Коллектор выхлопной – Выхлопной коллектор (паук). Устройство выпускного коллектора двигателя автомобиля

Выпускная система и выпускные коллекторы - Блог блог - АвтоМастера.нет

 

Выпускная система и выпускные коллекторы

 Ваши представления о том, как двигатель внутреннего сгорания выдает мощность, станут точнее с изучением динамики движения газов. Это более чем справедливо для выпускной системы. Хотя многие из «движущихся» деталей в этой системе не требуют смазки или периодического обслуживания, они, тем не менее, испытывают существенные динамические нагрузки. В пространстве, ограниченном тонкой сталью, есть место, где газы с температурой более 1100° С и под давлением, движутся со скоростью звука, взаимодействуют с окружающей средой либо для помощи двигателю в освобождении его цилиндров от отработанных газов, либо для противодействия этому процессу. Эта глава поможет вам заглянуть внутрь выпускной системы и покажет легкие пути для увеличения мощности с помощью уменьшения сопротивления и увеличения продувания выпускного тракта. Вы также узнаете о некоторых специальных технологиях, которые можно использовать для оптимизации потока выхлопных газов и увеличения мощности.

 

 

Выпускная система уменьшает шумы. Используемые для этого глушители действуют подобно пробке. Лучшие глушители для форсированных двигателей — это не глушители точно отштампованные, точно настроенные и имеющие высокотехнологичную конструкцию. Лучшие глушители — это просто отсутствие глушителей!

 Если выпускная система была бы просто скоплением труб, которые направляет поток выхлопных газов к задней части автомобиля, то работа по оптимизации системы была бы относительно простой. Однако выпускная система рассчитана на выполнение как минимум одной дополнительной задачи: она должна уменьшать шум двигателя. Эти не связанные с форсировкой требования приводят к необходимости использования глушителей, а глушители существенно усложняют задачу получения максимальной мощности. Распредвалы могут быть доработаны до полного профиля, головки блоков цилиндров могут иметь отработанные каналы, карбюраторы могут быть точно настроены, и все эти модификации могут улучшать мощность. А лучшие глушители это не те, которые точно оптимизированы, точно настроены или имеют высокотехнологичную конструкцию. Лучшие глушители — это отсутствие глушителей!

Обратное давление и мощность

 Глушители работают подобно пробке. Они создают сопротивление потоку газов, увеличивают обратное давление в выпускной системе, и в результате этого частично уменьшаются шумы. Хотя снижение шума приятно уху, оно ухудшает мощность двигателя и экономию топлива.

Уменьшение обратного давления выхлопных газов всегда улучшает мощность и экономию топлива при условии, что соотношение воздух/топливо и момент зажигания тщательно оптимизированы, а до и после выпускной системы обратное давление увеличивается. Если вы уменьшите обратное давление в выпускной системе и оптимизируете двигатель для этих условий, то в 999 случаях из 1000 вы обнаружите прирост мощности.

 Измерение обратного давления

 В простом понимании высокофорсированный двигатель может быть определен как двигатель, который выдает больший объем выхлопных газов, чем стандартный двигатель того же рабочего объема. Так как мощность двигателя получается из-за сгорания топлива, то чем больше топлива эффективно сгорит в двигателе, тем большую мощность (и объем выхлопных газов он произведет). Следовательно, каждая модификация двигателя, которая улучшает мощность, будет увеличивать обратное давление, если не сделать необходимых изменений на выхлопной системе. Фактически, увеличение мощности на 40% обычно удваивает обратное давление, а если вы рассчитываете удвоить мощность двигателя, то обратное давление увеличится в 4 раза. Но не спешите сразу же выбрасывать свои глушители и выхлопные трубы. Вначале вы должны измерить, какое обратное давление развивается в вашей выпускной системе. К счастью, для решения этой задачи не требуется дорогое диагностическое оборудование. Все, что вам потребуется — это манометр, несколько соединителей и трубок. Манометр должен быть рассчитан на измерение давления порядка 0,7 кгс/см3; в крайнем случае, можно воспользоваться манометром для измерения давления топлива. Лучше всего иметь манометр с крупной шкалой для облегчения измерений. Вварите кусок "резьбы" в выхлопную систему перед глушителями, а если автомобиль оборудован катализатором, то добавьте еще и резьбу перед ним. Резьба может представлять собой простую шестигранную гайку с резьбой для установки трубки диаметром 3,2 или 6,3 мм. Из-за высоких температур в системе подсоединение манометра к резьбовому отверстию требует дополнительных операций. Просверлите маленькое отверстие через заглушку выхлопной трубы (эта заглушка должна иметь такой же размер резьбы, как и в приваренной гайке) и впаяйте высокотемпературным припоем кусок стальной трубки длиной 300-450 мм, внутренним диаметром 3,2 мм(1/8 дюйм), которая часто используется в качестве тормозной трубки, в просверленное отверстие. Стальная трубка будет рассеивать избыточное тепло от горячей выпускной системы, чтобы можно было подсоединить резиновый шланг, идущий к манометру. Следите за тем, чтобы шланг не касался других раскаленных деталей выпускной системы. После измерений обратного давления можно снять трубку и заглушить выпускную систему резьбовой заглушкой без отверстия для трубки.

Обратное давление измеряется при разгоне автомобиля с широко открытой дроссельной заслонкой. При регулярном повышении оборотов определяйте значения давления по манометру. Любое обратное давление является нежелательным, но к этому нужно подходить практически. Так как невозможно добиться нулевого сопротивления потоку, то нужно добиваться реальных целей. Полученные графики обратного давления иллюстрируют, что стандартная выпускная система может создавать давления до 0,6 кгс/см2 (и даже больше на некоторых обычных автомобилях). При тщательном подборе глушителей, катализаторов и выхлопных труб тот же самый двигатель будет развивать обратное давление величиной не более 0,15 кгс/см2. Если при измерениях будут получены значения обратного давления более 0,35 кгс/ см2 при работе с полностью открытой дроссельной заслонкой в какой-либо области оборотов, то выпускная система нуждается в доработке.

 

Проверка обратного давления в выпускной системе. 1 - манометр; 2 - катализатор; 3 - для проверки обратного давления катализатора вварите в систему гайку с резьбой здесь; 4 - для проверки обратного давления только глушителя вварите в систему гайку с резьбой здесь; 5 - глушитель.

 Глушители

 После катализатора следующей большой помехой потоку газов является глушитель. Хорошо сконструированный глушитель будет уменьшать шум от работы двигателя, не создавая избыточное обратное давление и не "придушивая" двигатель. К сожалению, не все глушители хорошо сконструированы. Фактически, некоторые глушители являются такими "хорошими" в создании обратного давления, что они могут отнять от 30 до 40 л. с. у форсированного в заводских условиях двигателя V8. Но вместе с тем есть и отлично работающие глушители и, подобрав глушитель правильной конструкции, вы можете получить существенную прибавку мощности.

 

Глушители уменьшают шум тремя способами: с помощью ограничения, поглощения и отражения.

 Глушители можно разделить на три основные категории: ограничители, поглотители и отражатели. "Тишина" большинства промышленных глушителей достигается путем создания ограничений потоку, что делается продавливанием выхлопных газов через каналы небольшого диаметра. К сожалению, эта методика также создает большое обратное давление и отбирает большую мощность. Специальные глушители, с другой стороны, часто основаны на поглощении, когда звук, поступающий в корпус, преобразуется в тепло при своем взаимодействии с поглощающим материалом, подобным фиберглассу, путем процесса трения. Этот метод создает меньшее обратное давление, но он менее эффективно заглушает шум. Глушители также используют внутренние перегородки для отражения звуковых волн обратно к входной стороне. Лучшие глушители для форсированных двигателей часто сочетают методики отражения и поглощения для улучшения шумопоглощающих свойств, сохраняя в то же время большие внутренние каналы для уменьшения сопротивления потоку газов. Превосходным примером таких конструкций может служить глушитель CYCLONE SONIC TURBO. Он использует поглощение в стеклопакете и обратные акустические "зеркала" для отражения звуковых волн.

 Имидж "Турбо"

 В течение последних 20 лет некоторые глушители с репутацией "Турбо" стали популярными для использования в форсированных двигателях. Первый "турбо"-глушитель был разработан в США для двигателя с турбонаддувом, устанавливаемого на модели CHEVROLET CORVAIR в 60-е годы. Он использовал комбинацию систем отражения и поглощения и был разработан для уменьшения уже низкого шума от двигателя с турбонаддувом (турбонагнетатели существенно уменьшают шум от выхлопных газов). Так как очень сильного снижения шума не требуется, обратное  давление глушителя было довольно низким. Конструкторы автомобилей типа "хот-род" вскоре начали верить, что его можно использовать в этой области, хотя его "заглушающие" свойства на нормальных атмосферных двигателях были довольно ограничены. Откликаясь на требования рынка, некоторые фирмы-производители использовали этот имидж "турбо-глушителя" для увеличения объема продаж. Глушители, которые многие продавали благодаря их технической "похожести" на оригинальную конструкцию, не всегда были плохими и некоторые из них вполне могли бы быть установлены на форсированные двигатели. Фактически, некоторые турбо-конструкции подтвердили, что они имеют большее сопротивление, чем стандартные глушители.

Обратный поток                Прямой поток

Правильная и неправильная установка керамического блока с отверстиями, пробитыми внутрь. 1 - обратный поток; 2 - прямой поток.

Выхлопные газы, нормально проходящие через центральную трубу с отверстиями, пробитыми внутрь, будут ударяться о верхнюю кромку каждого отверстия и будут двигаться назад вдоль такого зубца, что существенно увеличивает сопротивление. Однако, если глушитель установить наоборот, то поток выхлопных газов будет разрываться около каждого зубца. Разница между прямым и обратным потоком может быть очень большой и достигает почти 50%. Однако установка керамического блока с отверстиями, пробитыми внутрь, также увеличивает уровень шума. Фактически, так как "обратные", т. е. внутренние, отверстия стремятся закрыть входные каналы к материалу блока, то уровень шума, может быть даже выше, чем у глушителя с отверстиями в центральной трубе, пробитыми наружу.

 

Всегда проверяйте отверстия, пробитые в центральной трубе. Если отверстия пробиты наружу от центральной трубы и по направлению к наружному корпусу, а центральная труба большая (как показано внизу), то такой глушитель можно считать хорошим.

 Построение выпускной системы

 Выпускная система состоит из системы соединительных труб, которые направляют выхлопные газы от выпускных коллекторов к задней части автомобиля.

 Конструкция системы и размер труб

 Прежде всего, каждый форсированный двигатель V8 должен быть оснащен двойной выпускной системой. Среднестатистический двигатель V8 выдает значительный объем горячих выхлопных газов на высоких оборотах двигателя. Если все эти газы направляются через одну выхлопную трубу и глушитель, то такая система почти всегда страдает от избыточного обратного давления. Чтобы избежать этого, можно пойти двумя путями. Первый: установить практичную двойную выпускную систему с глушителями, обеспечивающими высокие значения потока газов. Второй: найти пространство для трубы с отверстием от 89 до 100 мм и для одинарного глушителя, который пропускает поток от 17 до 23,7 м3/мин, например, глушитель от грузовика с диаметром 300 мм и длиной до 1200 мм.

Предполагая, что ваш выбор остановился на более практичной двойной выпускной системе, вопрос теперь заключается в том, каким должен быть диаметр трубы, которая соединяет выпускные коллекторы с глушителями. Большинство фирм по форсировке двигателей устанавливает трубу диаметром 63,5 мм, так как это является обычным размером для стандартных глушителей, а большие трубы часто требуют дополнительного изгиба и могут создать проблемы с зазором у днища кузова. Рассуждая с практической точки зрения, труба с диаметром 63,5 мм подходит для большинства двигателей для повседневного использования мощностью до 400 л. с. и даже более. Если двигатель выдает значительно большую мощность или оснащен выпускными коллекторами, которые имеют приемные трубы размером 100 мм, то вам могут потребоваться трубы увеличенного размера. Однако ограничения по зазору могут потребовать "ступенчатого" решения. К примеру, труба размером 100 мм отходит от приемных труб на короткое расстояние, а затем постепенно сужается до размера 63,5 мм у глушителей. Однако перед тем как вы решите использовать трубы, размер которых превышает 63,5 мм, всегда имейте в виду, что относительно прямая труба, идущая от фланца приемной трубы к глушителю, имеет, меньшее сопротивление потоку по сравнению с глушителями. Используйте только лучшие высокопоточные глушители (часто с диаметром труб, превышающим 57,2 и 63,5 мм) и, если это возможно, используйте трубы, которые по диаметру не меньше, чем входное отверстие глушителя.

Давайте рассмотрим ситуацию, которая может иметь место в случае двигателя для повседневного использования, когда дорожный просвет является важным фактором. Труба с размером 57,2 мм является наибольшим размером, который может быть использован для соединения коллектора и глушителя. Однако глушитель с входным отверстием 57,2 мм и внутренней трубой такого же размера почти наверняка пропускает меньший поток, чем глушитель с трубой размером 63,5 мм. Для оптимизации этой системы используйте глушитель большего размера с внутренней трубой диаметром 63,5 мм (так как даже самый большой глушитель остается самым ограничивающим элементом системы) и добавьте короткий переходник перед глушителем, чтобы увеличить размер труб с 57,2 до 63,5 мм. Никогда не уменьшайте размер приемной трубы выпускного коллектора при переходе к глушителю с центральной трубой меньшего размера.

 Изгибы в выпускной системе

 Практически невозможно использовать в выпускной системе только прямые трубы. Изгибать трубы необходимо, чтобы обойти детали трансмиссии и подвески. К сожалению, каждый изгиб увеличивает обратное давление и уменьшает мощность двигателя. Сопротивление потоку будет уменьшено, если в областях с изгибами будут использоваться трубы большего размера. Всегда используйте изгибы как можно большего диаметра. Избегайте острых изгибов или гибки труб, так как любые внутренние неровности в трубах увеличивают обратное давление.

 

Тщательно спланируйте выпускную систему.

 

Поперечные трубы

Большое количество стендовых и ходовых испытаний показали, что простая поперечная труба, соединяющая две стороны в двойной выпускной системе чуть позади приемных труб и перед глушителями, может увеличить мощность двигателя. Прирост мощности от использования поперечной трубы имеет место как на обычных, так и на гоночных автомобилях, но причины роста в разных случаях отличаются.

 

Выпускные системы с поперечными трубами могут быть созданы различными путями. Единственная ровная поперечная труба допускается, когда емкость глушителя по потоку достаточно высока. Система с двумя поперечными трубами будет увеличивать мощность, если глушители имеют больше сопротивление потоку или если она используется на двигателях с мощностью более 350 л. с. Чем большее сопротивление имеют глушители, тем большая мощность может быть получена от использования системы с поперечной трубой.

 

На гоночном автомобиле с открытой выпускной системой и с поперечной трубой между приемными трубами эта труба передает ударные волны выхлопных газов с одной стороны системы на другую. На обычных автомобилях поперечная труба выполняет дополнительную функцию: поперечная труба позволяет каждой стороне двигателя частично разделять емкость потока комбинированного глушителя. Хотя даже самая эффективная поперечная труба не удвоит поток в системе, улучшение на 25% является обычным делом.

 

Многочисленные испытания на стенде и в движении продемонстрировали, что простая поперечная труба, соединяющая две стороны двойной выпускной системы сразу же после приемных труб и перед глушителями, может увеличить мощность двигателя.

 Спаренные глушители

 Иногда бывает невозможно уменьшить обратное давление выхлопных газов до приемлемого уровня с помощью одного глушителя в каждой стороне выпускной системы. Это часто происходит на высокофорсированных двигателях большого рабочего объема (т. е. более 6500 см5). Если измеренное давление в системе составляет более 0,35 кгс/см2, то может потребоваться использовать по два глушителя на каждой стороне, которые соединены параллельно.

 

Ступенчатое расположение глушителей.

 

В этих случаях выхлопные газы от каждого блока цилиндров проходят через два глушителя (см. рис. далее) и для двигателя V8 требуется всего 4 глушителя. Если переходник Y-образной формы, который распределяет выхлопные газы между каждой парой глушителей, сконструирован правильно, то эффективный поток двух глушителей будет примерно удвоен по сравнению с одиночным глушителем на одной из сторон.

Наиболее очевидным недостатком спаренных глушителей, кроме цены, является то, что на большинстве автомобилей имеется недостаточный зазор под кузовом, чтобы разместить два глушителя рядом друг с другом. Некоторые конструкторы используют ступенчатое расположение спаренных глушителей, что требует меньшего пространства, но во всех случаях важно помнить, что изгибы и переходы от одной трубы к двум и обратно должны быть плавными, большего диаметра и по возможности известного производителя.

 

Практические примеры

 

Очевидным вопросом здесь может быть следующий: какой прирост мощности и экономичности можно ожидать, если полностью переделать всю выпускную систему с упором на уменьшение обратного давления? Прирост может быть разным, но приводимые далее примеры покажут, что возможно получить.

Первый двигатель представляет собой экспериментальный четырехцилиндровый двигатель для испытаний на стенде, изначально оснащенный глушителем промышленной конструкции (типичная конструкция с обратным потоком, используемая на многих автомобилях) и короткой прямой выхлопной трубой большого диаметра. После измерения основной кривой мощности стандартный глушитель был заменен специальной конструкцией, которая обеспечивала почти нулевое сопротивление потоку. Фактически, проверки, проведенные на стенде, показали довольно заметное увеличение мощности по сравнению с прежней выпускной системой. При отсутствии других изменений на двигателе уменьшенное обратное давление дало прирост мощности в 8% во всем диапазоне оборотов. Было замечено улучшение экономии топлива в 3-8 % с типичным значением около 6%.

Практическое использование обсуждаемых изменений можно также было видеть на одном из испытательных двигателей V8 с рабочим объемом 5735 см5, изначально оснащенного промышленной одинарной выпускной системой. Для определения базового уровня была измерена стандартная мощность, которая составила 152 л. с. с выпускной системой, которая имеет ненормально высокое обратное давление в 1,13 кгс/см2. Затем стандартный катализатор с шариками был убран, а промышленный глушитель был заменен глушителем CYCLONE SONIC TURBO. Мощность при этом подскочила до 210 л. с., а обратное давление в выпускной системе снизилось до 0,25 кгс/см2. В заключение была установлена двойная выпускная система, которая была тщательно изготовлена для уменьшения обратного давления. Этот узел, оснащенный двойными турбо-глушителями CYCLONE SONIC, но по-прежнему использующий стандартные выпускные коллекторы, обеспечивал заметный прирост мощности до 47% по сравнению со стандартной выпускной системой. Измеренная мощность составила 224 л. с., а обратное давление в системе составило величину менее 0,07 кгс/см2. Однако такой прирост мощности дается не только путем больших материальных затрат при покупке деталей. Двойная выпускная система с высоким потоком может быть заметно шумнее стандартной или даже модифицированной одинарной выпускной системы. Фактически, некоторые системы с турбо-глушителями могут не удовлетворять требованиям по шумности.

Если автомобиль должен удовлетворять требованиям по токсичности выхлопных газов, то частью выпускной системы должен стать катализатор. К счастью потери мощности могут быть уменьшены, если используются катализаторы с двойной сотовой структурой. Они должны быть расположены перед глушителями и по возможности ближе к выпускным коллекторам. Сопротивление может быть уменьшено еще больше путем изменения входной и выходной частей катализатора в длинные конусные каналы. В качестве дополнительного преимущества катализаторы также уменьшают шум от выпускной системы.

 

Выпускные коллекторы

 

На первый взгляд задача отвода выхлопных газов из цилиндров может показаться простой, не требующей каких-то особых конструкторских ухищрений. Однако, как говорилось ранее, двигатель внутреннего сгорания является сложным агрегатом, который функционирует при тщательно продуманном взаимодействии многих динамических систем. Хотя выпускные коллекторы позволяют двигателю легче "выдыхать" путем уменьшения потерь при прокачке, которые имеют место, когда поршень движется вверх при такте выпуска. Это является наиболее очевидным преимуществом, которое могут предложить трубчатые впускные коллекторы.

Если такт выпуска происходит только один раз, то создание выпускных коллекторов было бы просто задачей по уменьшению сопротивления потоку. Но даже при 2000 об/мин двигатель V8 выдает примерно 70 тактов выпуска за секунду на один блок из четырех цилиндров. Эти импульсы давления, как мы увидим, взаимодействуют с потоком выхлопных газов, образуя сложную динамическую смесь, которая может воздействовать на оптимальный размер труб коллектора, их длину и на общую конструкцию. Может быть, довольно сложно полностью понять динамику потока, но настройка выпускной системы может быть "ключом" к получению дополнительной мощности. Вам потребуется правильная комбинация, и здесь будут даны некоторые рекомендации по достижению лучших результатов.Трубчатые или цельные коллекторы?

 

Выпускные трубчатые коллекторы могут улучшить мощность двигателя, но они не всегда являются лучшим выбором для обычного форсированного (не гоночного) двигателя. Хотя трубчатые коллекторы являются более эффективными в диапазонах средних и особенно высоких оборотов, но если двигатель работает с низкими оборотами, то литые чугунные коллекторы дают хорошие рабочие характеристики, являются более.дешевыми (если вы уже имеете их), более компактными и менее склонными к образованию утечек выхлопных газов. Идеальной областью использования для литых коллекторов являются грузопассажирские автомобили, для которых важен крутящий момент на низких оборотах. Если у вас двигатель высокой степени форсиров-ки, то вы сможете получить заметный прирост мощности и топливной эффективности путем использования выпускных коллекторов, которые устанавливаются  на обычные  мощные  двигатели.

 

 

Показанный здесь двигатель FORD INDY с двумя верхними распределительными валами использует одну из хорошо известных конструкций трубчатого выпускного коллектора.

 

Цельные выпускные коллекторы неэффективны при больших объемах потоков и на высоких оборотах из-за особенностей их конструкции. Почти все коллекторы, включая даже конструкции для форсированных двигателей, имеют короткие каналы, которые объединяются в общую камеру, имеющую конструкцию, которая не "заботится" о потоке. Когда выхлопные газы попадают в выпускной коллектор, они встречают два главных препятствия:

  • каналы с сопротивлением потоку;
  • импульсы от каждого цилиндра влияют друг на друга и сильно увеличивают сопротивление потоку, так как длины отдельных труб для разных отверстий часто очень малы.

 

 

 

 

Как работают выпускные коллекторы

 

Трубчатые выпускные коллекторы подвержены обоим недостаткам, указанным выше. При увеличении длины каждой трубы и плавных изгибов, а также эффективной изоляции отдельных каналов, применение выпускного коллектора трубчатого типа улучшает поток и практически убирает влияние цилиндров друг на друга. Когда выпускные коллекторы сочетаются с эффективной выпускной системой (высокопоточные глушители и т. д.), то дополнительную мощность можно получить путем продувки цилиндров.

 Инерционная и волновая продувка

Может показаться, что устройство, сделанное из металлических труб, и в котором нет движущихся деталей, может втягивать свежую топливовоздушную смесь через открытый впускной клапан почти над малоподвижным поршнем и поможет освобождать камеру сгорания от выхлопных газов. Это напоминает установку турбонагнетателя, которому не нужен подвод мощности: нет приводных ремней, нет вращающихся турбин; он выдает необходимую дополнительную мощность. Может показаться удивительным, но трубчатые выпускные коллекторы могут обеспечить этот прирост мощности, когда они правильно изготовлены. Поэтому, давайте заглянем внутрь труб и рассмотрим, как работает этот воображаемый "турбонагнетатель".

 

Эта "путаница" труб большого диаметра — выпускной коллектор STREET HEMI выпуска фирмы STAHL, который использует инерционную продувку и резонансную настройку для очистки камер сгорания от выхлопных газов и улучшения мощности.

 Когда импульсы давления проходят через каждую выхлопную трубу, они могут переносить энергию, которая действует двумя путями для генерации эффекта продувки и улучшения мощности. Во-первых, движущая масса газов имеет инерционные свойства. Инерция представляет собой тенденцию движущихся тел к сопротивлению любым изменениям в их движении. Поток газов высокого давления, который выходит из каналов головки блока цилиндров, имеет тенденцию сохранять движение через трубы коллектора, и инерция этих газов, если она достаточно сильная, будет втягивать дополнительную топливовоздушную смесь через открытые впускные и выпускные клапаны при перекрытии клапанов.

Также имеется второй путь, которым выпускные коллекторы помогают удалить выхлопные газы из цилиндра: ударная волна низкого давления, образуемая, когда импульс выпускных газов высокого давления выходит из системы, может помочь втянуть дополнительную топливовоздушную смесь в цилиндр при перекрытии клапанов. Чтобы легче понять, как этот механизм работает, выберем одну трубу коллектора. Как уже указывалось, когда впускной клапан открывается, выходящие под высоким давлением газы "выскакивают" в трубу и образуется импульс давления. Этот импульс, движущийся со скоростью звука, быстро достигает конца выхлопной трубы, где образуется отраженная волна с давлением ниже атмосферного. Эта обратная волна движется обратно по трубе к выпускному клапану также со скоростью звука, которая изменяется с температурой, но обычно составляет 360-400 м/сек. Путем изменения длины первичной трубы коллектора время, требуемое для возврата импульса к выходному отверстию, будет изменяться. С помощью тщательного подбора этой длины возможно подобрать время возврата волны низкого давления к оборотам двигателя. Для трубы конкретной длины и определенного значения оборотов двигателя, импульс низкого давления может быть точно настроен так, что он достигнет выпускного отверстия при перекрытии клапанов, когда он поможет выдуть остаточные выхлопные газы, которые поршень не может выдавить из камеры сгорания. Эта отраженная волна, в свою очередь, вызывает втягивание потока топливовоздушной смеси в цилиндр через открытый впускной клапан перед тем, как поршень начнет такт впуска.

Регулировка длины трубчатого выпускного коллектора для оптимизации продувки обратной волной называется резонансной настройкой. К сожалению, в двигателестроении всегда имеются недостатки,' которые сопровождают получение прироста мощности. Длина трубы выпускного коллектора обеспечивает нужное время для возврата обратного импульса только в узком диапазоне оборотов двигателя. Если эта труба относительно короткая, то резонансный эффект наступает в области высоких оборотов; если она относительно длинная, то эффект проявляется в области низких оборотов двигателя.

 Настройка выпускного коллектора

 Подобно другим важным деталям для получения мощности, находящимся внутри или снаружи двигателя, выпускной коллектор является одной из частей системы "дыхания" двигателя. Чтобы быть наиболее эффективным, он должен работать совместно с другими деталями этой системы. "Командным центром", определяющим характеристики выпускной системы "дыхания" двигателя, является распределительный вал, а общие характеристики выпускной системы могут быть непосредственно связаны с фазами газораспределения распредвала. Выбор распредвала существенным образом определяет, в какой области оборотов двигателя будут достигаться- максимальная мощность и крутящий момент. Для гоночного двигателя длины и диаметры деталей выпускного коллектора должны сочетаться с характеристиками, определяемыми распред-валом. Для высоких оборотов конструкция выпускного коллектора должна включать в себя трубы большого диаметра и относительно короткие и приемные трубы большого диаметра. Для работы на двигателях повседневного применения и топливной экономичности выпускные коллекторы имеют конструкцию с трубами малого диаметра и относительно большой длины.

Всегда опасно делать какие-либо обобщения, но из-за общности конструкций большинства двигателей V8 можно сделать два заявления. Первое состоит в том, что за исключением автомобилей с выдуванием отработанных газов, выпускные коллекторы без приемных труб практически не работают. Конструкция с одинарной трубой эффективна на автомобилях, рассчитанных на использование гоночного топлива, так как турбокомпрессор полностью продувает цилиндры, направляя трубы коллектора к другим деталям. Во-вторых, практически все "обычные" выпускные коллекторы состоят из четырех отдельных труб, соединяющихся в большую приемную трубу. Такая конструкция делает возможным использование взаимодействующих ударных волн, образующихся в двигателе V8 от цилиндра к цилиндру, и является самым лучшим выбором для форсированных и гоночных двигателей.

 

 

Выпускной коллектор лучшей конструкции состоит из 4 отдельных труб, соединяемых в приемную трубу большого диаметра.

Выпускной коллектор

Выпускной коллектор - массивный металлический сборник для раскаленных газов, которые отводятся из цилиндров двигателя после совершения полезной работы. В коллекторе пульсирующие потоки отработавших газов сводятся воедино, и выбрасываются в общую приемную трубу выхлопной системы.

Как устроен выхлопной коллектор

Как правило, выпускной коллектор это достаточно простая по устройству полая деталь из чугуна или нержавеющей стали. Чугунные коллекторы обычно представляют из себя единую деталь, изготовленную методом литья, так как чугун практически невозможно гнуть. Сталь - более прочный на разрыв материал, поэтому стальные коллекторы изготавливаются из изогнутых труб методом сварки. Внутри чугунного коллектора предусмотрены короткие каналы, ведущие в единую камеру. Цельные коллекторы отличаются низкой эффективностью из-за того, что короткие каналы не способны принять большое количество газов единовременно и не обеспечивают нужный уровень продува камеры сгорания. Их достоинство - низкая себестоимость и простота производства.

Стальной коллектор суперкаров покрыт слоем материала, препятствующего выделению тепла в моторный отсек

Трубчатые стальные коллекторы пришли в промышленное производства из мира автоспорта. Детали этого типа обычно изготавливают из нержавеющей стали, а в случае с наиболее дорогими марками автомобилей, из керамики. Достоинство керамики в низкой теплопроводности, поэтому коллекторы из этого материала практически не выделяют тепло в подкапотное пространство. Трубчатые коллекторы за счет увеличенной длины каналов улучшают показатели мощности, и в последнее время этим их качеством производителя начинают пользоваться все активнее. Их легче оптимизировать по давлению внутри каналов и другим параметром.

Оптимизация процессов в выпускных коллекторах

Появление трубчатых коллекторов дало толчок к развитию выхлопной системы в неожиданных направлениях. К примеру, в ряде мотоциклетных двигателей Yamaha выпускной коллектор снабжен системой интеллектуального управления обратным давлением. Это означает, что в нем есть электронно управляемые шторки, способные прикрывать и открывать выходное отверстие в зависимости от режима работы. Таким образом показатели волнообразного обратного давления в выпускном тракте выравниваются и становятся величиной более-менее постоянной, что позволяет избежать образования завихрений при резком увеличении оборотов. С подобными системами экспериментируют и многие производители автомобилей.

Особенности выпускных коллекторов для мощных автомобилей

Коллекторы двигателей с большим количеством цилиндров отличаются от обычных обязательным наличием резонатора. Дело в том, что коллекторы таких двигателей, как правило, разделены на две части. К примеру, если у двигателя 8 цилиндров, то частей будет две. В первую часть попадают выхлопные газы из первого, второго, третьего и четвертого цилиндров, а во вторую - из цилиндров с пятого по восьмой.

Равнодлинные выпускные коллекторы пришли в серийное производство из мира спорта. Сейчас такие детали можно увидеть даже на скромной Toyota Yaris

При работе двигателя существует определенный порядок срабатывания цилиндров - смесь поджигается в них не подряд, а по определенному алгоритму. Поэтому возникают ситуации, при которых выхлопные газы за короткий промежуток времени попадают в одну часть коллектора из двух и более цилиндров, а вторая часть при этом не задействована. Естественно, в работающей в данный момент части возникает высокое давление, которое приемная труба принять сразу не способна. Для снижения его две части коллектора объединяют перемычкой, резонатором, отводящим часть газов в незадействованную часть для снижения давления в рабочей. Зачастую для более кардинального решения этой проблемы такие двигатели оснащают двумя независимыми коллекторами и двумя независимыми выхлопными трактами. Именно поэтому у автомобилей с мощными двигателями нередко можно видеть две выхлопные трубы.

Принцип работы выпускного коллектора

Одной стороной коллектор крепится к головке блока цилиндров там, где в нем предусмотрены окна для выпуска отработанных газов из цилиндров. С другой стороны к коллектору через фланцевое соединение крепится приемная труба, либо катализатор, в зависимости от конструкции.

Выхлопные газы попадают в коллектор из камеры сгорания, после чего отражаются от внутренних стенок и стремятся обратно в камеру сгорания. В результате движения газов в обеих направлениях движение газов в коллекторе носит волнообразный характер.

Чугун и нержавеющая сталь - лучшие материалы для производства выпускных коллекторов, постоянно подвергающихся воздействию агрессивной среды отработавших газов

Тем не менее, основное направление потока остается неизменным – от двигателя к выпускному отверстию выхлопного тракта, что обеспечивает эффективную очистку цилиндров от продуктов сгорания. В случае, если двигатель оснащен турбонагнетателем, давление в коллекторе используется для приведения в движение крыльчатки турбины, которую устанавливают сразу за коллектором. В таком случае часть выхлопных газов возвращается в цилиндры через впускной коллектор, создавая в них повышенное давление, недостижимое путем прямого захвата атмосферного воздуха. 

Основные причины неполадок и способы ремонта

Признаком неисправности коллектора в первую очередь становится появление шумов в моторном отсеке. Часто он выходит из строя в случаях перегрева двигателя, когда происходит искривление прилегающей плоскости из-за изменений в структуре металла под воздействием чрезмерно высокой температуры. В этом случае между ним и головкой блока возникает щель, которую не способна скомпенсировать штатная прокладка, и коллектор приходится менять. Выпускной коллектор постоянно подвергается агрессивному воздействию отработавших газов, а после окончания работы двигателя коллектор остывает, вследствие чего на его внутренних стенках оседает конденсат, приводящий к появлению коррозии. Из-за ржавчины появляются трещины и каверны в металле, ведущие к нарушению герметичности. Проблему можно решить при помощи сварки, однако если процесс зашел слишком далеко, то оптимальным решением станет замена выпускного коллектора.

Проверить геометрию прилегающей плоскости перегретого коллектора можно, просто положив его на ровный стол и прижав к столешнице

При мойке двигателя следует дождаться, когда выпускной коллектор остынет. В противном случае появляется риск возникновения трещин или искривления детали вследствие резкого перепада температур.

Выпускной коллектор в спорте и тюнинге

В спортивных автомобилях практически всегда применяют коллекторы трубчатого типа, так как именно в них благодаря равной длине всех труб потоки выхлопных газов, выбрасываемых из всех цилиндров, смешиваются на выходе равномерно. В обиходе такие коллекторы называют "пауками" за характерный внешний вид. При переделке штатной выхлопной системы трубы для "паука" подбирают с сечением, превышающим сечение штатных каналов. Это необходимо для обеспечения беспрепятственного выхода отработавших газов. Стальной равнодлинный коллектор выделяет большое количества тепла в подкапотное пространство, и для снижения температуры на поверхности детали трубы изнутри и снаружи покрывают специальным керамическим напылением или окрашивают термостойкой краской, выполняющей ту же функцию. С той же целью трубы обматывают полосами ткани, сотканной из базальтовых нитей, обладающих рекордно низкой теплопроводностью. Благодаря этим мерам выхлопные газы остывают в следующих элементах выхлопного тракта, за пределами моторного отсека, и воздух, поступающий в двигатель, имеет более низкую температуру.

Выхлопная система: устройство и функции

Оснащенный двигателем внутреннего сгорания автомобиль нуждается в системе, через которую бы осуществлялся выпуск отработанных газов. Такая система, названная выхлопной, появилась одновременно с изобретением двигателя, и наряду с ним на протяжении многих лет совершенствовалась и модернизировалась. Из чего состоит выхлопная система автомобиля, и как работает каждый ее компонент, мы расскажем в этом материале.

Три столпа выхлопной системы

Когда топливовоздушная смесь в цилиндре двигателя сгорает, образуются отработанные газы, которые необходимо вывести, чтобы цилиндр снова наполнился необходимым количеством смеси. Для этих целей автомобильные инженеры изобрели выхлопную систему. Она состоит из трех основных компонентов: выпускного коллектора, каталитического конвертера (нейтрализатора), глушителя. Рассмотрим каждый из компонентов этой системы в отдельности.

Схема выхлопной системы. В данном случае - резонатор - это дополнительный глушитель.Схема выхлопной системы. В данном случае  резонатор — это дополнительный глушитель.

Выпускной коллектор появился практически одновременно с ДВС. Он представляет собой навесное оборудование двигателя и состоит из нескольких труб, которые соединяют камеру сгорания каждого цилиндра двигателя с каталитическим конвертером. Изготавливается выпускной коллектор из металла (чугун, нержавеющая сталь) или керамики.

Выпускной коллекторВыпускной коллектор

Так как коллектор постоянно пребывает под воздействием высоких температур отработанных газов, более «жизнеспособными» являются коллекторы из чугуна и нержавеющей стали. Причем, коллектор из нержавеющей стали предпочтительнее, так как в процессе охлаждения агрегата после остановки автомобиля на нем собирается конденсат. В чугунном коллекторе конденсат может вызвать коррозию, а в коллекторе из нержавейки коррозии не возникает. Преимущество керамического коллектора – в его малом весе, но он не может длительное время выдерживать влияния высоких температур отработанных газов и трескается.

Выпускной коллектор HamannВыпускной коллектор Hamann

Принцип работы выпускного коллектора прост. Отработанные газы через выпускной клапан попадают в выпускной коллектор, а оттуда – в каталитический нейтрализатор. Кроме основной функции отвода выхлопных газов, коллектор помогает камерам сгорания двигателя продуваться и «забирать» новую порцию отработанных газов. Происходит это благодаря разнице давления газов в камере сгорания и коллектора. В коллекторе давление ниже, чем в камере сгорания, поэтому в трубах коллектора образуется волна, которая, отражаясь пламегасителя (резонатора) или каталитического нейтрализатора, идет назад к камере сгорания, и в момент очередного цикла выхлопа способствуют выведению очередной порции газов. Скорость создания этих волн зависит от скорости оборотов двигателя: чем выше обороты, тем быстрее «ходит» в коллекторе волна, и тем скорее камера сгорания цилиндра освобождается от выхлопных газов. Выпускной коллектор – один из наиболее популярных агрегатов для тюнинга.

Из выпускного коллектора отработанные газы попадают в каталитический конвертер или нейтрализатор. Он состоит из керамических сот, на поверхности которых находится слой платиноиридиевого сплава.

Схема каталитического нейтрализатораСхема каталитического нейтрализатора

Соприкасаясь с этим слоем, из выхлопных газов посредством химической реакции восстановления образуются оксиды азота и кислород, который используется для более эффективного сгорания находящихся в выхлопе остатков топлива. В результате воздействия реагентов катализатора, из него в выхлопную трубу подается смесь из азота и диоксида углерода.

Наконец, третьим основным элементом выхлопной системы автомобиля является глушитель, который представляет собой устройство, предназначенное для снижения уровня шума при выпуске отработанных газов. Он, в свою очередь, состоит из четырех компонентов: трубы, соединяющей резонатор или каталитический конвертер с глушителем, глушитель, выхлопная труба и наконечник выхлопной трубы.

ГлушительГлушитель

Очищенные от вредных примесей выхлопные газы поступают от катализатора по трубе в собственно глушитель. Корпус глушителя изготовляют из различных видов стали: обычной (срок службы – до 2 лет), алюминизированной (срок службы – 3-6 лет) или нержавеющей (срок службы – 10-15 лет). Он имеет многокамерное строение, при этом каждая камера снабжена отверстием, через которое выхлопные газы поступают в следующую по очереди камеру. За счет такой многократной фильтрации, выхлопные газы глушатся, звуковые волны выхлопа гасятся. Далее газы поступают в выхлопную трубу. В зависимости от мощности установленного на автомобиль двигателя, может варьироваться количество выхлопных труб: от одной до четырех. Последним элементом выступает наконечник выхлопной трубы. Он изготавливается из хромированной стали и выполняет эстетическую функцию. Выхлопная труба и ее наконечники также являются элементами тюнинга автомобиля.

На автомобилях с турбированными двигателями устанавливают глушители меньших размеров, чем на машинах с атмосферными моторами. Дело в том, что турбина использует для работы выхлопные газы, поэтому в выхлопную систему попадает лишь некоторая их часть – вот почему у таких моделей маленькие глушители.

Читайте также о том, как устроен прямоточный глушитель.

Впускной коллектор - неисправности и тюнинг

Впускной коллектор карбюраторного двигателя

В системе питания любого двигателя внутреннего сгорания впускной коллектор играет серьезную роль. Он передает воздух или топливовоздушную смесь к головке блока цилиндров, откуда она поступает в камеру сгорания. Чем больше мощность мотора и выше максимальные обороты, тем большее количество воздуха (смеси) проходит через впускной коллектор и тем сильней его влияние на параметры двигателя.

Как коллектор влияет на работу двигателя

 

Когда мотор работает на максимальных оборотах при полностью нажатой педали газа, то скорость воздуха в коллекторе приближается (а в спортивных автомобилях заметно превышает) скорость звука. На таких скоростях любой поворот и самый незначительный бугорок оказываются серьезным препятствием, которое многократно увеличивает сопротивление коллектора воздушному потоку. В результате в цилиндры поступает меньше воздуха, поэтому мощность мотора падает. В таком режиме карбюратор нередко выдает переобедненную смесь, скорость горения которой в десятки раз быстрей, чем нормальной. Поэтому топливовоздушная смесь взрывается, это приводит к повреждению клапанов, поршней и других элементов мотора.

Не менее важно и качественное соединение коллектора с карбюратором или воздушным фильтром. Если уплотнительные элементы изношены или плохо затянуты гайки крепления, то в месте контакта происходит подсос воздуха, в результате – переобеднение смеси и взрывы в камере сгорания.

Нагрузки на коллектор

Несмотря на то, что продукты сгорания уходят через выпускной коллектор, температура впускного коллектора в режиме работы даже на половинной мощности мотора превышает 100 градусов Цельсия. При работе двигателя возникают вибрации, которые негативно сказываются на состоянии впускного коллектора, поэтому для его изготовления используют прочные, вибро- и жаростойкие материалы:

  • чугун;
  • сталь;
  • алюминий;
  • пластик.

Различия в коллекторах дизельных, карбюраторных и инжекторных двигателей

Основное различие коллекторов в том, что в дизельном двигателе по нему проходит только воздух, в карбюраторном топливовоздушная смесь, а в инжекторном – коллектор участвует в образовании смеси. Поэтому впускные коллекторы карбюраторных и дизельных двигателей это просто система труб с минимальным аэродинамическим сопротивлением. А в инжекторных они являются некоторым аналогом трубки Вентури, обычного распылителя, в котором поток воздуха увлекает за собой жидкость и распыляет ее. Благодаря этому достигается лучшее распыление и перемешивание смеси, чем впрыск непосредственно в цилиндр.

Неисправности впускного коллектора

Наиболее частые неисправности:

  • потеря герметичности прокладок;
  • обрастание стенок сажей и смолой;
  • ступенька между коллектором и карбюратором, воздушным фильтром или головкой блока цилиндров (ГБЦ);
  • излишний нагрев от выпускного коллектора.

 

Прокладки теряют герметичность при перегреве двигателя и ослаблении затяжки гаек. Проверить герметичность прокладок можно так: - на холостых оборотах прикройте 5–10 процентов впускной трубы воздушного фильтра. Если обороты двигателя не упали, значит, прокладки коллектора подсасывают воздух. Если обороты чуть-чуть поднялись, значит одна из прокладок полностью вышла из строя и необходима ее замена. 

Обрастание стенок коллектора смолой происходит только на карбюраторных двигателях из-за езды на низких оборотах. Потребление воздуха невелико, поэтому скорость движения топливовоздушной смеси недостаточно и часть распыленного топлива оседает на стенках. Потом летучие соединения испаряются, а смолы коксуются, образуя на стенках наросты, которые увеличивают аэродинамическое сопротивление. Чтобы удалить наросты, снятый коллектор обрабатывают различными веществами (чаще всего смесью керосина и ацетона) и чистят железными ершиками.

Ступенька между коллектором и воздушными фильтром, карбюратором или ГБЦ возникает из-за некачественного изготовления деталей или использования неоригинальных, а то и предназначенных для другой модели двигателя запчастей. Ступенька даже в 2 мм срезает до 20 процентов мощности и приемистости двигателя на средних и высоких оборотах. На низких оборотах ступеньки до 5 мм ни на что не влияют. Чтобы устранить ступеньку необходимо или подобрать соответствующий коллектор или обработать имеющийся с помощью фрезы. Эту операцию проводят в условиях автомастерской, потому что для нее необходим специально подготовленный фрезерный станок.

Излишний нагрев от выпускного коллектора происходит из-за отклонения угла опережения зажигания (УОЗ) свыше 5 градусов в любую сторону. На дизельных двигателях такой же эффект дает изменение угла опережения впрыска топлива (УОВТ). Также на перегрев впускного коллектора влияет долгая езда на высших передачах при низких или средних оборотах двигателя. При перегреве впускного коллектора поступающий в цилиндры воздух сильней нагревается, это меняет режим горения топливовоздушной смеси и лишь увеличивает выделение тепла в выпускном коллекторе. Перегрев впускного коллектора проявляется в поднятии температуры охлаждающей жидкости и заметном (10–20%) падении мощности. Чтобы устранить перегрев впускного коллектора необходимо установить правильные УОЗ или УОВТ и изменить манеру езды.

Видео - Как поменять впускной коллектор

Тюнинг впускного коллектора

Некоторые автовладельцы хотят превратить свою машину в гоночный болид, для этого увеличивают объем двигателя, устанавливают 2–3 карбюратора, перепрошивают инжектор, устанавливают спортивный распредвал и коленчатый вал.

 

В результате им удается поднять мощность двигателя на 30–80 процентов, и настолько же их мотор теряет в ресурсе. Для участия в гонках внутреннюю поверхность впускного коллектора максимально сглаживают и полируют, чтобы снизить аэродинамическое сопротивление. Но эффект такой тюнинг выхлопной системы дает лишь на высоких оборотах и как минимум половинной мощности двигателя. На низких и средних оборотах полированный впускной коллектор работает крайне неэффективно. Отсутствие мелких неровностей приводит к тому, что в потоке не образуются турбулентности и завихрения, это негативно сказывается на качестве топливовоздушной смеси. Поэтому топливо оседает на стенках коллектора и приводит к образованию наростов.

 

Если вы хотите оптимизировать впускной коллектор своего автомобиля, учитывайте следующее. Автопроизводители тщательно рассчитывают форму и размеры впускных и выпускных коллекторов, чтобы обеспечить максимальное соответствие конкретной модели двигателя. Если вы используете нормальную заводскую деталь, у которой нет ступенек, то любой тюнинг впускного коллектора лишь ухудшит характеристики двигателя. Поэтому почистите коллектор от наростов, устраните ступеньки, отремонтируйте и настройте двигатель. Это даст гораздо больший результат, чем любые улучшения. Если же вам необходимо поднять мощность автомобиля, установите новый мотор с увеличенным количеством лошадиных сил.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *