системы очень прихотливы в изготовлении и установке, а значит, довольно дороги.

Еще один способ нагнетать во впускной коллектор воздух под избыточным давлением в свое время предложил инженер Лисхольм (Lysholm). Его детище окрестили винтовым нагнетателем, или «double screw» (двойной винт). Конструкция наддува Лисхольма чем-то напоминает обычную мясорубку. Внутри корпуса установлены два взаимодополняющих винтовых насоса (шнека). Вращаясь в разные стороны, они захватывают порцию воздуха, сжимают и загоняют ее в цилиндры.

Характерна такая система внутренним сжатием и минимальными потерями, благодаря точно выверенным зазорам. Кроме того, винтовые наддувы эффективны практически во всем диапазоне оборотов двигателя, бесшумны, очень компактны, но чрезвычайно дороги из-за сложности в изготовлении

Однако ими не брезгуют такие именитые тюнинг-ателье, как AMG или Kleemann.

Центробежные нагнетатели по конструкции напоминают турбонаддув. Избыточное давление во впускном коллекторе также создает компрессорное колесо (крыльчатка). Его радиальные лопасти захватывают и отбрасывают воздух в окружной тоннель при помощи центробежной силы.

Отличие от турбонаддува лишь в приводе. Центробежные нагнетатели страдают аналогичным, хотя и менее заметным инерционным пороком, но есть и еще одна важная особенность. Фактически величина производимого давления пропорциональна квадрату скорости компрессорного колеса. Проще говоря, вращаться оно должно очень быстро, чтобы надуть в цилиндры необходимый воздушный заряд, порой в десятки раз превышая обороты двигателя. Эффективен центробежный нагнетатель на высоких оборотах.

Механические «центробежники» не так капризны в обслуживании и долговечнее газодинамических собратьев, поскольку работают при менее экстремальных температурах. Неприхотливость, а следовательно, и дешевизна конструкции снискали им популярность в сфере любительского тюнинга.

Схема управления механическим нагнетателем довольно проста. При полной нагрузке заслонка перепускного трубопровода закрыта, а дроссельная открыта — весь поток воздуха поступает в двигатель. При работе с частичной нагрузкой дроссельная заслонка закрывается, а заслонка трубопровода открывается — избыток воздуха возвращается на вход нагнетателя.

 Входящий в схему охладитель наддувочного воздуха (Intercooler) является почти непременной составной частью не только механических, но и газотурбинных систем наддува. При сжатии в компрессоре (либо в нагнетателе) воздух нагревается, в результате чего его плотность уменьшается. Это приводит к тому, что в рабочем объеме цилиндра воздуха, а, следовательно, и кислорода, по массе помещается меньше, чем могло бы поместиться при отсутствии нагревания. Поэтому сжатый воздух перед подачей его в цилиндры двигателя предварительно охлаждается в интеркулере. По своей конструкции это обычный радиатор, который охлаждается либо потоком набегающего воздуха, либо охлаждающей жидкостью.

Понижение температуры наддувочного воздуха на 10 градусов позволяет увеличить его плотность примерно на 3%. Это, в свою очередь, позволяет увеличить мощность двигателя примерно на такой же процент.

Газотурбинный наддув

Более широко на современных автомобильных двигателях применяются турбокомпрессоры. По сути, это тот же центробежный компрессор, но с другой схемой привода. Это самое важное, можно сказать, принципиальное отличие механических нагнетателей от "турбо". Именно схема привода в значительной мере определяет характеристики и области применения тех или иных конструкций.

У турбокомпрессора крыльчатка-нагнетатель сидит на одном валу с крыльчаткой-турбиной, которая встроена в выпускной коллектор двигателя и приводится во вращение отработавшими газами. Частота вращения может превышать 200.000 об./мин. Прямой связи с коленвалом двигателя нет, и управление подачей воздуха осуществляется за счёт давления отработавших газов.

К достоинствам турбонаддува относят: повышение КПД и экономичности мотора (механический привод отбирает мощность у двигателя, этот же использует энергию отработавших газов, следовательно, КПД увеличивает). Не следует путать удельную и общую экономичность мотора. Естественно, для работы двигателя, мощность которого возросла за счет применения турбонаддува, требуется больше топлива, чем для аналогичного безнаддувного мотора меньшей мощности.

Ведь наполнение цилиндров воздухом улучшают, как мы помним, для того, чтобы сжечь в них большее количество топлива. Но массовая доля топлива, приходящаяся на единицу мощности в час у двигателя, оснащенного ТК, всегда ниже, чем у схожего по конструкции силового агрегата, лишенного наддува. Турбонаддув дает возможность достичь заданных характеристик силового агрегата при меньших габаритах и массе, чем в случае применения "атмосферного" двигателя

Кроме того, у турбодвигателя лучше экологические показатели. Наддув камеры сгорания приводит к снижению температуры и, следовательно, уменьшению образования оксидов азота.

В бензиновых двигателях наддувом добиваются более полного сгорания топлива, особенно на переходных режимах работы. В дизелях дополнительная подача воздуха позволяет отодвинуть границу возникновения дымности, т. е. бороться с выбросами частиц сажи. Дизели существенно лучше приспособлены к наддуву вообще, и к турбонаддуву в частности. В отличие от бензиновых моторов, в которых давление наддува ограничивается опасностью возникновения детонации, им такое явление неведомо.

Дизель можно наддувать вплоть до достижения предельных механических нагрузок в его механизмах. К тому же отсутствие дросселирования воздуха на впуске и высокая степень сжатия обеспечивают большее давление отработавших газов и их меньшую температуру в сравнении с бензиновыми моторами. В общем, как раз то, что нужно для применения турбокомпрессора.

Турбокомпрессоры более просты в изготовлении, что окупает ряд присущих им недостатков.

При низкой частоте вращения двигателя количество отработавших газов невелико, соответственно, эффективность работы компрессора невысока. Кроме того, турбонаддувный двигатель, как правило, имеет т. н. «турбояму» (по-английски "turbo-lag") — замедленный отклик на увеличение подачи топлива. Вам нужно резко ускориться — вдавливаете педаль газа в пол, а двигатель некоторое время «думает» и лишь потом подхватывает.

Объяснение простое — требуется время, пока мотор наберет обороты, увеличится давление выхлопных газов, раскрутится турбина, с ней крыльчатка нагнетателя - и наконец, "пойдет" воздух. Избавиться от указанных недостатков конструкторы пытаются разными способами. В первую очередь, снижением массы вращающихся деталей турбины и компрессора.

Ротор современного турбокомпрессора настолько мал, что легко умещается на ладони

Снижение массы достигается не только конструкцией ротора, но и выбором для него соответствующих материалов. Основная сложность при этом- высокая температура отработавших газов. Металлокерамический ротор турбины примерно на 20% легче изготовленного из жаростойких сплавов, да к тому же обладает меньшим моментом инерции. До последнего времени срок службы всего агрегата ограничивала долговечность подшипников.

По сути, это были вкладыши, подобные вкладышам коленчатого вала, которые смазывались маслом под давлением. Износ таких подшипников скольжения был, конечно, велик, однако шариковые не выдерживали огромной частоты вращения и высоких температур. Выход нашли когда удалось разработать подшипники с керамическими шариками. Однако достойно удивления не применение керамики - подшипники заполнены постоянным запасом пластичной смазки, то есть канал от штатной масляной системы двигателя уже не нужен!

Избавиться от недостатков турбокомпрессора позволяет не только уменьшение инерционности ротора, но и применение дополнительных, иногда довольно сложных схем управления давлением наддува. Основные задачи при этом — уменьшение давления при высоких оборотах двигателя и повышение его при низких. Полностью решить все проблемы можно использованием турбины с изменяемой геометрией (Variable Nozzle Turbine), например, с подвижными (поворотными) лопатками , параметры которой можно менять в широких пределах. Принцип действия VNT турбокомпрессора заключается в оптимизации потока выхлопных газов, направляемых на крыльчатку турбины. На низких оборотах двигателя и малом количестве выхлопных газов VNT турбокомпрессор направляет весь поток выхлопных газов на колесо турбины, тем самым увеличивая ее мощность и давление наддува.

При высоких оборотах и высоком уровне газового потока турбокомпрессор VNT располагает подвижные лопатки в открытом положении, увеличивая площадь сечения и отводя часть выхлопных газов от крыльчатки, защищая себя от превышения оборотов и поддерживая давление наддува на необходимом двигателю уровне, исключая перенаддув.

Комбинированные системы

Помимо одиночных систем наддува сейчас часто встречается и двухступенчатый наддув. Первая ступень — приводной компрессор — обеспечивает эффективный наддув на малых оборотах ДВС, а вторая — турбонагнетатель — утилизирует энергию выхлопных газов. После достижения силовым агрегатом достаточных для нормальной работы турбины оборотов, компрессор автоматически выключается, а при их падении вновь вступает в действие.

Ряд производителей устанавливают на свои моторы сразу два турбокомпрессора. Такие системы называют «битурбо» или «твинтурбо». Принципиальной разницы в них нет, за одним лишь исключением. «Битурбо» подразумевает использование разных по диаметру, а следовательно и производительности, турбин. Причем алгоритм их включения может быть как параллельным, так и последовательным (секвентальным). На низких оборотах быстро раскручивается и вступает в работу турбонаддув маленького диаметра, на средних к нему подключается «старший брат».

Таким образом, выравнивается разгонная характеристика автомобиля. Система дорогостоящая, поэтому ее можно встретить на престижных автомобилях, например Maserati или Aston Martin. Основная задача «твинтурбо» заключается не в сглаживании «турбоямы», а в достижении максимальной производительности.

При этом используются две одинаковые турбины. Устанавливаются «твин-» и «битурбо» как на V-образные блоки, так и на рядные моторы. Варианты подключения турбин также идентичны системе «битурбо».

В чем же смысл? Дело в том, что производительность турбины напрямую зависит от двух ее параметров: диаметра и скорости вращения. Оба показателя весьма капризны. Увеличение диаметра приводит к повышению инерционности и, как следствие, к пресловутой «турбояме».

Скорость же турбины ограничивается допустимыми нагрузками на материалы. Поэтому две скромные и менее инерционные турбины могут оказаться эффективнее одной большой.

Рекомендации

Во-первых, вовремя меняйте масло и масляный фильтр. Во-вторых, используйте только масло, предназначенное для двигателей, оборудованных турбонаддувом, которое изначально рассчитано на более высокие температуры, чем обычное. Но в дороге всякое может случиться, и если вам пришлось залить неизвестное масло, то не гоните, двигайтесь потихоньку

Двигатель это масло переживет, а вот турбонаддув — не обязательно. Приехав домой, сразу же смените масло и масляный фильтр.

И, наконец, третье, самое главное условие нормальной работы турбонаддува. В жизни турбины есть два самых ответственных момента: запуск двигателя и его остановка. При запуске холодного двигателя масло в нем имеет высокую вязкость, оно с трудом прокачивается по зазорам; еще не установились тепловые зазоры; нагрев разных деталей компрессора, а следовательно, и тепловое расширение, идут с разной скоростью.

Поэтому не спешите, дайте двигателю прогреться. Если вам надо остановиться, никогда не глушите двигатель сразу. В зависимости от режима езды дайте ему поработать на холостом ходу 2-5 минут (зимой можно дольше).

За это время вал турбины снизит обороты до минимальных, а детали, непосредственно соприкасающиеся с выхлопными газами, плавно остынут. В этой ситуации значительно облегчает жизнь турбо-таймер. Он проследит за тем, чтобы разгоряченный двигатель автомобиля поработал несколько минут на холостом ходу, остужая элементы турбонаддува, даже если владелец уже покинул и закрыл своё авто.

Впрочем, подобную функцию имеют и многие охранные сигнализации.

Похожие статьи:

Полезные советы → Как правильно переехать «лежачего полицейского»

Полезные советы → Секретные буквы в вашем автомобиле

Полезные советы → Правила зимнего вождения

Полезные советы → Как защитить свой автомобиль и имущество от воровства?

Полезные советы → Как правильно выйти из заноса

Инъекция молодости: история разработки впрыска ВАЗ

Не хвастовства ради, а пользы для

Да и дело тут было отнюдь не в амбициях или желании пустить пыль в глаза потребителю: классическая система питания никак не соответствовала двум важнейшим критериям – стабильности настроек и нормам токсичности. Даже вполне современный по тем временам Солекс нельзя было сравнить с так называемым "инжектором", ведь он не "умел" готовить одинаково сбалансированную по составу топливно-воздушную смесь при разных условиях работы мотора, да и не отличался особой надежностью, требуя регулярной чистки и настройки. В то время как на Западе негласной нормой считалось хотя бы пять лет и 80 000 км без вмешательства в систему питания, не считая регламентной замены фильтров.

Даже беглый анализ показал, что наивысшей стабильностью характеристик и "чистотой выхлопа" обладает именно система питания с электронным блоком управления двигателем, а не механический или электромеханический инжектор. В мире на тот момент существовало немало разновидностей впрыска, и без должного опыта инженерам было непросто принять решение – на каком же именно варианте остановиться? Однако склонялись они именно к электронному управлению, как наиболее прогрессивному и эффективному.

Перспективную систему питания планировали не только (и не столько) для модернизации еще нестарых автомобилей восьмого семейства, сколько для будущей "десятки". Её выпуск планировали начать на стыке восьмидесятых и девяностых годов, и оставаться с устаревшим карбюратором было просто нельзя – особенно если учитывать планы нацеливаться на западный рынок, где "инжектор" давно перестал быть диковинкой, а стал обычным явлением на товарных автомобилях.

Вдобавок на ВАЗе уже тогда в качестве оптимального решения для ВАЗ-2110 рассматривали многоклапанную головку с четырьмя клапанами на каждый цилиндр, а оптимизировать процессы сгорания в таком моторе при наличии обычной системы питания было практически невозможно. В общем, все сводилось к тому, что внедрение впрыска топлива с электронным управлением при запуске следующей модели является одной из основных задач. Причем было решено не только перевести на "инжектор" версии с 16-клапанной головкой, но и оснастить впрыском обычный восьмиклапанный двигатель объемом 1,5 л, известный под индексом ВАЗ-21083.

Не стоит забывать, что в те «золотые» годы экспорт вазовских автомобилей иногда достигал 40% от общего объема выпуска – а это, как известно, доход в виде такой желанной для завода валюты, и грядущее ужесточение экологических норм в Европе для ВАЗа стало бы просто губительным. Не зря ведь экспортные модификации еще с середины восьмидесятых оборудовались системами снижения токсичности отработавших газов – в том числе и с каталитическим нейтрализатором. Впрочем, «кат» был сам по себе не очень эффективен, ведь даже с учетом дополнительной электроники обычный карбюратор получался "слабым звеном" системы по простой причине – он готовил смесь менее точно и стабильно, чем это требовалось.

Совместная работа

Ведущими игроками на рынке разработки систем впрыска в то время были три компании – Bosch, Siemens и General Motors. Предварительные переговоры закончились заключением контракта с GM по простой причине – "джиэм" имел больше опыта и мог предложить максимальный спектр услуг "под ключ".

Первой впрысковый двигатель 2111 "примерила" Lada Baltic. Компоненты GM выдаёт характерный дизайн ДМРВ между корпусом воздухофильтра и патрубком впуска.

Что же должны были сделать специалисты General Motors в рамках контракта? Во-первых, разработать и адаптировать под вазовские моторы впрыск топлива, который бы отвечал нормам Евро-1 и США-93. Во-вторых, для экспортных автомобилей "джиэмовцы" должны были поставить более полумиллиона (!) комплектов систем питания. И, наконец, итогом работы предполагалось приобретение соответствующих лицензий с последующим выпуском компонентов на советских (а в новых реалиях – российских) заводах.

Тип системы питания на Lada Baltic подчеркивал оригинальный шильдик "injection", расположенный на задней двери слева под надписью "LADA"

Уже в 1993 году GM начал поставки комплектов центрального впрыска (так называемого моноинжектора) для Жигулей и Нивы, а впоследствии – и систем распределённого впрыска для Лады Самары. Увы, по объективным экономическим причинам в непростое для новой страны время за шесть лет удалось поставить на конвейер лишь 115 тысяч комплектов вместо запланированных изначально 540 тысяч.

В тот момент на ВАЗе поняли, что нельзя опираться лишь на одного зарубежного партнера и решили подписать в 1995-м контракт и с фирмой Bosch. Это позволило освоить как разработку, так и производство еще одной системы питания, известной впоследствии, как "бошевская". Разумеется, работы по принципиально новой системе питания потребовали длительного пребывания в зарубежных командировках ведущих по проекту специалистов ВАЗа, некоторые из которых занимались этой темой в США по три-четыре года подряд.

На ранних «инжекторах» стояли контроллеры GM импортного производства

В ходе работы над "инжектором" на новую систему питания пытались перевести и такие экзотичные модификации, как 1,1-литровый двигатель ВАЗ-21081. Однако впоследствии было принято решение о том, что малокубатурные модификации "трогать" не стоит, и вазовские конструкторы вместе с зарубежными специалистами сосредоточились на моторах объемом 1,5-1,6 л – как жигулевских, так и "зубильных". А 16-клапанный мотор 2112 должен был стать первым в истории ВАЗа, конструкция которая изначально была "заточена" лишь под электронную систему питания с распределенным впрыском.

Еще в ходе ранних экспериментов над классическими моторами оказалось, что установка каталитического нейтрализатора сильно ухудшает показатели двигателя по мощности и крутящему моменту, поэтому система питания должна была обеспечивать максимальный КПД, чтобы минимизировать "экологические" потери энерговооруженности, неизбежные в любом случае.

На Самаре с так называемой низкой панелью контроллер впрыска разместили на полке под "бардачком"

Система впрыска топлива с электронным управлением была вполне распространенной (но при этом современной) концепцией. Электронный блок управления получал информацию от пары десятков датчиков, на основании которых и строилась коррекция топливно-воздушной смеси, а также остальные параметры – время открытия форсунок, угол опережения зажигания, количество подаваемого в цилиндры воздуха, топлива и так далее. Основную "работу" при этом проделывали несколько важнейших датчиков – например, датчик положения коленчатого вала (без него двигатель вообще не заведется!) и датчик массового расхода воздуха.

Важнейшее преимущество вазовского впрыска, как и большинства подобных систем – "живучесть". Если не отказал электрический бензонасос или "стратегический" датчик ДПКВ и не сгорел контроллер ЭБУ или модуль зажигания, то система худо-бедно, но будет работать даже при отказе нескольких датчиков, перейдя в аварийный режим и работая по альтернативным алгоритмам управления с использованием неких "усредненных" показателей, зашитых в программу.

Сложности

Но гладко было только на бумаге. Освоить столь сложную систему, когда промышленный гигант СССР уже почил в бозе, стало для ВАЗа непростой задачей. Впрочем, при интеллектуальной поддержке зарубежных партнеров с ней вполне справились – по крайней мере, "инжектор" уже к концу девяностых годов стал не просто работоспособной, но и вполне серийной системой питания для ВАЗов.

Датчик массового расхода воздуха – один из самых дорогих компонентов системы питания с распределённым впрыском

Конечно, многое пошло «не так и не туда». Попытки привлечь к производству "оборонку" так и закончились ничем, да и работа в Штатах была закончена еще в 1994 году – до постановки впрыска на конвейер. Кроме впрысковой версии мотора объемом 1,1 л, в итоге так и не удалось освоить 16-клапанную версию Самары, хотя адаптация агрегата 2112 к кузову 21093 была проведена еще на ранних стадиях работы по впрыску. Лишь намного позднее многоклапанный мотор все же встал под капот Самары в заводском исполнении – точнее, "околозаводском", от компании "Супер-Авто".

Для поглощения топливных паров предусмотрено специальное устройство – адсорбер

Некоторые компоненты пришлось оставить импортными – например, датчик кислорода, форсунки и ДМРВ. Блоки под заказ выпускали на Bosch, а со временем были освоены и контроллеры отечественного производства. Остальные же компоненты (датчики, впуск, выпуск и система подачи топлива из бака) были освоены почти самостоятельно.

При наличии некоторых версий БК, считывать ошибки и обнулять их на впрысковом двигателе ВАЗ можно прямо с «бортовика»! Разъем OBD-2 так называемой К-линии: именно сюда нужно подключаться для диганостики «вазоинжектора»

Еще в процессе работы в США вазовские конструкторы поняли, что американский подход к настройке некоторых компонентов (в частности, датчика системы детонации) на малолитражном двигателе ВАЗ, да еще в российских реалиях, не совсем оптимален. Именно поэтому вместо «защитной» функции на него возложили активную борьбу с детонацией путём индивидуального управления углами зажигания на основании показателей датчика.

Первая товарная партия из нескольких тысяч ВАЗ-21082 с российским контроллером Январь-4 и сборной солянкой из компонентов GM и Bosch была выпущена в 1996 году. Она соответствовала действовавшим на тот момент в РФ нормам токсичности, поэтому не имела катализатора и лямбда-зонда.

При практических испытаниях выяснилось, что ресурс отдельных элементов (тех же форсунок, бензонасоса и свечей зажигания) сильно зависит от качества бензина, а хлебнув "этила", можно было гарантированно угробить каталитический нейтрализатор или "нежный" лямбда-зонд. Именно поэтому в конце девяностых – начале двухтысячных годов новомодной системы питания многие российские автомобилисты боялись, как огня. Усугубляло ситуацию то, что на коленке впрыск не продиагностируешь, а загоревшийся на ВАЗе индикатор "проверь двигатель" (check engine) в то время вгонял в ступор даже опытных механиков.

Еще один "бонус" от электронного управления системой питания – заводская "противоугонка", так называемый иммобилайзер

Благодаря и вопреки

Однако остановить прогресс невозможно. Поскольку концептуально вазовский впрыск на моторах 2111/2112 получился весьма удачным (сказывалось участие таких грандов, как Porsche, Bosch и GM), заводчанам требовалось лишь подтянуть качество изготовления отдельных компонентов у смежников, а потребителям – адаптироваться к новой системе питания, лишенной привычного "подсоса" и прочих "ручных подкачек".

Двигатель 2111 – не самый экономичный, но тяговитый и практичный

Пример из жизни: в начале двухтысячных на завод обратился владелец Нивы с моновпрыском, у которого износилась центральная форсунка. Как оказалось, к тому моменту он без каких-либо проблем с системой питания проехал на своей машине свыше 200 тысяч километров!

Распределённый впрыск "сдружили" и с двигателем классики, который ведёт свою родословную еще от ВАЗ-2101 1970 года

Сравнивать 16-клапанный мотор с обычным «восьмерочным» не имело смысла – увеличение числа клапанов в два раза поднимало максимальную мощность при прочих равных условиях как минимум на 10-15%, да и по характеру многоклапанный мотор с высокой степенью сжатия был более "крутильным" и "верховым", то есть приветствовал работу на оборотах в зоне максимальной мощности, а не крутящего момента. Однако оказалось, что с новой системой питания и проверенный временем "восемьдесят третий" мотор стал гораздо тяговитее и эластичнее – ведь максимальный крутящий момент не только вырос со 106 до 116 Нм, но и стал достижим на более низких оборотах (3 000 об/мин против 3 500 об/мин у мотора 21083). Вдобавок оказалось, что с новой системой питания мотор избавился от "температурной зависимости" и "поехал" даже в непрогретом состоянии. Если "зубило" и раньше славилось боевым характером, то с впрысковым мотором оно стало куда более "покладистым", избавившись от непонятной нервозности Солекса.

На ВАЗах с Евро-2 стоял один катализатор – под днищем. На машинах с Евро-3 и выше к нему прибавился так называемый катколлектор

"Инжектор" открывал ворота в мир "чипованного волшебства" : "поколдовав" с настройками ЭБУ, можно было привить двигателю требуемый характер – сделать его еще более тяговитым на низах или, напротив, ценой "экологии" поддать лошадиных сил. Действительно, всесильная электроника позволила реализовать потенциал всего "железа", заложенный десятилетием ранее еще инженерами Porsche. Но, в отличие от брутально-спортивных вариантов на сдвоенных горизонтальных "веберах", впрысковый мотор Самары при этом оставался "паинькой" по экономичности и экологичности. Для производителя было также очень важно, что разработанные совместно с иностранцами и выпущенные серийно компоненты впрыска после сборки системы на двигателе не требовали тщательной настройки и калибровки "по месту".

Победоносной поступью

Нет ничего удивительного в том, что впрыск стремительно набирал обороты как на переднем приводе, так и на классике. Разумеется, первым архаичный карбюратор исчез из-под капотов "десятки" и Самары, ну а к середине двухтысячных стало ясно, что новые экологические требования (минимум Евро-2) можно выполнить, только полностью отказавшись от прежней системы питания. Свои последние конвейерные дни вазовский карбюратор доживал уже на чужбине – в соседней Украине, где нормы токсичности Евро-2 вступили в силу лишь в 2006 году. Именно в то время выпуск новых автомобилей ВАЗ с "карбом" был полностью прекращен, а уже в следующем, 2007-м, АВТОВАЗ перешел на нормы Евро-3, что, в свою очередь, привело к прекращению выпуска полуторалитрового мотора ВАЗ-2111, соответствующего нормам токсичности Евро-2.

Двигатель 2111 объемом 1,5 л легко отличить от более поздних модификаций по легкосплавному впускному коллектору. У 1,6-литрового восьмиклапанника модуль впуска выполнен из пластика

Появившиеся весной 2007 года Самары украинского производства даже с новым двигателем 11183-20 соответствовали старым нормам Евро-2

Изначально у дроссельной заслонки был обычный механический привод – с помощью тросика

С января 2007 года под капотом российских Самар появился двигатель объемом 1,6 л, соответствовавший более жестким нормам Евро-3, который впоследствии получил такой девайс, как электронную педаль газа без жесткой механической связи с дроссельной заслонкой. Тем не менее концепция системы питания двигателей ВАЗ по сегодняшний день остаётся неизменной – это распределённый впрыск топлива с электронным управлением.

Как работает система впрыска топлива

Для двигатель для бесперебойной и эффективной работы он должен быть обеспечен нужным количеством топливо / воздушная смесь в соответствии с ее широким спектром требований.

Система впрыска топлива

В автомобилях с бензиновым двигателем используется непрямой впрыск топлива. Топливный насос отправляет бензин в моторный отсек, а затем он впрыскивается во впускной коллектор с помощью инжектора. Для каждого цилиндра предусмотрена отдельная форсунка или одна или две форсунки во впускной коллектор.

Традиционно топливно-воздушная смесь регулируется карбюратор , инструмент, который ни в коем случае не идеален.

Его основным недостатком является то, что один карбюратор питает четыре цилиндр двигатель не может подавать в каждый цилиндр точно такую ​​же топливно-воздушную смесь, потому что некоторые цилиндры находятся дальше от карбюратора, чем другие.

Одно из решений - соответствовать сдвоенные карбюраторы, но их сложно правильно настроить. Вместо этого многие автомобили теперь оснащаются двигателями с впрыском топлива, в которых топливо подается точными порциями.Двигатели, оборудованные таким образом, обычно более эффективны и мощнее карбюраторных, а также могут быть более экономичными и менее ядовитыми. выбросы .

Впрыск дизельного топлива

В впрыск топлива система в автомобилях с бензиновым двигателем всегда косвенная, бензин впрыскивается во впускной патрубок многообразие или впускной порт, а не непосредственно в камеры сгорания . Это обеспечивает хорошее смешивание топлива с воздухом перед тем, как попасть в камеру.

Многие дизельные двигатели однако используется прямой впрыск, при котором дизельное топливо впрыскивается непосредственно в цилиндр, заполненный сжатым воздухом. Другие используют непрямой впрыск, при котором дизельное топливо впрыскивается в камеру предварительного сгорания специальной формы, которая имеет узкий канал, соединяющий ее с камерой сгорания. крышка цилиндра .

В цилиндр втягивается только воздух. Он так сильно нагревается сжатие распыленное топливо, впрыскиваемое в конце ход сжатия самовоспламеняется.

Базовая инъекция

Во всех современных системах впрыска бензина используется непрямой впрыск. Специальный насос отправляет топливо под давление от топливный бак в моторный отсек, где, все еще находясь под давлением, он распределяется индивидуально по каждому цилиндру.

В зависимости от конкретной системы топливо подается во впускной коллектор или впускной канал через инжектор . Это работает так же, как спрей сопло из шланг , убедившись, что топливо выходит в виде мелкого тумана.Топливо смешивается с воздухом, проходящим через впускной коллектор или канал, и топливно-воздушная смесь поступает в горение камера.

Некоторые автомобили имеют многоточечный впрыск топлива, при котором каждый цилиндр получает питание от собственной форсунки. Это сложно и может быть дорого. Чаще используется одноточечный впрыск, когда один инжектор питает все цилиндры, или один инжектор на каждые два цилиндра.

Форсунки

Форсунки, через которые распыляется топливо, ввинчиваются форсункой вперед либо во впускной коллектор, либо в головку блока цилиндров и расположены под углом, так что струя топлива направляется к впускному отверстию. клапан .

Форсунки бывают одного из двух типов, в зависимости от системы впрыска. Первая система использует непрерывный впрыск где топливо впрыскивается во впускное отверстие все время работы двигателя. Форсунка просто действует как распылительная форсунка, разбивая топливо на мелкие брызги - на самом деле он не контролирует поток топлива. Количество распыляемого топлива увеличивается или уменьшается механическим или электрическим блоком управления - другими словами, это похоже на включение и выключение крана.

Другая популярная система - это впрыск по времени (импульсный впрыск) где топливо доставляется партиями, чтобы совпасть с индукция Инсульт цилиндра. Как и в случае непрерывного впрыска, впрыском по времени также можно управлять механически или электронно.

Самые ранние системы управлялись механически. Их часто называют впрыском бензина (сокращенно PI), и поток топлива регулируется механическим регулятором. Эти системы страдают от недостатков механической сложности и плохой реакции на нажатие педали газа.

Механические системы в настоящее время в значительной степени вытеснены электронный впрыск топлива (сокращенно EFi). Это происходит благодаря повышению надежности и снижению затрат на электронные системы управления.

Типы топливных форсунок

Форсунка механическая

Могут быть установлены два основных типа инжектора, в зависимости от того, управляется ли система впрыска механически или электронно.В механической системе инжектор подпружиненный в закрытое положение и открывается давлением топлива.

Электронный инжектор

Форсунка в электронной системе также удерживается закрытой пружиной, но открывается с помощью электромагнит встроен в корпус инжектора. В электронный блок управления определяет, как долго инжектор остается открытым.

Механический впрыск топлива

Lucas система механического впрыска топлива

В системе Lucas топливо из бака под высоким давлением перекачивается в топливный аккумулятор.Оттуда он попадает в распределитель топлива, который отправляет порцию топлива в каждую форсунку, откуда оно попадает во впускное отверстие. Воздушный поток регулируется заслонкой, которая открывается при нажатии на педаль акселератора. По мере увеличения потока воздуха распределитель топлива автоматически увеличивает поток топлива к форсункам, чтобы поддерживать правильную сбалансированность топливно-воздушной смеси. Для холодного запуска используется воздушная заслонка на приборной панели или, на более поздних моделях, микропроцессорный блок управления приводит в действие специальный инжектор холодного запуска, который впрыскивает дополнительное топливо для создания более богатой смеси.Как только двигатель прогреется до определенной температуры, термовыключатель автоматически отключает форсунку холодного пуска.

Механический впрыск топлива использовался в 1960-х и 1970-х годах многими производителями на своих высокопроизводительных спортивных автомобилях и спортивных седанах. Одним типом, установленным на многих британских автомобилях, включая Triumph TR6 PI и 2500 PI, была система Lucas PI, которая представляет собой систему с таймером.

А высокого давления электрический топливный насос установлен рядом с топливным баком, нагнетает топливо под давлением 100 фунтов на квадратный дюйм до уровня топлива аккумулятор .Это в основном краткосрочный резервуар который поддерживает постоянное давление подачи топлива, а также сглаживает импульсы топлива, поступающего из насоса.

От аккумулятор , топливо проходит через бумагу элемент фильтр а затем подается в блок управления дозатором топлива, также известный как распределитель топлива . Этот агрегат приводится в движение распредвал и его задача, как следует из названия, состоит в том, чтобы распределить топливо по каждому цилиндру в нужное время и в нужных количествах.

Количество впрыскиваемого топлива регулируется заслонкой, расположенной на воздухозаборнике двигателя.Заслонка находится под блоком управления и поднимается и опускается в ответ на воздушный поток - когда вы открываете дроссельную заслонку, «всасывание» из цилиндров увеличивает воздушный поток, и заслонка поднимается. Это изменяет положение челночного клапана в блоке управления дозированием, чтобы позволить большему количеству топлива впрыскиваться в цилиндры.

От дозатора топливо по очереди подается к каждой из форсунок. Затем топливо впрыскивается во впускное отверстие в головке блока цилиндров. Каждый инжектор содержит подпружиненный клапан, который удерживается закрытым за счет давления пружины.Клапан открывается только при впрыскивании топлива.

При холодном запуске вы не можете просто перекрыть часть воздушного потока, чтобы обогатить топливно-воздушную смесь, как в случае с карбюратором. Вместо этого ручное управление на приборной панели (напоминающее ручку воздушной заслонки) или, на более поздних моделях, data-term-id = "1915"> микропроцессор

Различий между инжекторами HEUI и не-HEUI

Конструкция инжектора

отражена в трех основных концепциях проектирования. Система на основе механики была системой, основанной на давлении в инжекторе и механическом выпуске.Двухфазная система просто позволяла активировать впрыскивающий насос для создания давления внутри форсунки, чтобы затем поднять обратный клапан и открыть поток топлива под давлением для распыления.

Система электронного блочного впрыска высокого давления (HEUI) стала одной из первых разработок, которая произвела революцию в области экологически чистого и бесшумного дизельного двигателя. В отличие от предыдущей конструкции с однократным впрыском топлива, системы HEUI используют гидравлическую активацию с электронным управлением с масляным насосом высокого давления, заставляющим плунжер внутри инжектора открывать иглу для распыления топлива в камеру сгорания.

С добавлением электронного управления система HEUI повысила точность циклов инжектора. Полный цикл хода управляется компьютером топливной системы с гораздо более точным выбором времени для впрыска и дозирования топлива с более высоким давлением впрыска по сравнению с предыдущей двухступенчатой ​​схемой впрыска.

А с системой форсунок Common Rail несколько форсунок могут срабатывать на разных стадиях, и все они питаются от общей линии подачи топлива под давлением.

Шейн Мэтт из L and M Fuel Injection Service Inc.(Лафайет, штат Луизиана) говорит: «Включение компьютеров позволяет инжектору распылять более одного раза за цикл сгорания. В старом дизельном топливе все топливо механически впрыскивалось в верхнюю часть поршня, прямо перед верхней мертвой точкой (ВМТ) коленчатого вала, чтобы совпасть с оптимальным тепловыделением от сжатия ».

«В настоящее время, - говорит Мэтт, - непосредственно перед этим пиковым нагревом нарастания сжатия, непосредственно перед ВМТ, форсунки распыляют на такт пилотного впрыска небольшое количество топлива.Как только коленчатый вал проходит верхнюю мертвую точку, остальная часть топлива впрыскивается, так что крутящий момент толкает поршень вниз после ВМТ, при этом ничего, кроме мощности, направленной вниз. В отличие от попадания всего топлива перед ВМТ и необходимости прохождения через верхнюю часть при полной струе, зажигание подается непосредственно перед ним, `` помогая '' в прохождении через ВМТ с оптимальным остаточным усилием, чтобы прожечь нижнюю часть коленчатого вала. . »

Мэтт утверждает, что система обеспечивает гораздо больший крутящий момент и более тихий двигатель, потому что у вас не будет одного большого взрыва до ВМТ.«Это более плавный и эффективный процесс сжигания топлива. Полное сгорание больше не тратится на ход поршня вверх. Большая часть сгорания происходит при ходе вниз, и, следовательно, возникает дополнительный крутящий момент ».

И так же, как механическая система наддува была заменена на HEUI, гидравлический блок-форсунка, который обычно использовался в старых двигателях Power Stroke 7,3 л / 6,0 л и DT466E International, теперь постепенно заменяется системой впрыска Common Rail.

В более новых системах каждая форсунка используется в качестве распылительной форсунки с постоянной подачей топлива под высоким давлением, постоянно подаваемого в форсунку через общую топливную рампу. Со всеми форсунками, прикрепленными к одной рампе, насос высокого давления подает до 35 000 фунтов. давления на линию. Затем компьютер определяет количество распыляемого топлива и время для этого. Каждый инжектор может распылять различные объемы топлива, до 5 ходов за цикл сгорания. В дополнение к впрыску перед ВМТ система Common Rail может еще 4 раза пульсировать во время движения поршня вниз, обеспечивая увеличенный крутящий момент по системе HEUI.

«Из этих крошечных отверстий распыляется 35 000 фунтов топлива, при этом топливо превращается почти в дым, а не в туман», - говорит Мэтт. «При правильном впуске воздуха система Common Rail обеспечивает гораздо более эффективное сжигание с почти 100% воспламенением».

Добавляя кристаллы к электрическому току, пьезоэлектроника теперь добавляется к системе Common Rail, управляющей двумя пилотными распылителями, основным распылителем и двумя опорными распылителями. Пьезоэлектрические форсунки с общей топливной магистралью также тише своих предшественников, но при этом увеличивают мощность и крутящий момент.

В соответствии со спецификациями конструкции, более сложные компоненты и более высокие допуски увеличиваются в развитии форсунок, так же как и непереносимость загрязненного топлива. Шейн говорит, что большинство опасностей для форсунок, которые он видит в своей ремонтной службе, возникает из-за грязного топлива, воды в топливе и топлива с недостатком смазки.

«Система дизельного топлива полностью смазывается самим топливом», - говорит Шейн. «Правительство хочет, чтобы почти вся сера была извлечена из дизельного топлива, и процесс, который они используют для удаления серы из топлива, также удаляет смазочные материалы.Процесс гидратации на нефтеперерабатывающем заводе создает «сушильное» топливо, больше напоминающее керосин или авиакеросин. Дизельные двигатели не предназначены для топлива с низкой смазывающей способностью.

«Правильное обслуживание, такое как замена топливного фильтра и присадок, помогает избежать преждевременного износа топливной системы», - советует Мэтт. «Пренебрежение топливным фильтром может нанести ущерб топливной системе, а добавки помогают повысить смазывающую способность, что действительно продлевает срок службы топливных систем. Например, на протяжении многих лет наши клиенты, которые добросовестно используют присадки Hot Shot’s Secret, их топливные системы находятся в безупречном состоянии после более длительного, чем обычно, срока службы.Обычно мы видим их здесь с утечками, а не с изношенными твердыми деталями. С другой стороны, у нас есть такие, которые используют топливо прямо из насоса без добавок, и часто они оказываются здесь раньше, чем следовало бы ».

«У нас есть клиенты, которые также заявляют о дополнительной экономии, просто используя добавки. «При повышении цетанового числа и« горючести »топлива у вас появляется больше БТЕ, с которыми можно работать, - утверждает Шейн. «В состав добавок также входят чистящие средства, которые помогают поддерживать чистоту и работоспособность наконечников форсунок.Мы заметили заметное увеличение срока службы двигателя на 25% при правильном использовании присадок ».

Свидетельство:

«Я использую продукты Hot Shot’s Secret во всем своем дизельном оборудовании. Верно. Сейчас это один из ключевых моментов, потому что вы не можете сдавать образец топлива каждый раз, когда заправляетесь. Никогда не знаешь, что покупаешь, и никогда не знаешь, упал ли грузовой автомобиль с груза, подвергшегося жесткой гидроочистке и с очень низкой смазывающей способностью.Зачем рисковать; положите несколько копеек присадок в свой бак, и вы получите не только защиту, но и душевное спокойствие.

Secret Stiction Eliminator от Hot Shot устранил бесчисленное количество проблем для наших клиентов. Во многих случаях они приходят на замену форсунки, но я должен быть честным со своими клиентами и сообщить хорошее соотношение цены и качества. Я продаю им Stiction Eliminator вместо инжектора, и он очень часто решает проблему на долгое время.

Stiction Eliminator вылечил так много проблем для нашего 6.0L клиенты Ford, и они продолжают возвращаться.

В моем автомобиле у меня был подъемник. Я вставил его туда, и через день или два после вождения постукивание исчезло. Он просто очистил подъемник до тех пор, пока он снова не заработал нормально, и двигатель стал намного тише.

Это действительно работает. У меня 5 машин плюс 5 единиц тяжелой техники. Я очень добросовестно использую Stiction Eliminator, FR3 Friction Reducer, Fuel Additives для всего, что у меня есть ».

Шейн Мэтт из L and M Fuel Injection Service Inc.в Лафайет, LA

Что такое топливная форсунка и как она работает?

Введение

«Совершенствование технологий сегодня приведет вас к большей эффективности завтра» очень правильно сказано, поскольку рост зависимости человека от машин не только облегчает жизнь, но и увеличивает потребность в топливе, особенно если мы говорим Что касается автомобилей, количество транспортных средств на дорогах резко увеличилось с начала 20-го века, что напрямую отражает спрос на топливо, а также цены, поэтому у исследователей возникла необходимость создать инновационную систему, которая может сделать привод доступным, а также надежный.Чтобы решить эту проблему, в 1920 году компания Bosch придумала устройство под названием «Топливная форсунка» для дизельного двигателя, которое стало настоящим прорывом в области двигателей внутреннего сгорания, поэтому давайте углубимся в подробности.

Что такое топливная форсунка?

Топливная форсунка - это механическое устройство с электронным управлением, которое используется для впрыска / распыления (как шприц) топлива в двигатель для приготовления правильной воздушно-топливной смеси, которая, в свою очередь, обеспечивает эффективное сгорание в двигателе?

Положение топливных форсунок различается в зависимости от конструкции двигателя, но обычно они устанавливаются на головке двигателя с наконечником внутри камеры сгорания двигателя.

Зачем они нужны?

Топливные форсунки необходимы для всех автомобилей в наши дни, потому что-

  • Принцип работы двигателей внутреннего сгорания прямо указывает на то, что лучше качество топливно-воздушной смеси будет лучше сгорание, что, в свою очередь, обеспечивает более высокий КПД двигателя. , поэтому нам нужны топливные форсунки, которые обеспечивают гораздо лучшее качество топливовоздушной смеси, чем карбюраторы.
  • Неправильное смешивание воздуха с топливом, обеспечиваемое карбюраторами, оставляет различные несгоревшие частицы внутри камеры сгорания двигателя внутреннего сгорания, что приводит к неправильному распространению пламени сгорания, из-за чего происходит сбой двигателя, известный как детонация или детонация, чтобы избежать почти все автомобили на дорогах сегодня используют технологию впрыска топлива.
  • Потери топлива в виде углерода или несгоревших частиц внутри камеры сгорания напрямую отражают пробег транспортного средства, что нежелательно, поэтому во избежание этого становится важным использование технологии впрыска топлива.
  • В случае карбюраторов управление качеством и синхронизацией топливовоздушной смеси (дозирование топлива) не является точным, как в карбюраторах, регулировка может выполняться механически, но когда дело доходит до топливных форсунок, благодаря их интеллектуальному электронному блоку управления или .c.u может быть достигнута высокая точность дозирования топлива.
  • Было замечено, что не только пробег, но и характеристики автомобилей с впрыском топлива лучше, чем у автомобилей с карбюратором.

Также читайте:

Типы топливных форсунок

Развитие технологий впрыска топлива привело к появлению различных механизмов впрыска топлива, таких как впрыск топлива в корпус дроссельной заслонки, многоточечный впрыск топлива, последовательный впрыск топлива и прямой впрыск, который могут использоваться в зависимости от области применения, но когда дело доходит до типов топливных форсунок, категоризация их является действительно сложной задачей.Согласно нам топливные форсунки можно разделить на -

На основе топлива

На основе впрыска топлива форсунки бывают 2-х типов -

1. Форсунки дизельного топлива

Эти топливные форсунки используются впрыскивать или распылять дизельное топливо (которое является более тяжелым топливом, чем бензин) непосредственно в камеру сгорания дизельного двигателя для дальнейшего сгорания путем сжатия.

Капилляр и сопло форсунок дизельного топлива выполнены таким образом, что они могут образовывать пакеты дизельного топлива при распылении топлива внутри камеры сгорания.

Дизельные топливные форсунки требуют более мощного впрыска, чем бензиновые форсунки, поскольку дизельное топливо тяжелее бензина.

2. Бензиновые топливные форсунки

Это топливные форсунки, используемые для впрыска или распыления бензина непосредственно или через впускной коллектор в камеру сгорания для дальнейшего сгорания искры.

Капилляр и сопло бензиновых топливных форсунок делаются меньше или такие же, как у дизельных топливных форсунок, в зависимости от требований.

Поскольку бензин легче дизельного топлива, бензиновые форсунки требуют меньше нагнетания впрыска, чем дизельные форсунки.

На основе учета топлива

На основе учета топлива (контроль скорости, количества и давления топлива) топливные форсунки бывают двух типов -

1. Топливные форсунки с механическим управлением

Они представляют собой топливные форсунки, в которых управление скоростью, количеством, синхронизацией и давлением топлива осуществляется механически с помощью пружины и плунжера, которые принимают входной сигнал от кулачка и узла топливного насоса или от распределителя топлива (опережающего).

2. Топливные форсунки с электронным управлением

Это топливные форсунки, в которых управление скоростью, количеством, давлением и синхронизацией топлива осуществляется в электронном виде с помощью электронного соленоида, который принимает входные данные либо от распределителя топлива, либо от электронный блок управления (усовершенствованный) автомобиля.

Конструкция топливных форсунок

Конструктивная конструкция топливной форсунки напоминает форсунку для садового душа, которая используется для распыления воды на почвопокровную траву, ту же цель выполняет топливная форсунка, но отличается от водного топлива. , форсунка распыляет топливо внутри двигателя.позволяет понять конструкцию топливных форсунок, рассматривая топливные форсунки с механическим управлением и топливные форсунки с электронным управлением -

Топливные форсунки с механическим управлением

Топливные форсунки с механическим управлением, состоящие из следующих частей:

  • Корпус форсунки –Это внешний корпус или его можно назвать оболочкой, внутри которой все остальные части форсунок устроены так же, как садовый душ. Внутренняя часть корпуса форсунки спроектирована таким образом, что она содержит точно спроектированный капилляр или канал, через который топливо под высоким давлением из топливного насоса может течь для дальнейшего распыления.
  • Плунжер - Плунжер используется на сопле или узком конце топливной форсунки, который используется для открытия или закрытия форсунки под действием давления топлива, регулируемого распределителем топлива или регулятором двигателя.
  • Пружины - В топливных форсунках с механическим управлением используются две пружины:
  1. Пружина поршня Движение поршня вперед и назад управляется пружиной поршня, которая срабатывает, когда давление топлива внутри топлива Увеличение форсунки приводит к открытию форсунки и возвращается в исходное положение при понижении давления, что, в свою очередь, закрывает форсунку.
  2. Основная пружина - Основная пружина используется для управления впуском топливной форсунки. Основная пружина работает под действием давления топлива, создаваемого топливным насосом.

Также читайте:

Топливная форсунка с электронным управлением

Это интеллектуальный тип топливной форсунки, которая управляется электронно электронным блоком управления двигателя, который также известен как мозг современных двигателей.

Топливные форсунки с электронным управлением состоят из следующих частей -

  • Корпус форсунки - Как и топливная форсунка с механическим управлением, корпус этого типа форсунки представляет собой точно спроектированный полый корпус, внутри которого расположены все остальные компоненты.
  • Плунжер- Как и в топливной форсунке с механическим управлением, плунжер используется для открытия и закрытия форсунки, но в топливной форсунке с электронным управлением открытие форсунки регулируется электронно с помощью электромагнитов.
  • Пружина - Так же, как и в топливной форсунке с механическим управлением, плунжерная пружина используется для удержания плунжера в его положении, чтобы закрыть форсунку топливной форсунки, когда это необходимо.
  • Электромагниты - В отличие от топливных форсунок с механическим управлением, этот тип форсунок снабжен электромагнитами, расположенными непосредственно вокруг плунжера, который управляет открытием форсунки, принимая электронный сигнал от электронного блока управления двигателем через электронный штекер или соединение, соединяющее топливную форсунку с электронным блоком управления двигателем.
  • Электронный штекер / соединение - На верхнем конце топливной форсунки с электронным управлением имеется соединение / штекер, через который электронный сигнал от электронного блока управления двигателем передается на электромагниты, которые, в свою очередь, открывают форсунку по порядку. для распыления топлива.

Рабочий

На данный момент нам известно назначение топливной форсунки. Итак, чтобы понять поведение различных частей топливной форсунки для достижения этой цели, давайте рассмотрим механические и электронные топливные форсунки -

Топливная форсунка с механическим управлением

Когда мы включаем зажигание автомобиля, чтобы запустить двигатель, топливный насос двигателя начинает перекачивать топливо в распределитель топлива, который, в свою очередь, начинает регулировать время и количество распыляемого топлива.

  • После топливораспределителя топливо поступает в топливную форсунку в соответствии с инструкцией распределителя топлива по топливопроводам.
  • В топливной форсунке, когда это топливо под высоким давлением достигает топливной форсунки, из-за своего высокого давления это топливо толкает впускную или главную пружину, чтобы войти в топливную форсунку.
  • Когда это топливо поступает в топливную форсунку, оно начинает толкать пружину плунжера, которая, в свою очередь, толкает плунжер наружу, и происходит открытие форсунки, что приводит к разбрызгиванию топлива.
  • Когда распыление топлива для определенного цикла завершается в соответствии с входом, подаваемым распределителем топлива, давление внутри топливной форсунки уменьшается, в результате чего пружина плунжера сохраняет свое исходное положение, что приводит к закрытию форсунки и подача топлива прекращается для этого конкретного цикла.
Топливная форсунка с электронным управлением

Когда мы ВКЛ зажигание автомобиля, чтобы запустить двигатель, топливный насос вместе с электронным блоком управления двигателем.

  • Топливный насос начинает подачу топлива в топливную форсунку, а время, количество и давление топлива, поступающего в топливную форсунку, регулируются электронным блоком управления.
  • Электронный блок управления отправляет электронный сигнал на топливную форсунку с помощью электронного соединения, из-за этих электронных сигналов от ЭБУ срабатывают электромагниты внутри топливной форсунки, которые, в свою очередь, толкают плунжер наружу, что приводит к открытию форсунки и, наконец, происходит распыление топлива.
  • После завершения этого конкретного цикла электронный сигнал от блока управления двигателем прекращается, что, в свою очередь, отключает электромагниты, в результате чего поршень возвращается в исходное положение, что приводит к закрытию сопла и прекращению распыления топлива.
  • Закрытие форсунки поддерживается пружиной плунжера.

Все дело в топливной форсунке. Если вы нашли эту статью полезной и информативной, не забудьте поставить лайк и поделиться ею с друзьями.

Сравнение производительности двигателя CI после замены механической форсунки на форсунку с соленоидом Common Rail

  • 1.

    Sayin C, Ilhan M, Canakci M, Gumus M. Влияние времени впрыска на выбросы выхлопных газов дизельного двигателя, использующего дизель-метанольные смеси. Возобновляемая энергия. 2009; 34: 1261–9.

    CAS Статья Google Scholar

  • 2.

    Гангвар Дж. Н., Гупта Т., Гупта С., Агарвал А. К.. Сравнение выбросов дизельного топлива ибиодизельное топливо, используемое в двигателе CRDI SUV: исследование массы и химического состава ТЧ. Вдыхать токсикол. 2011. 23 (8): 449–58.

    CAS Статья Google Scholar

  • 3.

    Гримальди К.Н., Постриоти Л., Баттистони М. Сгорание и выбросы двигателя Common Rail HSDI с использованием топливных смесей и смесей биотоплива. 2002-01-0865, стр. 1453–1460.

  • 4.

    Zhen X, Wang Y. Обзор метанола как топлива для двигателей внутреннего сгорания.Renew Sustain Energy Rev.2015; 52: 477–93.

    CAS Статья Google Scholar

  • 5.

    Асад У., Кумар Р., Хан Х, Чжэн М. Точные контрольно-измерительные приборы дизельного одноцилиндрового исследовательского двигателя. Измерение. 2011; 44: 1261–78.

    Артикул Google Scholar

  • 6.

    Laguitton O, Crua C, Cowell T, Heikal MR, Gold MR. Влияние степени сжатия на выбросы выхлопных газов дизельного двигателя PCCI.В: 19-я международная конференция по эффективности, стоимости, оптимизации, моделированию и влиянию энергетических систем на окружающую среду. Крит, Греция; 2006.

  • 7.

    Wang G, Yu W, Li X, Su Y, Yang R, Wu W. Экспериментальное и численное исследование влияния завихрения на впуске на распыление топлива и характеристики сгорания в цилиндре на дизельных двигателях большого диаметра. . Топливо. 2018; 237: 209–21.

    Артикул Google Scholar

  • 8.

    Плинт М.Дж., мученик Т.Тестирование двигателей: теория и практика. 3-е изд. Оксфорд: Баттерворт Хайнеманн; 2007.

    Google Scholar

  • 9.

    Challen B, Baranescu R. Справочник по дизельным двигателям. Оксфорд: Баттерворт Хайнеманн; 1999.

    Google Scholar

  • 10.

    Асад У, Чжэн М., Тинг ДСК, Кумар Р., Банерджи С., Ридер ГТ, Тьонг Дж. Анализ тепловыделения в реальном времени для контроля сгорания в дизельных двигателях.В: Труды института горения / Канадская секция, весеннее техническое совещание. Ватерлоо, Канада; 2006.

  • 11.

    Асад У, Чжэн М. Характеристика быстрого тепловыделения дизельного двигателя. Int J Therm Sci. 2008; 47: 1688–700.

    Артикул Google Scholar

  • 12.

    Guerrassi N, Dupraz P. Система впрыска Common Rail для высокоскоростных дизельных двигателей с прямым впрыском. SAE, 1998-08-03; 1998.

  • 13.

    Ху К., Ву С.Ф., Стоттлер С., Рагупати Р. Моделирование динамических характеристик автомобильной топливной магистрали. Часть I: инжектор. J Sound Vib. 2001. 245 (5): 801–14.

    Артикул Google Scholar

  • 14.

    Челиктен И. Экспериментальное исследование влияния давления впрыска на характеристики двигателя и выброс выхлопных газов в дизельных двигателях с непрямым впрыском. Appl Therm Eng. 2003; 23: 2051–60.

    CAS Статья Google Scholar

  • 15.

    Агарвал АК, Шривастава Д.К., Дхар А, Маурья РК, Шукла ПК, Сингх А.П. Влияние времени впрыска топлива и давления на сгорание, выбросы и рабочие характеристики одноцилиндрового дизельного двигателя. Топливо. 2013; 111: 374–83.

    CAS Статья Google Scholar

  • 16.

    Гупта В.К., Чжан З., Сунь З. Моделирование и управление новым механизмом регулирования давления для систем впрыска Common Rail. Прикладная математическая модель. 2011; 35: 3473–83.

    Артикул Google Scholar

  • 17.

    Agarwal AK, Singh AP, Maurya RK, Shukla PC, Dhar A, Srivastava DK. Характеристики сгорания двигателя с непосредственным впрыском Common Rail с использованием различных стратегий впрыска топлива. Int J Therm Sci. 2018; 134: 475–84.

    Артикул Google Scholar

  • 18.

    Khandal SV, Banapurmath NR, Gaitonde VN. Влияние рециркуляции выхлопных газов, давления впрыска топлива и времени впрыска на производительность двигателя с непосредственным впрыском Common Rail, работающего на биодизельном топливе Honge (BHO).Энергия, принятая рукопись. https://doi.org/10.1016/j.energy.2017.08.035.

    CAS Статья Google Scholar

  • 19.

    Siebers DL. Проникновение жидкофазного топлива в дизельные распылители. SAE; 1998. Paper 980809.

  • 20.

    Hountalas DT, Zannis TC. Влияние расхода форсунки на производительность дизельного двигателя DI для тяжелых условий эксплуатации и выбросы при различных давлениях впрыска. Int J Veh Des. 2006; 41 (1/2/3/4): 103e26.

    Артикул Google Scholar

  • 21.

    Rezaei MH, Sadeghzadeh M, Alhuyi Nazari M, Ahmadi MH, Razi Astaraei F. Применение искусственной нейронной сети GMDH для моделирования выбросов CO 2 в четырех северных странах. Int J Low-Carbon Technol. 2018; 13 (3): 266–71.

    CAS Статья Google Scholar

  • 22.

    Рамезанизаде М., Алхуи Назари М., Ахмади М.Х., Чен Л. Обзор подходов, применяемых для охлаждения топливных элементов. Int J Heat Mass Transf. 2019; 139: 517–25.

    CAS Статья Google Scholar

  • 23.

    D’Ambrosio S, Ferrari A. Дизельные двигатели, оборудованные пьезоэлектрическими и соленоидными форсунками: гидравлические характеристики форсунок и сравнение выбросов, шума и расхода топлива. Appl Energy. 2017; 211: 1324–42.

    Google Scholar

  • 24.

    Чжан Ю.Х., Лу Д.М., Тан П.К., Ху З.Й. Экспериментальное исследование твердых частиц и азотистых соединений из дизельного двигателя, модифицированного с помощью DOCþCDPFþ SCR. Atmos Environ. 2018; 177: 45e53.

    Google Scholar

  • 25.

    Чен Х, Су Х, Хе Дж, Се Б. Исследование характеристик сгорания и выбросов дизельного двигателя с системой Common Rail, работающего на смесях дизельное топливо / n -пентанол / метанол. Энергия. 2019; 167: 297–311.

    CAS Статья Google Scholar

  • 26.

    Dong S, Yang C, Ou B, Lu H, Cheng X. Экспериментальное исследование влияния количества отверстий в сопле на характеристики горения и выбросов двухтопливного двигателя этанол / дизель.Топливо. 2017; 217: 1–10.

    Артикул Google Scholar

  • 27.

    Heywood JB. Основы двигателя внутреннего сгорания. Книжная компания Mc Grow-Hill, ISBN 0-07-100499-8.

  • 28.

    Ямрозик А. Влияние содержания спирта в топливной смеси на производительность и выбросы дизельного двигателя с прямым впрыском, работающего на смесях дизель-метанол и дизель-этанол. Energy Convers Manag. 2017; 148: 461–76.

    CAS Статья Google Scholar

  • 29.

    Брант М.Ф.Дж., Рай Х. Расчет энергии тепловыделения на основе данных о давлении в цилиндре двигателя. Документ SAE 1998 г., Общество инженеров автомобильной промышленности.

  • 30.

    Пулкрабек WW. Инженерные основы двигателей внутреннего сгорания. Верхняя река Сэдл: Prentice Hall; 1997.

    Google Scholar

  • 31.

    Lahane S, Subramanian KA. Влияние конфигурации отверстий форсунок на распыление топлива, столкновение со стенками и выбросы NO x дизельного двигателя для смеси биодизель-дизельное топливо (B20).Appl Therm Eng. 2014; 64: 307–14.

    CAS Статья Google Scholar

  • 32.

    Хван Дж, Ци Д, Юнг Й, Бэ К. Влияние параметров впрыска на характеристики сгорания и выбросов в дизельном двигателе с непосредственным впрыском Common Rail, работающем на отработанном биодизельном масле для жарки. Возобновляемая энергия. 2014; 63: 9–17.

    CAS Статья Google Scholar

  • Как работают топливные форсунки - шаг за шагом, весь процесс

    Сегодняшняя зависимость человеческой жизни от машин, особенно транспортных средств, достигла точки, когда это стало необходимостью.В наши дни покупка автомобиля для повседневной жизни стала неизбежной. Но с этим даром технологий связано и множество других обязанностей. Эти машины не только регулярно нуждаются в топливе и других дорогостоящих материалах, но также требуют большого ухода со стороны владельца. И для этого вам необходимо иметь базовые знания о том, как работает ваш автомобиль.

    Топливные форсунки работают

    Обычно люди достаточно хорошо осведомлены о том, как работают их автомобили, но одна проблема, с которой они сталкиваются, - это , как работают топливные форсунки и как топливо подается в их двигатели.Итак, здесь, в этой статье, я подробно объясню вам вопрос, упомянутый выше, и удовлетворю все ваши потребности в знаниях.

    Что такое топливные форсунки

    Назначение топливных форсунок - подавать правильное количество топлива в двигатель, чтобы оно могло эффективно сжигать его для питания двигателя. К сожалению, это не так просто, как кажется. В двигатель необходимо подавать точное количество топлива и воздуха для сгорания, слишком много или слишком мало топлива может вызвать засорение двигателя или даже не дать ему запуститься, соответственно.В прошлом механизм для решения этой задачи при реализации карбюраторных двигателей был не столь совершенен. Благодаря современным технологиям у нас теперь есть гораздо лучший способ реализовать это, а именно топливные форсунки.

    Топливная форсунка - это механический клапан с электронным управлением. Обычно его устанавливают под определенным углом, чтобы впрыскивать необходимое количество топлива в камеру сгорания двигателя. Не только количество впрыскиваемого топлива должно быть точным, но и угол его расположения, давление и форма распыления также должны быть очень точными в соответствии с необходимостью идеального соотношения топлива и воздуха для сгорания.

    Что такое топливные форсунки

    Типы топливных форсунок различаются как для бензиновых, так и для дизельных двигателей. В то время как топливные форсунки для бензиновых двигателей используют косвенный механизм для распыления топлива, в дизельных двигателях используется скорее прямой механизм. Но это касается только механизма, используемого для распыления, и не имеет никакого отношения к тому, как работают топливные форсунки.

    Читайте также: Лучший очиститель топливных форсунок

    Как работают топливные форсунки

    Топливная форсунка - это клапан, управляемый пружинами или ЭБУ (электронный блок управления), способный открываться и закрываться несколько раз в секунду.Топливо забирается из топливного бака и транспортируется к форсункам. Топливные магистрали используются для транспортировки. Как только топливо достигает форсунки, давление в нем повышается до нужной степени с помощью регулятора давления топлива. Затем топливо разделяется на несколько цилиндров. После этого в качестве последнего шага топливо окончательно распыляется на камеру сгорания. Однако это всего лишь обобщенный обзор, и ниже вам будет подробно объяснено , как работают топливные форсунки .

    Существует два типа топливных форсунок:

    Механическая топливная форсунка

    Первичный механизм, используемый здесь для впрыска топлива, очень похож на карбюраторные системы, используемые в прошлом, поэтому многие люди до сих пор получают его путали с карбюраторными двигателями, но на самом деле между ними есть довольно важное различие.В то время как карбюраторная система забирает топливо под низким давлением из топливного бака, эти системы механических топливных форсунок перекачивают топливо под высоким давлением из топливного бака, что является основным принципом работы механических топливных форсунок.

    После откачки из топливного бака топливо попадает в аккумулятор. Вы можете думать об аккумуляторе как о буфере для временного хранения топлива. Затем вступает в действие блок управления дозированием системы. Его задача - распределять топливо по цилиндрам.Здесь важна подача нужного количества топлива в цилиндры в нужное время.

    Механическая топливная форсунка

    При поступлении в цилиндр топливо и воздух должны быть очень точно смешаны с нужным количеством обоих. Это достигается за счет использования откидного клапана, который находится внутри воздухозаборника двигателя. Это позволяет топливу поступать правильным потоком и смешиваться с воздухом в нужном количестве. Всякий раз, когда мы увеличиваем или уменьшаем скорость транспортного средства, откидная заслонка открывается более или менее, соответственно, то же самое и в случае с распределителем топлива.Следовательно, оба остаются пропорциональными.

    Здесь для работы системы используются две пружины. Одна из них - это основная пружина, а другая - поршневая пружина. Боевая пружина управляет подачей топлива в топливную форсунку, топливо, поступающее из топливного насоса, находится под давлением, и это давление заставляет главную пружину открываться и пропускать топливо внутрь топливной форсунки.

    Когда топливо поступает во впускное отверстие, оно смешивается с воздухом, и давление увеличивается, это увеличивающееся давление заставляет пружину плунжера двигаться вперед и назад, что, в свою очередь, заставляет плунжер перемещаться наружу, вызывая открытие сопла и, следовательно, контролируемое распыление топлива происходит.Как вы можете заметить, используемый здесь механизм зависит от пружин, поэтому многие технические специалисты часто называют механические форсунки подпружиненными форсунками.

    После завершения впрыска топлива для данного цикла, в соответствии с вводом, заданным блоком управления, давление затем снижается, и в конечном итоге толкаемый наружу плунжер перестает испытывать давление и возвращается в исходное положение. Это приводит к заеданию спрея и, следовательно, к прекращению подачи топлива на определенный цикл.

    Читайте также: Что происходит, когда топливные форсунки выходят из строя

    Электронная топливная форсунка

    Здесь мы поговорим о втором виде топливных форсунок и , как эти топливные форсунки работают . Это довольно новая реализация топливных форсунок, так как многие новые автомобили, поступающие в настоящее время, имеют эту систему.

    Как написано выше, основной принцип работы этой и механической системы совершенно одинаковый. Однако есть два момента, в которых они различаются.А именно, количество топлива и натяжение, используемое для открытия и закрытия клапана с помощью пружины. Вместо того, чтобы использовать эти две функции для управления разбрызгиванием топлива, электронные системы используют электронный блок управления, который управляет всеми необходимыми функциями.

    Некоторые датчики помогают отслеживать такие параметры, как температура воздуха, давление воздуха на впуске, температура двигателя, частота вращения двигателя, положение акселератора. Все они подключены к ЭБУ, и текущая информация поступает в ЭБУ в режиме реального времени.

    Электронная топливная форсунка

    В соответствии с условиями и расчетами, выполненными ЭБУ, он вычисляет конкретное количество топлива, которое необходимо для подачи в цилиндры. Все эти входные данные поступают в ЭБУ в режиме реального времени, и обработка происходит так быстро, что степень открытия клапанов рассчитывается почти одновременно.

    Топливные направляющие используются для перекачки топлива из топливного бака, и эти направляющие соединены с топливной форсункой. Внутри топливных направляющих поддерживается постоянное давление, и установлен электрический топливный насос, который позволяет топливу перемещаться по топливным направляющим в топливную форсунку.

    По мере того, как данные поступают в ЭБУ, он вычисляет количество топлива, которое необходимо впрыснуть, и количество клапанов, которые необходимо открыть, чтобы это произошло. Когда электронные сигналы отправляются от блока управления двигателем на штифты топливной форсунки, которые, в свою очередь, подключены к батарее и системе зажигания, внутри топливной форсунки создается электромагнит, который заставляет плунжер перемещаться наружу, тем самым создавая путь для подачи топлива. проходить. Это отверстие для топлива очень точно рассчитывается ЭБУ.Таким образом, форсунка наконец открылась, и топливо распыляется на двигатель внутреннего сгорания.

    После завершения определенного цикла впрыска топлива ЭБУ прекращает посылать электронный сигнал на топливную форсунку и, таким образом, дезактивировать электромагнит. Поскольку электромагнит деактивируется, больше нет ничего, что толкало бы плунжер наружу, форсунка закрывается, что приводит к остановке распыления топлива.

    Это механизм, используемый электронными топливными форсунками, где электронная схема используется для точного открытия клапана, и, следовательно, здесь не используется никакой механический механизм, хотя принцип управления как в механических, так и в электронных топливных форсунках довольно одинаковый.

    Заключение

    Топливная форсунка является прекрасным примером инженерной мысли, которая значительно упростила задачу доставки нужного количества топлива для сгорания. Они также помогли автомобильной промышленности достичь эффективности, улучшить переходную реакцию дроссельной заслонки, и они также очень помогают при холодном запуске, поскольку клапаны позволяют протекать большему количеству топлива в течение короткого промежутка времени, что невозможно сделать с использованием карбюраторных двигателей.

    Продам 7.3 IDI Инжектор Core

    Описание

    В настоящее время принимаются все номера деталей

    Код A, AA, B, BB, BE, C, D, E, G, номер IDI

    Информацию о повреждении сердечника можно найти в наших основных критериях.

    Убедитесь, что ваш материал хорошо упакован, чтобы свести к минимуму любые повреждения при транспортировке к нам. Для получения дополнительной информации см. Наши Правила доставки.

    Основные критерии

    Пожалуйста, ознакомьтесь с нашими полными основными критериями для получения более подробной информации.

    ДОПУСТИМЫЕ УБЫТКИ

    Если ваше ядро ​​ только имеет такие повреждения, DieselCore все равно заплатит полную цену.

    ВРЕМЯ УЩЕРБА

    Если ваше ядро ​​имеет любых таких повреждений, DieselCore может заплатить сниженную цену.

    ДИСКВАЛИФИКАЦИОННЫЙ УЩЕРБ

    Если ваше ядро ​​имеет любых таких повреждений, DieselCore не имеет права покупать эти блоки.

    • Чрезмерная ржавчина
    • Сгорел
    • Физический ущерб
    • Поврежденное тело
    • Отсутствующие детали
    • Инжектор не собран

    Что такое топливные форсунки, типы и работа

    Поделитесь этой любовью.. !!

    Топливная форсунка - это механическое устройство с электронным управлением, которое отвечает за разбрызгивание (вливание) топлива в двигатель в соответствующем количестве, поэтому для идеального горения создается разумная смесь воздуха и топлива.

    Новинка была сделана в середине двадцатого века и сначала была применена на дизельных двигателях. К последней трети двадцатого века он также оказался превалирующим среди обычных газовых двигателей.

    Электронный блок управления (ЭБУ в системе управления двигателем) определяет точную сумму и конкретное планирование требуемой порции топлива (масла) для каждого цикла, собирая данные с различных датчиков двигателя.Таким образом, ЭБУ отправляет электрический флаг порядка правого диапазона и синхронизации в контур топливной форсунки. Таким образом открывается форсунка, и нефть проходит через нее в двигатель.

    На один вывод изгиба форсунки напрямую подается напряжение 12 В, которое контролируется ЭБУ, а другой вывод контура форсунки открыт. В момент, когда ЭБУ определяет правильное количество топлива и когда его нужно залить, активирует установку форсунки, заменяя другой вывод на землю (масса, т.е.е. отрицательный пост).

    Виды топливных форсунок -

    A) Топливная форсунка для каркаса одноточечной инфузии (SPI)

    1. Канал для тонкой нефти, 2. Электрический изгиб, 3. Возвратная пружина, 4. Электрический разъем,

    5. Выход топлива, 6. Арматура, 7. Шаровой клапан

    B) Топливный инжектор для многоточечной инфузионной системы (MPI)

    1. Возвратная пружина, 2. Канал для тонкой нефти, 3. Электрический разъем, 4. Электрический разъем curl,

    5. Арматура, 6.Игольчатый клапан

    При одноточечном впрыске в каркасе используется только одна основная форсунка, которая расположена перед дроссельной заслонкой и подает топливо во все камеры. Такие форсунки чаще всего имеют умеренно пониженный импеданс.

    При многоточечном впрыске в каркасе используется один инжектор для каждой камеры. Форсунки расположены после дроссельной заслонки и расположены так, что они указывают на заднюю часть клапанов залива. Такие форсунки обычно имеют более высокий импеданс.

    Посмотрите это видео, чтобы узнать, как работают топливные форсунки -

    Форсунки управляются блоком управления двигателем (ЭБУ). Для начала, ЭБУ получает данные о состоянии двигателя и потребностях, используя различные датчики салона. Когда состояние и потребности двигателя решены, топливо забирается из топливного бака, транспортируется по топливопроводам и после этого сжимается с помощью топливных сифонов. Допустимый вес проверяется контроллером веса топлива.Большую часть времени топливо также изолируется с помощью топливной направляющей, конечной целью которой является снабжение отличительных камер двигателя.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *