Охладительная система – Система охлаждения двигателя: схема, устройство, неисправности, ремонт

Содержание

Системы охлаждения

Долговечность индукционного оборудования напрямую зависит от эффективности охлаждения и качества охлаждающей жидкости.

Содержащиеся в воде соли, и, как следствие накипь, электропроводность воды, приводящая к разрушению элементов установок, механические примеси — все это приводит к сокращению срока службы оборудования

Правильный выбор системы охлаждения позволит:

существенно продлить срок службы оборудования

увеличить гарантийный срок до 18 месяцев при использовании наших систем охлаждения

снизить вероятность поломки оборудования

минимизировать затраты на коммунальные услуги

При выборе системы охлаждения необходимо учитывать:

— мощность теплоотведения возникающая в следствии тепловых потерь оборудования,

— периодичность работы оборудования.

— требования к качеству воды отдельных узлов оборудования.

Применяемые нами системы охлаждения можно разделить на четыре типа

 

ХОЛОДИЛЬНЫЕ УСТАНОВКИ — ЧИЛЛЕРЫ СЕРИИ ХМ

Основные области применения серии ХМ

охлаждение воды в контуре оборотного водоснабжения. Вода с заданной температурой подается для охлаждения технологического оборудования.

охлаждение водного раствора гликолей, используемого затем для охлаждения.

Отличительные особенности холодильных установок ХМ

наличие гидроблока, встроенного в установку.  В стандартном исполнении применена однонасосная схема с байпасным клапаном; двухнасосная схема является опцией, что необходимо указать при заказе. Однонасосную схему рекомендуется применять для установок холодопроизводительностью менее 100 кВт; двухнасосная схема предпочтительна для систем с очень большим колебанием тепловой нагрузки, а также для всех систем холодопроизводительностью более 100 кВт.

использование мощного конденсатора, рассчитанного на работу в режиме с температурой выхода воды до +20°С.

Модель

Холодопроизводительность при Тос=+30°С

Потребляемая
мощность, (кВт)

Произв-сть насоса, (м3/ч)

Объем емкости, (л)

Присоед. размеры трубопроводов по воде

Габариты (мм), ДхШхВ

Масса, кг

Твых. воды

вход

выход

+5°С

+10°С

+15°С

ХМ-4

3,16

3,83

4,58

1,53

1,2

45

1″

1″

1200x700x1850

220

ХМ-6

4,28

6,04

7,26

2,48

1,2

68

1″

1″

1200x700x1850

233

ХМ-8

6,71

8,16

9,77

3,24

1,2

68

1″

1″

1200x700x1850

238

ХМ-8

7,00

8,54

10,30

3,20

1,2

68

1″

1″

1580x700x1850

316

ХМ-12

12,1

14,4

16,9

5,3

5,5

160

1″

1″

1580x700x1850

354

ХМ-16

13,9

16,7

19,7

6,0

5,5

190

1″

1″

1900x970x1850

414

ХМ-18

15,7

18,8

22,4

7,0

5,5

215

1″

1″

1900x970x1850

420

ХМ-19

19,4

23,4

23,2

7,8

5,5

260

1″

1″

1900x970x1850

470

ХМ-24

21,5

25,7

30,3

8,7

5,5

290

1 1/4″

1 1/4″

1900x970x1850

486

ХМ-28

25,0

29,8

35,2

9,8

10,0

335

1 1/4″

1 1/4″

1900x970x1950

522

ХМ-31

28,5

34,1

40,2

10,9

10,0

380

1 1/4″

1 1/4″

1900x970x2250

598

ХМ-34

31,6

31,6

45,9

12,5

10,0

440

1 1/4″

1 1/4″

1900x970x2250

630

ХМ-41

36,50

43,60

51,6

14,7

10,0

490

1 1/4″

1 1/4″

1900x970x2250

638

ХМ-47

43,00

51,40

60,6

17,3

16,0

290

2″

2″

1900x970x2300

742

ХМ-55

50,0

59,60

71,8

20,2

16,0

335

2″

2″

1900x970x2300

782

ХМ-64

58,40

70,00

82,8

24,3

16,0

380

2″

2″

2600x1100x2310

962

ХМ-67

62,80

76,20

91,2

27,0

16,0

440

2″

2″

2600x1100x2310

972

ХМ-82

73,20

87,40

103,40

27,1

20,0

490

2 1/2″

2 1/2″

3250x1100x2310

1066

ХМ-107

97,20

115,80

137,40

41,2

20,0

650

2 1/2″

2 1/2″

3250x1200x2310

1368

ХМ-107

97,20

115,80

137,40

41,2

20,0

650

2 1/2″

2 1/2″

3600x1200x2310

1426

ХМ-135

123,60

148,20

175,60

52,8

33,0

850

2 1/2″

2 1/2″

2800x2280x2310

1742

*В стандартном исполнении установки выполнены в виде моноблока; по спецзаказу установки ХМ могут быть изготовлены в модульном исполнении.

Стандартная комплектация

  • спиральный герметичный или поршневой полугерметичный компрессор с запорными вентилями и нагревателем картера;
  • погружной или пластинчатый  теплообменник;
  • конденсатор воздушного охлаждения;
  • сдвоенное реле давления;
  • реле давления для регулирования давления конденсации;
  • ресивер с двумя вентилями, предохранительным клапаном или плавкой вставкой;
  • смотровой глазок;
  • фильтр-осушитель жидкостной линии;
  • соленоидный вентиль;
  • терморегулирующий вентиль;
  • теплоизолированная емкость;
  • насос для хладоносителя с запорно-регулирующей арматурой.

В стандартном исполнении все установки ХМ выполнены в виде моноблока, при этом конденсатор размещен сверху, поток воздуха от вентиляторов конденсатора направлен вертикально вверх. Такой тип компоновки позволяет максимально сократить площадь машинного отделения, занимаемого установкой.

В моноблочном исполнении все элементы холодильного контура, включая конденсатор, смонтированы на единой раме, установка заправлена хладагентом, все электрические компоненты скоммутированы со щитом управления, также размещенным внутри корпуса. Установка готова к работе.

По специальному заказу установки ХМ могут быть изготовлены в модульном исполнении с выносным конденсатором, что зачастую бывает необходимо в связи с ограниченным пространством внутри цеха.

ТЕПЛООБМЕННЫЕ СТАНЦИИ СЕРИИ СТ

Станции серии СТ предназначены

для охлаждения промышленного оборудования, комплексов плавильных печей, испытательных стендов, приборов и т.д.

Принцип действия основан на охлаждении жидкости, циркулирующей в замкнутом внутреннем контуре индукционной системы (чаще всего это дистиллят), которой охлаждают электротермическое и другое оборудование.

Преимущества станций серии СТ

Разборный пластинчатый теплообменник;

Открытая конструкция для удобства обслуживания;

Каналы протока воды коррозионностойкие;

Контроль температуры дистиллированной и технической воды;

Контроль протока технической воды;

 

Наименование

Мощность отводимых потерь, кВт

Расход технической воды, куб.м\ч

Потребляемая мощность, кВт

Габариты, мм

Напряжение питания, В

Масса, кг

СТ-20

20

2,15

0,8

600х600х1200

220

50

СТ-40

40

4,3

1,1

600х600х1200

220

56

СТ-60

60

6,45

1,6

600х600х1200

220

62

СТ-80

80

8,6

2,1

600х800х1200

220

80

СТ-100

100

10,75

3

600х800х1200

220

95

СТ-120

120

12,9

3

800х800х1400

220

130

СТ-140

140

15

4,1

800х800х1400

220

150

СТ-160

160

17,15

4,6

800х800х1400

220

185

СТ-180

180

19,2

5,2

800х800х1400

220

205

СТ-200

200

21

6

800х800х1400

220

225

*По техническим требованиям заказчика могут быть изготовлены теплообменные станции с другими сочетаниями параметров.

АВТОНОМНЫЕ СИСТЕМЫ ОХЛАЖДЕНИЯ СЕРИИ АСО

Особенности автономных систем охлаждения серии АСО

Охлаждение происходит за счет принудительной циркуляции окружающего воздуха в сухой градирне (драйкулере). Охлаждаемая жидкость подается в дракулер насосом.

АСО небольших мощностей могут быть установлены  в помещении. В случае большой мощности из-за существенного тепловыделения их устанавливают вне помещений.

При температуре окружающего воздуха выше 30°С системы охлаждения типа АСО неэффективны ввиду малой разницы температур с охлаждаемой жидкостью и могут применяться в  технологиях, не требовательных к температуре теплоносителя.

Преимущества систем охлаждения типа АСО: нет необходимости в технической воде, экономия электроэнергии в холодные периоды года.

Наименование системы охлаждения

Расчетная мощность отводимых потерь, кВт

Производительность насоса, куб.м/ч

Температура воздуха,°С

Потребление мощности, кВт

Масса сухая, кг

АСО-20

20

2,0

28

2,7

220

АСО-40

40

3,6

28

5,1

300

АСО-100

100

7,2

28

6,2

500

АСО-200

200

15

28

8,5

800

Требования к качеству воды

Узел индукционного комплекса

Рекомендуется применение воды

Допускается применение воды

Допустимый диапазон температур воды, °С

ПЧ

Дистиллированная
вода

ГОСТ 6709-72

Питьевая вода

ГОСТ Р 51232-98

20/35

ТСУ

Дистиллированная
вода

ГОСТ 6709-72

Питьевая вода

ГОСТ Р 51232-98

20/35

Тоководы

Дистиллированная
вода

ГОСТ 6709-72

Заводская оборотная вода

15/60

Индуктор

Дистиллированная
вода

ГОСТ 6709-72

Заводская оборотная вода

15/60

Расчет мощности теплоотведения

Тепловые потери при индукционном нагреве возникают в различных частях индукционного комплекса. В самом характерном случае (на примере установки УИН-30-50 для пайки резцов) их можно разделить на следующие группы потерь:

1. Потри в преобразователе частоты.

Максимальные потри в преобразователе частоты можно принять от 2 до 5% в зависимости от максимальной  мощности преобразователя.

Для УИН 30-50 мощность преобразователя составит 30кВт, тогда потери составят 30кВт*2%=0,6кВт.

2. Потери в закалочном\согласующем трансформаторе.

Потери в трансформаторе  сильно зависят от частоты и тока развиваемого в индукторе. Можно принять это значение как 5-10% в зависимости от максимальной мощности установки.

Для УИН 30-50 примем данные потери 30*5%=1,5кВт.

 

3. Потери в индукторе электрические.

Потери в индукторе также сильно зависят от частоты и тока развиваемого в нем. Можно принять это значение как 5-10% в зависимости от максимальной мощности установки.

Для УИН 30-50 примем данные потери 30*5%=1,5кВт.

4. Поглощение индуктором тепловой энергии от нагреваемого тела.

Величина этих потерь может сильно варьироваться от формы индуктора, температуры нагрева тела и других параметров.

Для снижения этих потерь индуктор следует тщательно теплоизолировать. В этом случае величина потерь может быть пренебрежимо малой.

В случае, если индукционная установка работает согласно технологическому режиму не постоянно, например, это может быть нагрев заготовок в закалочном станке, или ручная пайка инструмента, то величина потерь может быть снижена с учетом периодичности включения установки (ПВ%).

Так для пайки резцов на установке УИН30-50 подготовка к пайке без включения установки может занимать 15сек, режим пайки с включением установки 20сек, охлаждение детали еще 5сек. Таким образом установка  работает всего 20сек из общего цикла в 40сек. При этом ПВ=50%, следовательно получившиеся потери будут в два раза ниже, чем при работе в постоянном режиме.

Если все узлы индукционной установки охлаждаются водой, то возможен предварительный расчет и выбор системы охлаждения для работы в составе индукционного комплекса.

Итак, суммируя все потери получаем (0,6кВт+1,5кВт+1,5кВт) /2= 1,8кВт. Эта мощность должна соответствовать мощности теплоотведения выбранной системы охлаждения.

Общество с ограниченной ответственностью

«Индукционные Машины»

 

ИНН 0278194207 КПП 027801001

ОГРН 1120280048030

ОКАТО 80401390000 ОКПО 12702813

ОКОГУ 4210014 ОКФС 16 ОКОПФ 12165

Тел: +7(347)285-75-13

e-mail: [email protected]

www: imltd.ru

 

Юридический адрес

450078, РБ, г.Уфа, ул. Владивостокская, 1а

Физический адрес

450071, г.Уфа, ул. 50 лет СССР, 39, корп.6

Почтовый адрес

450064, а/я 75

Индукционные Машины, 2017

Закалочные станки * Индукционные установки * Электротермическое оборудование * Индукционные  вихревые нагреватели

Испарительный охладитель — Википедия

Эта статья об охлаждении при испарении воды; об охлаждении при кинетическом испарении атомов в магнитной ловушке см. Испарительное охлаждение.
Испарительный охладитель, сфотографированный в Колорадо, используемый для экономичного охлаждения на западе США

Испарительный охладитель (также охладитель влажным воздухом, охладитель/кондиционер испарительного типа, биокондиционер) — устройство, охлаждающее воздух с помощью испарения воды. Испарительное охлаждение отличается от обычных систем кондиционирования воздуха, использующих парокомпрессионный цикл или цикл абсорбционного охлаждения. В его основе лежит использование большой удельной теплоты испарения воды. Температура сухого воздуха может быть существенно снижена с помощью фазового перехода жидкой воды в пар, и этот процесс требует значительно меньше энергии, чем компрессионное охлаждение. В очень сухом климате испарительное охлаждение имеет также то преимущество, что при кондиционировании воздуха увеличивает его влажность, и это создаёт больше комфорта для людей, находящихся в помещении. Однако, в отличие от парокомпрессионного охлаждения, оно требует постоянного источника воды, и в процессе эксплуатации постоянно её потребляет.

Существующий в США термин «болотный охладитель» (англ. swamp cooler), возможно, появился из-за запаха водорослей, производимого первыми моделями аппаратов[1]. Такие типы испарительных охладителей, как воздушная мойка и градирня, сконструированы не для жилых помещений, хотя и используют те же принципы, что и испарительный охладитель. Испарительный охладитель также может быть использован для увеличения эффективности больших систем кондиционирования (в охлаждении змеевиков)[уточнить].
Испарительное охлаждение особенно хорошо подходит для климатических зон с высокой температурой воздуха и низкой влажностью. Например, в США это такие города, как Денвер, Солт-Лейк-Сити, Альбукерке, Эль-Пасо, Тусон и Фресно, где распространены испарительные охладители и доступны большие объёмы воды.

Испарительное кондиционирование воздуха также хорошо подходит и достаточно популярно в южной (умеренной) части Австралии. В сухом, засушливом климате средства, необходимые для установки и эксплуатации испарительного охладителя, приблизительно на 80 % меньше, чем при установке классического кондиционирования воздуха.[источник не указан 2772 дня] Тем не менее, испарительное и компрессионное охлаждение иногда используется совместно, для получения оптимальных результатов охлаждения воздуха. Некоторые испарительные охладители в отопительный сезон могут использоваться как увлажнители.

Кроме широкого употребления в сухом климате, существует много экономически-эффективных способов применения испарительного охлаждения в местах с умеренной влажностью. Его часто используют индустриальные предприятия, ресторанные кухни, прачечные, химчистки, теплицы, места с дополнительным охлаждением (доки, склады, заводы, строительные площадки, спортивные мероприятия, мастерские, гаражи и питомники), аграрные комплексы (птичники, свинарники, коровники). Во влажном климате испарительное охлаждение может иметь небольшое преимущество в температурном комфорте в сравнении с увеличением вентиляции.[источник не указан 2772 дня]

На протяжении веков цивилизации находили оригинальные методы борьбы со зноем на своих территориях. Ранняя форма охлаждающей системы, «ловец ветра» (Bâd gir), была изобретена много тысяч лет назад в Персии (Иран). Это была система ветряных валов на крыше, которые улавливали ветер, пропускали его через воду, и задували охлаждённый воздух во внутренние помещения. В наши дни Иран заменил ловцов ветра на испарительные охладители (Coolere Âbi) и широко их использует[2]. В центральном Иране насчитывается около 9,000,000 испарительных охладителей, и только за первые два месяца 1385 года по Персидско-Иранскому календарю (Апрель-Май 2006) в Иране было продано130,000 таких аппаратов[3].

В США испарительный охладитель в двадцатом веке был объектом многочисленных патентов. Многие из которых, начиная с 1906 года,[4] предлагали использовать древесную стружку, как прокладку переносящую большое количество воды при контакте с движущимся воздухом, и поддерживающую интенсивное испарение. Стандартная конструкция, как показано в патенте 1945 года, включает водяной резервуар (обычно оснащённый поплавковым клапаном для регулировки уровня), насос для циркуляции воды через прокладки из древесных стружек, и вентилятор для вдувания воздуха через прокладки в жилые помещения[5]. Эта конструкция и материалы остаются основными, в технологии испарительных охладителей, на юго-западе США. В этом регионе они дополнительно используются для увеличения влажности[6].

Испарительное охлаждение было распространено в авиационных двигателях 1930-х годов, например, в двигателе для дирижабля Beardmore Tornado. Эта система была использована для уменьшения или полного исключения радиатора, который в ином случае мог бы создать существенное аэродинамическое сопротивление. В этих системах вода в двигателе поддерживалась под давлением с помощью насосов, позволявших ей нагреваться до температуры более 100 °C, поскольку фактическая точка кипения зависит от давления. Перегретая вода распылялась через сопло на открытую трубу, где мгновенно испарялась, принимая её тепло. Эти трубы могли быть расположены под поверхностью самолёта для создания нулевого сопротивления. Однако, эти системы имели и серьёзные недостатки. Поскольку для охлаждения воды было необходимо большое количество труб, система охлаждения занимала много места в самолёте, даже будучи скрытой. При этом возникали вопросы сложности и надёжности. В дополнение к большим размерам, эту систему было легко вывести из строя вражеским огнём, и практически невозможно бронировать. Вместо этого, английские и американские авиаконструкторы начали использовать в охлаждающих радиаторных системах этиленгликоль. Немцы стали использовать стандартные обтекаемые радиаторы. Даже наибольшие сторонники этого метода, Heinkel и Günter brothers, прекратили его использование в 1940 году.

Внешние приборы испарительного охлаждения[7] устанавливались на некоторые автомобили для охлаждения салона. Зачастую они продавались как дополнительные аксессуары. Использование приборов испарительного охлаждения в автомобилях продолжалось до тех пор, пока не приобрело широкое распространение парокомпрессионное кондиционирование воздуха.

Охлаждение при испарении — это физический феномен, при котором испарение жидкости в окружающий воздух охлаждает объект или контактирующую с ним жидкость.
Скрытая теплота, количество теплоты необходимое для испарения жидкости, берётся из окружающей среды. При изучении испарения воды, влажный термометр сравнивается с сухим, полученное значение соответствует потенциалу охлаждения при испарении. Чем больше разница двух температур, тем больше эффект охлаждения. Если температура одинаковая, то испарения воды в окружающую атмосферу не происходит, соответственно нет и охлаждающего эффекта.

Простым примером природного испарительного охлаждения является потоотделение, при этом тело выделяет пот для собственного охлаждения. Количество передаваемой теплоты зависит от уровня испарения, на каждый килограмм испарённой воды передаётся 2257 кДж (при температуре 35 °С). Уровень испарения зависит от влажности и температуры окружающего воздуха, поэтому в жаркие влажные дни пот накапливается на теле. Выделившийся в таких условиях пот не может испариться.

Принцип испарительного охлаждения отличается от того, на котором работают аппараты парокомпрессионного охлаждения, хотя они также требуют испарения (испарение является частью системы). В парокомпрессионном цикле, после испарения хладагента внутри испарительного змеевика, охлаждающий газ сжимается и охлаждается, под давлением конденсируясь в жидкое состояние. В отличие от этого цикла, в испарительном охладителе вода испаряется только один раз. Испарённая вода в охладительном приборе выводится в пространство с охлажденным воздухом. В градирне испарившаяся вода уносится потоком воздуха.

Испарительное охлаждение, в силу своей дешевизны и низкой энергозатратности, является распространенным способом охлаждения помещений для поддержания температурного комфорта. Однако, испарительное охлаждение требует постоянного источника воды для испарения, и эффективно только при низкой относительной влажности, ограничивающей его эффективное применение только зонами сухого климата. Испарительное охлаждение существенно поднимает уровень влажности, что может вызвать такие проблемы как кристаллизация соли, разбухание деревянных панелей, дверей и отделки, расстройство пианино или внутреннюю ржавчину.

Применение этого типа охлаждения очень распространено в криогенике. Из резервуара с криогенной жидкостью постоянно откачивается пар, и жидкость непрерывно испаряется до тех пор, пока поддерживается существенное насыщение пара. Испарительное охлаждение с помощью обычного гелия в сосуде 1-К, может опустить температуру до, как минимум, 1,2 K. Испарительное охлаждение с помощью гелия-3 может обеспечить температуру ниже 300 mK. Эти технологии могут быть использованы для создания криоохладителей, и как компонент систем низкотемпературного криостаза (таких как рефрижераторы растворения). При падении температуры падает и насыщение пара над жидкостью, после чего охлаждение становится менее эффективным. Это явление устанавливает нижнюю границу температуры достижимую для данной жидкости.

Применением схожего с испарительным охлаждением принципа, является создание «самоохлаждающихся» банок. Отдельные отсеки внутри банки содержат впитывающее вещество и жидкость. Перед употреблением напитка вытягивается вкладка, впитывающее вещество входит в контакт с жидкостью и растворяется. При этом оно поглощает определённое количество тепловой энергии — это удельная теплота плавления. Испарительное охлаждение использует фазовый переход из жидкости в пар и удельную теплоту испарения, но самоохлаждение так же может достигаться при переходе из твёрдого состояния в жидкое с поглощением удельной теплоты плавления.

На Земле, огромное количество воды испаряется деревьями через устьица, специальные поры расположенные на листьях. Благодаря этому процессу испарительного охлаждения, леса взаимодействуют с климатом планеты в локальном и глобальном масштабе[8].

Испарительное охлаждение в планетарном масштабе можно наблюдать на Плутоне, где это называется антипарниковым эффектом.

Испарительное охлаждение также является последним шагом при достижении ультранизких температур, требуемых для получения конденсации Бозе-Эйнштейна (БЭК). При этом для выборочного удаления высокоэнергетичных (горячих) атомов из атомного облака, пока оставшиеся атомы охлаждаются до температуры ниже перехода БЭК, используется так называемое принудительное испарительное охлаждение. Для облака, состоящего из 1 миллиона атомов щелочных металлов, эта температура составляет около 1μK.

Хотя автоматические космические аппараты почти полностью используют тепловое излучение, в коротких миссиях многие пилотируемые космические аппараты применяли испарительное охлаждение. Примеры включают Спейс шаттл, модуль Аполлон, лунный модуль и первичную систему жизнеобеспечения использовавшуюся в программе Аполлон. На Аполлоне CSM и Спейс шаттл также были установлены радиаторы, а система шаттл могла испарять аммиак также как и воду. Космический аппарат Аполлон использовал очиститель, небольшое пассивное устройство, которое сбрасывало лишнее тепло в водяной пар и выдувало его в космос. Когда жидкая вода помещается в вакуум, она начинает интенсивно кипеть, унося достаточно тепла чтобы заморозить оставшуюся, образовавшийся лёд накрывал очиститель, и автоматически регулировал питающий поток воды с тепловой нагрузкой. При этом использовалась вода, которая остаётся от топливных элементов работающих на многих пилотируемых космических аппаратах для производства электроэнергии.

Конструкции испарительных охладителей[править | править код]

Все конструкции испарительных охладителей используют то преимущество, что вода имеет одну из наибольших известных энтальпий парообразования (удельную теплоту испарения).

Иллюстрация испарительного охлаждения

Прямое испарительное охлаждение (открытый цикл) используется для снижения температуры воздуха с помощью удельной теплоты испарения, изменяя жидкое состояние воды на газообразное. В этом процессе энергия в воздухе не меняется. Сухой, тёплый воздух заменяется на прохладный и влажный. Тепло внешнего воздуха используется для испарения воды.

Непрямое испарительное охлаждение (закрытый цикл) процесс похожий на прямое испарительное охлаждение, но использующий определённый тип теплообменника. В этом случае влажный, охлаждённый воздух не контактирует с кондиционируемой средой.

Двухстадийное испарительное охлаждение, или непрямое/прямое. Традиционные испарительные охладители используют только часть энергии необходимой аппаратам парокомпрессионного охлаждения или системам адсорбционного кондиционирования. К сожалению, они повышают влажность воздуха до дискомфортного уровня (за исключением очень сухих климатических зон). Двухстадийные испарительные охладители не повышают уровень влажности настолько, насколько это делают стандартные одноступенчатые испарительные охладители.
На первой стадии двухстадийного охладителя, тёплый воздух охлаждается непрямым путём без увеличения влажности (с помощью прохождения через теплообменник, охлаждаемый испарением снаружи). В прямой стадии предварительно охлаждённый воздух проходит через пропитанную водой прокладку, дополнительно охлаждается и становится более влажным. Поскольку в процесс включена первая, предохлаждающая стадия, на стадии прямого испарения необходимо меньше влажности для достижения требуемых температур. В результате, по словам производителей, процесс охлаждает воздух с относительной влажностью в пределах 50 — 70 %, в зависимости от климата. Для сравнения традиционные системы охлаждения повышают влажность воздуха до 70 — 80 %.

Стандартная конструкция[править | править код]

Стандартно, бытовые и промышленные охладители используют прямое испарительное охлаждение и могут быть описаны как закрытые металлические или пластиковые корпуса с вентилируемой стороной содержащей вентилятор, электрический мотор со шкивом, или осевой вентилятор с прямым приводом, а также водный насос для увлажнения испарительных прокладок. Аппарат может монтироваться на крыше здания (нисходящий поток), или на наружных стенах и окнах (горизонтальный поток). С целью охлаждения, вентилятор засасывает воздух через боковые отверстия и проводит его через влажные прокладки. Теплота воздуха испаряет воду из прокладок, которые постоянно увлажняются для продолжения процесса охлаждения. В дальнейшем охлаждённый и влажный воздух распространяется по зданию через вентиляцию в крыше или стенах.
Поскольку охлаждённый воздух вдувается снаружи, в помещении должны присутствовать вытяжные отверстия, чтобы выпускать поток воздуха обратно. Воздух должен проходить через систему только один раз, в ином случае охлаждающий эффект снизится. Это связанно с достижением точки насыщения воздуха. Зачастую, в помещениях обслуживаемых испарительными охладителями происходит около 15 смен воздуха за час (ACHs).

Охлаждающие прокладки[править | править код]

Традиционно, прокладки состоят из древесной стружки (волокон осиновой древесины) находящейся внутри специальной сетки. Но новые, более современные материалы, такие как некоторые пластики или меламиновая бумага, получают всё большее употребление в роли наполнителей для охлаждающих прокладок. Древесина поглощает некоторое количество воды, что позволяет древесным волокнам охлаждать проходящий через них воздух сильнее, чем некоторые синтетические материалы.

Градирни[править | править код]

Охлаждающие башни

Охлаждающие башни (градирни) — строения для охлаждения воды или другой рабочей жидкости до температуры окружающей среды (по смоченному термометру). Влажные охлаждающие башни используют принцип испарительного охлаждения, но оптимизированы для охлаждения воды, а не воздуха. Градирни часто можно встретить в больших индустриальных районах. Они предназначены для передачи тепла от охладителей производственных процессов (например цикла Ренкина), в окружающую среду.

Системы охлаждения испарительного типа (туманообразования)[править | править код]

Mist spraying-smple type1.jpg

Система охлаждения испарительного типа (туманообразования) работает прокачивая воду под большим давлением через насос и систему стальных или латунных труб с насадками для распыления имеющими отверстия около 5 микрометров. Таким образом происходит микрораспыление. Капли воды создающие такой туман настолько малы, что они мгновенно испаряются. Мгновенное испарение может за секунды понизить температуру окружающего воздуха на 20 C°.[9] Для оптимального охлаждения террасных систем лучше всего создать линию туманообразования на высоте приблизительно от 2,4 до 3,0 м. Оно используется для ухода за клумбами, скотом, его применяют для контроля запахов. Туманообразование используется в зоопарках, ветеринарных клиниках и теплицах.

Вентиляторы для систем охлаждения испарительного типа (туманообразования)[править | править код]

Вентилятор для туманообразования похож на увлажнитель. Это вентилятор, выдувающий туман в воздух. Если воздух не слишком влажный, вода испаряется, понижая его температуру, в результате этого такой вентилятор работает как кондиционер. Вентилятор для туманообразования может использоваться на открытом пространстве, особенно в местности с сухим климатом.

Системы туманообразования – это процесс создания благоприятного микроклимата и пылеподавления с помощью искусственного тумана. Искусственный туман применяется в различных сферах и стал неотъемлемой частью как в быту, так и на производстве.

Туманообразующие вентиляторы бывают двух видов:

 — стационарные;

 — автономные мобильные.

Для автономного использования, мобильного и локального применения, а также при отсутствии источника воды используются передвижные туманообразующие установки вентиляционного типа. Мобильные передвижные вентиляторы оснащены кольцами с накрученными на них форсунками, встроенным насосом высокого давления, фильтром механической очистки и  резервуаром для воды, который обеспечивает  от 3 до 5 часов автономной работы в зависимости от модели и выбранного режима.

Передвижная система при помощи водяной мелкой дисперсии под давлением от 60 до 80 атм. и подаваемого вентилятором воздушного потока способна понижать температуру окружающей среды на площади действия до 70 м².  Стационарные вентиляторы состоят из колец с форсунками, подводящей  трубы, насоса и вентиляторов на стойках либо консолях. Консоли крепятся на стену и могут быть как поворотные, так и не поворотные. Насос, как правило, устанавливается в любом приспособленном месте и подаёт через нейлоновую трубу под высоким давлением водяную мелкую дисперсию на вентилятор.

Стационарный туманообразующий вентилятор способен покрыть ту же площадь, что и мобильный.

Области применения систем тумана:

— Создание благоприятного микроклимата на открытых территориях: городских площадях, парках, площадок ресторанов и кафе, аквапарках, беседках, верандах, террасах.

— Пылеподавление: в портах, покрасочных цехах, камнедробилках, в местах с безнапорным потоком, на карьерах и  ГОКах, складах, шахтах погрузочно-разгрузочных трапах, на конвейерных лентах, в местах разгрузки ж.д. и автотранспорта.

— Сельское хозяйство: теплицы, грибницы, оранжереи, зимние и летние сады.

— Животноводство: птицефермы, свинофермы, конефермы, собачьи питомники.

— Охлаждение прилавков супермаркетов: рыбы и морепродуктов, мяса, овощей и фруктов, зелени.

— Кондиционирование: предварительное охлаждение блоков кондиционеров, чиллеров.

— Деревообрабатывающая промышленность: обработка и хранение древесины, производство в мебельных и лакокрасочных цехах.

— Медицина: создание микроклимата на складах лекарственных препаратов.

— Текстильное производство.

— Прядильные цеха, склады готовой продукции.

— Производственные помещения типографий: изготовление и хранение бумаги.

— Винные погреба.

— Борьба с пылью, комарами, насекомыми.

Понимание производительности испарительного охлаждения требует понимания психрометрии. Производительность испарительного охлаждения динамично связана с начальной температурой и уровнем влажности. Бытовой охладитель охлаждает воздух на 3-4 C° по влажному термометру.

Достаточно просто рассчитать производительность охладителя по стандартной погодной сводке. Поскольку обычно погодная сводка содержит точку росы и относительную влажность, но не включает температуры по влажному термометру, для её определения необходимо использовать психрометрический график. Если температуры по влажному и сухому термометру известны, определение производительности охладителя (или температуры выходящего из охладителя воздуха) будет следующим:

TLA = TDB — ((TDB — TWB) x E)
TLA = Температура выходящего воздуха
TDB = Температура по сухому термометру
TWB = Температура по влажному термометру
E = Эффективность испаряющего наполнителя.

Эффективность испаряющего наполнителя обычно находится между 80 % и 90 %, и со временем падает совсем не много. Стандартные осиновые наполнители используемые в бытовых испарительных приборах имеют около 85 % эффективности. Наполнители типа CELdek обладают эффективностью в 90 % (и больше, взависимости от влажности). Такой тип наполнителей чаще используется на больших коммерческих и производственных объектах.
Например, в Лас Вегасе (Невада) в обычный день температура 108 °F DB/66 °F WB и около 8 % относительной влажности, расчет выходящей из бытового охладителя температуры был бы таким:

TLA = 108° — ((108° — 66°) x 85 % эффективность)
TLA = 72,3 °F

Для измерения производительности может быть использован один из двух методов:

  • Использовать психрометрический график для расчета температуры по влажному термометру.
  • Применить эмпирический расчет который предполагает что температура по влажному термометру приблизительно равна температуре среды, минус одна треть разницы между температурой среды и точкой росы. К предыдущему случаю, прибавить 6-8 F°, как описано ниже.

Представленные примеры показывают эту связь:

  • При 32 °C (90 °F) и 15 % относительной влажности, воздух может быть охлаждён до 16 °C (61 °F). Точка росы в этих условиях 2 °C (36 °F).
  • При 32 °C (90 °F) и 50 % относительной влажности, воздух может быть охлаждён до 24 °C (75 °F). Точка росы в этих условиях 20 °C (68 °F).
  • При 40 °C (104 °F) и 15 % относительной влажности, воздух может быть охлаждён до 21 °C (70 °F). Точка росы в этих условиях 8 °C (46 °F).

(Примеры охлаждения взяты из публикации the June 25, 2000 Университета Айдахо, «Homewise»).

Из-за того, что испарительные охладители имеют наибольшую производительность в сухих условиях, они широко используются и наиболее эффективны в засушливых, и пустынных регионах, таких как юго-запад США и северная Мексика.
Это же уравнение показывает причину по которой испарительные охладители имеют ограниченную применимость в среде с высокой влажностью: например в жаркий августовский день в Токио может быть 30 °C, 85 % относительной влажности, и давление 1,005 hPa. Из этого следует, что точка росы равна 27,2 °C и температура по влажному термометру 27,88 °C. Соответственно приведённой выше формулы, при эффективности 85 % воздух может быть охлаждён только до 28,2 °C, что делает этот метод совершенно непрактичным.

Сравнение с методом парокомпрессионного кондиционирования воздуха[править | править код]

Сравнение испарительного охлаждения и парокомпрессионного кондиционирования воздуха:

Преимущества[править | править код]

Менее затратная установка

  • Расчетная стоимость установки составляет около половины средств необходимых для установки централизованной системы кондиционирования воздуха.[10]

Меньше затрат в эксплуатации

  • Ориентировочно, эксплуатационные расходы составляют ¼ от затрат при парокомпрессионном кондиционировании
  • Энергия необходима только для работы вентилятора и водного насоса. Поскольку вода не рецирулирует, в системе нет компрессора, который потребляет большую часть энергии при охлаждении в закрытом цикле.
  • Охлаждающим агентом является вода, а не такие хладагенты как диоксид серы или CFCs, которые могут быть токсичны, дороги в утилизации и опасны для озонового слоя. Такие хладагенты являются объектом строгого лицензирования и экологического контроля.

Простота в эксплуатации

  • В большинстве базовых испарительных охладителей есть только две механические части — мотор и насос, они обе дёшево ремонтируются, зачастую просто путём механической очистки.

Вентиляция воздуха

  • Большой и постоянный поток воздуха через помещения кардинально уменьшает время пребывания воздуха в здании.
  • Испарительное охлаждение увеличивает влажность. В сухом климате, это может увеличить комфортность и уменьшить проблему статического электричества.
  • При надлежащем содержании аппарат сам по себе работает как эффективный воздушный фильтр. Он может удалять из воздуха различные загрязнения, включая городской озон. Парокомпрессионное кондиционирование воздуха теряет эту способность в случае недостаточной влажности воздуха для стекания конденсата.

Недостатки[править | править код]

Производительность

  • В условиях высокой влажности у испарительного охладителя уменьшается охлаждающая способность.

Не может функционировать как осушитель. Традиционные кондиционеры удаляют влагу из воздуха (за исключением очень сухих мест установки, где рециркуляция может привести к увеличению влажности). Испарительное охлаждение добавляет влагу, а в сухом климате, сухость воздуха может улучшать температурный комфорт при высоких температурах.

Комфорт

  • Воздух из испарительного охладителя зачастую содержит 80-90 % относительной влажности. Очень влажный воздух снижает уровень испарения влаги с кожи, носа, лёгких и глаз.
  • Высокая влажность усиливает коррозию, особенно в присутствии пыли. Это явление может значительно сократить срок службы электроники и другого оборудования.
  • Высокая влажность вызывает конденсацию, которая может стать серьезной проблемой (например, при наличии электрического оборудования, компьютеров, книг, старого дерева).

Вода

  • Испарительные охладители требуют постоянного источника воды для смачивания прокладок.
  • Вода, содержащая минералы, оставляет кристаллы соли на прокладках и внутренностях охладителя. Промывка системы (чистка насоса) может уменьшить эту проблему. Такие кристаллы могут образовываться внутри прокладок. В зависимости от типа и концентрации этих минералов, возможны определённые риски для безопасности при замене таких прокладок.
  • Линии подачи воды может понадобиться защита от замерзания в зимний сезон. Сам охладитель необходимо периодически осушать, чистить и менять прокладки.

Общие замечания

  • При недостаточной фильтрации с потоком воздуха в помещения могут проникать различные запахи или другие внешние загрязнители.
  • Болеющим астмой стоит остерегаться помещений с плохо эксплуатируемым оборудованием испарительного охлаждения.
  • Для предотвращения коррозии испарительного охладителя может понадобиться гальванический анод.
  • Стружка в сухой прокладке охладителя может загореться даже от небольшой искры.

  1. Arthur William Gutenberg. The Economics of the Evaporative Cooler Industry in the Southwestern United States (англ.). — Stanford University Graduate School of Business, 1955. — P. 167.
  2. Kheirabadi, Masoud. Iranian cities: formation and development (англ.). — Autin, TX: University of Texas Press, 1991. — P. 36. — ISBN 978-0-292-72468-6.
  3. ↑ Statistical Centere of Iran > Home (неопр.). Teheran: Statistical Centere of Iran. Дата обращения 25 февраля 2012. Архивировано 22 сентября 2012 года.
  4. John Zellweger. Air filter and cooler (неопр.). U.S. patent 838602 (1906).
  5. Bryant Essick. Pad for evaporative coolers (неопр.). U.S. patent 2391558 (1945).

  6. Scott Landis. The Workshop Book (неопр.). — Taunton Press (англ.)русск., 1998. — С. 120. — ISBN 978-1-56158-271-6.
  7. ↑ Такие устройства были установлены на пассажирской стороне транспортного средства; окно было развёрнуто почти полностью, оставляя только необходимое место для вентиляторов, которые поддерживали прохладный воздух в автомобиле.
  8. ↑ Gordon B. Bonan. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. 13 June 2008 Vol. 320 Science
  9. ↑ Frequently Asked Questions — Cool-Off.com Архивировано 18 мая 2007 года.
  10. John Krigger and Chris Dorsi. Residential Energy: Cost Savings and Comfort for Existing Buildings (англ.). — 4th. — Saturn Resource Management, 2004. — P. 207. — ISBN 978-1-880120-12-5.

ВСЕ ОБ ОХЛАЖДЕНИИ КОМПЬЮТЕРА

Любое устройство, потребляющее энергию, выделяет тепло, и избавиться от его избытка зачастую весьма нелегко. Мы расскажем о способах охлаждения ПК, о возникающих трудностях и о том, как избежать подводных камней.

Лето стремительно вступило в свои права; столбик термометра ползет вверх, и все чаще приходится задумываться о том, как обеспечить комфортную температуру. Поверьте: для компьютеров проблема борьбы с жарой не менее актуальна, чем для их пользователей. Даже если условия в помещении вполне нормальные (20 — 22°С), температура в системном блоке достигает 30–32°С. И это в лучшем случае. Чем жарче на улице и в квартирах, тем острее вопрос защиты от перегрева и тем пристальнее внимание к системам охлаждения системного блока и его компонентов.

Чтобы грамотно решить проблему, необходимо хотя бы в общих чертах представлять, зачем вообще нужны компьютерам системы охлаждения, почему системные блоки перегреваются и как обезопасить «вычислительного друга» от теплового удара. В этой статье вы не найдете длинного перечня моделей кулеров, но, прочитав ее, сами сможете выбрать подходящие компоненты системы охлаждения ПК и грамотно подойти к выбору нового корпуса, а так же подобрать термопасту.

Почему он греется

Причина тривиальна: как любой электроприбор, компьютер рассеивает часть (порой весьма значительную) потребляемой электроэнергии в виде тепла – например, процессор переводит в тепло почти всю использованную энергию. Чем больше ее нужно системному блоку, тем сильнее нагреваются его компоненты. Если тепло вовремя не отводить, это может привести к самым неприятным результатам (см. «Последствия перегрева»). Особенно актуальна проблема теплоотведения и охлаждения для современных моделей процессоров (как центральных, так и графических), устанавливающих все новые рекорды производительности (а нередко и тепловыделения).

Каждый компонент ПК, рассеивающий много тепла, оснащается охлаждающим устройством. Как правило, в таких устройствах присутствуют металлический радиатор и вентилятор – именно из этих компонентов состоит типичный кулер. Важен также термоинтерфейс между ним и нагревающимся компонентом – обычно это термопаста (смесь веществ с хорошей теплопроводностью), обеспечивающая эффективную передачу тепла к радиатору кулера.

Прогресс в области систем охлаждения, благодаря которому появились такие технологические новинки, как термотрубки, обеспечил создателям компонентов для персональных компьютеров новые возможности, позволив отказаться от шумных кулеров. Некоторые компьютеры оснащаются водяными системами охлаждения – они имеют свои достоинства и недостатки. Обо всем этом рассказывается далее.

Рост тепловыделения ПК

Главная причина, по которой компьютеры выделяют все больше и больше тепла, состоит в том, что повышается их вычислительная мощность. Наиболее существенны следующие факторы:

  • рост тактовых частот процессора, чипсета, шины памяти и прочих шин;
  • рост числа транзисторов и ячеек памяти в чипах ПК;
  • увеличение мощности, потребляемой узлами ПК.

Чем мощнее компьютер, тем больше электричества он «съедает» – следовательно, неизбежен рост тепловыделения. Несмотря на применение изощренных технологических процессов при производстве чипов, их потребляемая мощность все равно растет, увеличивая количество тепла, рассеиваемого в корпусе ПК. Кроме того, возрастает площадь плат видеокарт (например, из­за того, что необходимо разместить больше микросхем памяти). Результат – рост аэродинамического сопротивления корпуса: громоздкая плата просто перекрывает доступ охлаждающего воздуха к процессору и блоку питания. Особенно актуальна эта проблема для ПК в маленьких корпусах, где расстояние между видеокартой и «корзиной» для HDD составляет 2–3 см, – а ведь в этом пространстве еще проложены шлейфы приводов и прочие кабели… Микросхемы оперативной памяти тоже становятся все «прожорливее», а современные ОС требуют все большего ОЗУ. Например, в Windows 7 для него рекомендуется 4 Гб – таким образом, рассеивается несколько десятков ватт тепла, что дополнительно усугубляет ситуацию с тепловыделением. Микросхема системной логики на материнской плате тоже является весьма «горячим» компонентом.

УЯЗВИМОСТЬ ЖЕСТКИХ ДИСКОВ

Внутри корпуса жесткого диска над поверхностью вращающихся пластин скользят подвижные магнитные головки, управляемые высокоточной механикой. Они осуществляют запись и чтение данных. При нагревании материалы, из которых сделаны компоненты диска, расширяются. В рабочем диапазоне температур механика и электроника вполне справляются с тепловым расширением. Однако при перегреве оно превышает допустимые пределы, и головки жесткого диска могут «промахиваться», записывая данные не там, где нужно, пока компьютер не будет выключен. А когда его снова включат, остывший жесткий диск не сможет найти данные, записанные в перегретом состоянии. В подобном случае информацию удается спасти только при помощи сложного и дорогого спецоборудования. Если температура превышает 45°С, для охлаждения жесткого диска рекомендуется установить дополнительный вентилятор.

Налицо парадокс: тепловая нагрузка в современных корпусах растет высокими темпами, а их конструкция почти не меняется: производители берут за основу рекомендованный Intel дизайн почти 10­летней давности. Модели, приспособленные к интенсивному тепловыделению, встречаются нечасто, а малошумные – и того реже.

Последствия перегрева

При избытке тепла компьютер в лучшем случае начнет тормозить и зависать, а в худшем – один или несколько компонентов выйдут из строя. Высокие температуры очень вредны для «здоровья» элементной базы (микросхем, конденсаторов и пр.), особенно для жесткого диска, перегрев которого чреват потерей данных.

ПРИМЕРНЫЕ ПАРАМЕТРЫ ТЕПЛОВЫДЕЛЕНИЯ


Примерные параметры тепловыделения компонентов среднестатистического системного блока компьютера (при высокой вычислительной нагрузке). Основными источниками тепла являются материнская плата, центральный процессор и графический процессор видеокарты (на их долю приходится более половины рассеиваемого тепла).

Емкость современных HDD позволяет хранить на них обширные коллекции музыки и видео, рабочие документы, цифровые фотоальбомы, игры и многое другое. Диски становятся все компактнее и быстрее, но за это приходится расплачиваться большей плотностью записи данных, хрупкостью конструкции, а значит, и уязвимостью начинки. Допуски при производстве емких накопителей измеряются микронами, так что малейший «шаг в сторону» выводит диск из строя. Потому HDD столь чувствительны к внешним воздействиям. Если диску приходится работать в неоптимальных условиях (например, с перегревом), вероятность потери записанных данных резко возрастает.

Охлаждение ПК: азы

Если температура воздуха в системном блоке держится на уровне 36°С или выше, а температура процессора – более 60°С (либо жесткий диск постоянно нагревается до 45°С), пора принимать меры по улучшению охлаждения.

Но прежде чем бежать в магазин за новым кулером, примите во внимание несколько моментов. Не исключено, что проблему перегрева можно решить более простым способом. Например, системный блок должен располагаться так, чтобы имелся свободный доступ воздуха ко всем вентиляционным отверстиям. Расстояние, на которое его тыльная часть отстоит от стены или мебели, должно быть не меньше, чем два диаметра вытяжного вентилятора. Иначе возрастает сопротивление оттоку воздуха, а главное – нагретый воздух дольше остается рядом с вентиляционными отверстиями, так что значительная его часть вновь попадает в системный блок. Если он установлен неправильно, от перегрева не спасет даже самый мощный кулер (эффективность работы которого определяется разностью между его температурой и температурой охлаждающего радиатор воздуха).

КУЛЕР, ОСНОВАННЫЙ НА ЭФФЕКТЕ ПЕЛЬТЬЕ


Одна из новейших моделей, в которой использован эффект Пельтье. Обычно в таких кулерах представлен полный набор последних технологических достижений: ТЭМ, термотрубки, вентиляторы с продвинутой аэродинамикой и эффектный дизайн. Результат впечатляющий; хватило бы места в системном блоке…

Максимально эффективное охлаждение достигается при равенстве температур воздуха в системном блоке и в помещении, где он находится. Единственный способ получить такой результат – обеспечить эффективную вентиляцию. Для этого используются кулеры всевозможных конструкций.

В стандартном современном персональном компьютере обычно устанавливается несколько кулеров:

  • в блоке питания;
  • на центральном процессоре;
  • на графическом процессоре (если в компьютере имеется дискретная видеоплата).

В отдельных случаях применяются дополнительные вентиляторы:

  • для микросхем системной логики, расположенных на материнской плате;
  • для жестких дисков;
  • для корпуса ПК.

Эффективность охлаждения

Выбирая корпус для системного блока ПК, каждый из пользователей руководствуется собственными критериями. Например, моддерам требуется оригинальное дизайнерское решение либо возможность переделки для воплощения оного. Оверклокерам нужен корпус, в котором комфортно почувствует себя до предела разогнанный процессор, видеокарта, ОЗУ (список можно продолжать). И при этом все, конечно, хотят, чтобы системный блок был тихим и небольшим по размеру.

Однако навороченный ПК может выделять до 500 Вт тепла (см. таблицу ниже). Осуществимы ли пожелания с точки зрения законов физики?

СКОЛЬКО ТЕПЛА ВЫДЕЛЯЕТ КОМПЬЮТЕР

Есть несколько способов измерить тепловыделение.

1. По значениям потребляемой мощности, указанным в документации к компонентам ПК.

  • Достоинства: доступность, простота.
  • Недостатки: высокая погрешность и как следствие – завышенные требования к системе охлаждения.

2. С помощью сайтов, предоставляющих сервис для расчета тепловыделения (и потребляемой мощности), – например, www.emacs.ru/calc.

  • Достоинства: не придется рыться в мануалах или путешествовать по сайтам производителей – нужные данные имеются в базах предлагаемых сервисов.
  • Недостатки: составители баз не поспевают за производителями узлов, поэтому базы нередко содержат недостоверные данные.

3. По значениям потребляемой узлами мощности и коэффициентам тепловыделения, найденным в документации или измеренным самостоятельно. Этот способ – для профессионалов либо больших энтузиастов оптимизации системы охлаждения.

  • Достоинства: дает самые точные результаты и позволяет наиболее эффективно оптимизировать работу ПК.
  • Недостатки: чтобы использовать данный способ, необходимы серьезные знания и немалый опыт.

Пути решения

Главный принцип: чтобы отвести тепло, необходимо пропустить через системный блок определенное количество воздуха. Причем его объем должен быть тем больше, чем жарче в помещении и чем сильнее перегрев.

Простой установкой дополнительных вентиляторов проблему не решить. Ведь чем они многочисленнее, мощнее и «оборотистее», тем «звучнее» ПК. Причем мало того, что шумят двигатели и лопасти вентиляторов, – вследствие вибраций шумит весь системный блок (особенно часто это бывает при некачественной сборке и использовании дешевых корпусов). Для исправления такой ситуации рекомендуется применять низкооборотные вентиляторы большого диаметра.

Чтобы можно было добиться эффективного охлаждения, не используя шумные вентиляторы, системный блок должен иметь низкое сопротивление для воздуха, который

Бесшумный компьютер с двухконтурной системой водяного охлаждения

Чтобы падая с вершины
покоренная вода
быстро двигала машины
и толкала поезда

   Маршак С.Я. 1931г.

C приближением лета, весьма актуальна, стала проблема тепловыделения домашнего компьютера. Если зимой системный блок грел комнату так, что приходилось закрывать батарею центрального отопления, то с наступлением теплых дней, была уверенность в том, что старенький оконный кондиционер не справится с потоком тепла. А поскольку подошло и время апгрейда, было решено, сделать максимум возможного, с целью обеспечить комфортные условия работы.Распостраненные подходы к проблеме охлаждения компьютера

Базовый — приобрести готовый компьютер или комплектующие со штатными системами охлаждения. Типичный подход неискушенного пользователя, которых, кстати, подавляющее большинство, позволяет приобрести систему которая скорее всего будет работать и не перегреваться, но показатели шума вплотную приблизятся к медицинской норме в 45 Дб. Штатные кулера, как процессорные, так и для видеоплат, изготавливаются с целью минимизировать массу и соответственно цену. Производители видеокарт несколько более внимательны к ушам своих покупателей, существует достаточно много моделей видеокарт с пассивным охлаждением, а так же на рынке встречаются видеокарты с высокоэффективной и малошумящей системой охлаждения IceQ. Следует учесть, что производители компьютеров, оптимизируя соотношение цена/производительность, обычно, не ставят комплектующие имеющие качественные системы охлаждения, просто по причине их более высокой стоимости.

Пример правильного подхода к реализации системы охлаждения видеокарты, низкоскоростной вентилятор прогоняет воздух через радиатор и выбрасывает за пределы корпуса.

Продвинутый — заапгрейдить систему охлаждения компьютера более совершенными вентиляторами, кулерами и реобасами. Большинство наших читателей отличаются именно таким подходом. Наиболее распространена в России продукция Arctic Cooling и Zalman. В итоге, собирается система, нередко насчитывающая десяток вентиляторов, все с оптимизированной крыльчаткой и гидродинамическими подшипниками. Текстолит печатных плат с трудом выдерживает килограммы меди высокоэффективных радиаторов, пронизанных тепловыми трубками. Штатные системы охлаждения отправляются на помойку… Результат от всех этих модных усовершенствований падает прямо пропорционально мощности системы, так как температура внутри корпуса стремительно растет с повышением мощности, и в топовых конфигурациях прокачка воздуха через корпус все равно вызывает значительный шум. Возникает тупиковая ситуация, когда каждый компонент системы достаточно бесшумен, скажем 18-20 Дб, но собранные вместе они дают 30-35 Дб еще более неприятного, за счет различного спектра и возникающих интерференций, шума. Стоит отметить и повышенную сложность очистки от пыли подобной конструкции. Если штатную систему легко чистить раз в полгода обычным пылесосом, то все эти тонко-реберные конструкции современных кулеров очистить весьма сложно. Проблеме пыли в корпусах, производителями почему-то не уделяется достаточное внимание, лишь некоторые корпуса снабжены весьма неэффективными пылевыми фильтрами. Между тем, измельченная вентиляторами пыль не только вредит охлаждению, осаждаясь на поверхности радиаторов, но и весьма вредна для здоровья человека, так как не задерживается бронхами и очень долго выводится из легких. Некоторые источники, считают что вред от мелкой пыли сопоставим с вредом от пассивного курения. Сильно страдают от пыли накопители CD/DVD и FDD, встречался даже кардридер забитый пылью до полной невозможности работы.

Экстремальный — некоторые люди в поисках идеала способны зайти достаточно далеко. В частности, проблему перегрева и пыли можно решить, приобретя у Zalman вот такой корпус:

Те, кто решил собрать бесшумный медиацентр, могут обратить внимание на более компактный MiniATX вариант, стоящий вдвое дешевле.

Впрочем, и эти, рассчитанные на пассивное охлаждение корпуса, производитель рекомендует для разогнанных и производительных систем, обдувать внешним вентилятором. Отказавшись от корпуса вовсе, можно попробовать обойтись пассивным охлаждением. Компьютер ваш будет выглядеть примерно вот так:

Системы водяного охлаждения пользуются заслуженной популярностью у оверклокеров. Принцип их действия основан на циркуляции теплоносителя. Нуждающиеся в охлаждении компоненты компьютера нагревают воду, а вода в свою очередь, охлаждается в радиаторе. При этом радиатор может находиться снаружи корпуса, и даже быть пассивным.

Одна из наиболее совершенных систем водяного охлаждения, Zalman Reserator 2
MSRP 350$

Следует отметить существование криогенных систем охлаждения для ПК, работающих по принципу смены фазового состояния вещества, подобно холодильнику и кондиционеру. Недостатком криогенных систем является высокий шум, большая масса и стоимость, сложность в инсталляции. Но только используя подобные системы, возможно добиться отрицательной температуры процессора или видеокарты, а соответственно и высочайшей производительности.

Серийная «фреонка» Cryo-Z, производства OCZ Technology
MSRP 400$

Исторически так сложилось, что блоки питания обделены бесшумными системами охлаждения. Во многом это обусловлено тем, что они рассеивают 15-25% потребляемой компьютером энергии. Вся эта мощность выделяется на разных, активных и пассивных компонентах блока питания. Греются силовые диоды и ключи инверторов, трансформаторы и дроссели… Традиционная схема компоновки блока питания требует переосмысления с переходом на внешнее охлаждение. Блоки питания с возможностью подключения к водяной системе охлаждения производит только одна компания.

Бесшумные блоки питания других производителей маломощны, либо являются бесшумными только до определенной, весьма небольшой нагрузки.

Gembird CCC-PSU4X-S
держит до 13 А по 12В шине
Topower Top-570NF
пиковая мощность 570 Вт
бесшумен до 150 Вт

К сожалению, производители БП в настоящее время не выпускают блоки питания мощностью свыше 400 Вт с пассивной системой охлаждения. Отчасти это связано с возросшими требованиями к мощностным параметрам БП, отчасти с нежеланием производителей искать новые решения (таким решением могло бы быть к примеру, заливка внутренностей ИБП теплопроводным компаундом, использование тепловых трубок). В сложившейся ситуации, можно рекомендовать обратить внимание на блоки питания, отвечающие требованиям программы 80plus gold. Обладая КПД около 90%, такие БП могут обеспечить минимальный уровень шума системы охлаждения.Создание полностью бесшумного компьютера

Учитывая вышеизложенное, и имея определенные финансовые ограничения, было начато проектирование бесшумного компьютера. Очевидно, система охлаждения была выбрана жидкостная. На барахолке, по весьма сходной цене, был приобретен корпус с интегрированной системой охлаждения, Koolance PS2-901BW.

Система охлаждения включает в себя помпу, радиатор в верхней части корпуса, три низкооборотистых вентилятора GlacialTech GT80252BDL-2, блок термоконтроля и индикации.

Выбор блока питания оказался однозначен, только FSP ZEN 400 обладает полностью пассивной системой охлаждения, высоким КПД и достаточной мощностью. Несмотря на это, при тестировании на нагрузке в 300 Вт, радиатор БП разогрелся до 78 градусов. В связи с чем, было принято решение, установить на радиатор блока питания парочку имеющихся у меня водоблоков Zalman ZM-WB1, и проблема перегрева была решена.

Блок питания FSP Zen 400 с установленными водоблоками Zalman ZM-WB1

Материнская плата была выбрана Elitegroup P35T-A, бюджетное решение, тем не менее, собранная на чипсете, поддерживающий новые 45 нм процессоры на 1333 МГц шине и гигабитную сеть на чипе Intel 82566. С целью предотвращения перегрева в условиях отсутствия обдува, на северный мост был установлен водоблок Zalman ZM-NWB1, а на процессор Intel Core 2 Duo E7500 соответственно Zalman ZM-WB4 Plus.

Имеющийся на северном мосту радиатор был переставлен на южный мост, сменив там тонкую алюминиевую пластинку. Охлаждение стабилизатора напряжений мне показалось достаточным, но возможно, после установки четырехядерника придется ставить ватерблок и туда. Впрочем, к тому времени я надеюсь обзавестись материнской платой с интегрированной системой охлаждения, к примеру Foxconn BlackOps или ASUS Blitz . Поскольку Zalman ZM-GWB3850 найти в продаже не удалось, на видеокарту Sapphire HD 3870 был установлен ватерблок Zalman ZM-GWB2, а на микросхемы памяти и радиатор стабилизатора питания, были наклеены с помощью термоклея Алсил-5, дополнительные радиаторы.

C целью сделать систему полностью бесшумной, в компьютер установлен твердотельный жесткий диск Transcend 2,5 SSD SATA, размером 32 Гб.

Скорость чтения/записи 150/90 МБ/сек

В дальнейшем, по мере удешевления дисков, планируется покупка четырехканального кэширующего контроллера и сборка массива RAID0 на основе твердотельных накопителей.

Изюминкой данного технического решения является двухконтурная система охлаждения. Предстоящая перспектива рассеивать в комнате несколько сотен Ватт меня нисколько не радовала, как по причине затрат на бесшумную реализацию этого проекта, так и по причине предстоящей летней жары. В поисках эффективного решения, был использован мировой опыт. В частности, уже достаточно давно, стойки датацентров охлаждают водопроводной водой.

Для начала было необходимо понизить давление с 6 атмосфер в водопроводе, до уровня который способен выдержать водоблок. Надежды на то, что они выдержат давление, более чем в одну-две атмосферы не было, и на отвод холодной воды был установлен понижающий давление редуктор.

Для предотвращения засоров в тонких подающих трубках и каналах водоблока, после редуктора вода очищается фильтром тонкой очистки.

Для осуществления теплообмена между водопроводной водой и охлаждающей жидкостью в компьютере, был взят водоблок Zalman ZM-WB3 Gold на внутренний контур и полностью медный водоблок от Thermaltake Big Water на внешний контур. Они были соединены между собой через термоинтерфейс и образовали теплообменник для передачи тепла от внутреннего контура охлаждения к внешнему. В случае прекращения подачи холодной воды, по достижению устанавливаемого порога температуры теплоносителя, включаются три вентилятора штатной системы охлаждения.

Во внутреннем контуре циркулирует смесь из дистиллированной воды и автомобильной охлаждающей жидкости G11, соотношением 80 к 20, добавка антифриза не дает воде загнивать и защищает систему от коррозии. Так как счетчика воды у меня не предусмотрено, после выполнения функции охлаждения, проточная вода стекает в канализацию. При очень небольшом расходе воды, текущей тоненькой струйкой, температура воды в системном блоке не превышала 30 градусов! И это при полной бесшумности системы.

* — В этой полной тишине, если прислушиваться, можно услышать шум текущей воды и урчание помпы. Поэтому, сама помпа и корпус компьютера изнутри, были шумоизолированы материалами Noisebuster.

Для проверки эффективности системы охлаждения, использовались две конфигурации программного обеспечения.
Idle — загружен рабочий стол операционной системы Windows Vista Ultimate x64 SP1.
3D — выполняется тестовый пакет Futuremark 3Dmark Vantage.
В обоих режимах использовалась штатная система водяного охлаждения Koolance, без подключения к холодной воде.
Idle Water и 3D Water — в теплообменник внешнего контура подавалась холодная вода температурой около 17 градусов, вентиляторы штатной системы ошлаждения не работали.
Idle Air и 3D Air — использовалась штатная, однослотовая, система охлаждения видеокарты ATI Radeon HD 3870 и процессорный кулер Neon 775 производства GIGABYTE.
Теплоносителем в первых четырех тестах является вода внутреннего контура охлаждения, а в двух последних тестах — воздух внутри системного блока. Для получения стабильных результатов, все тесты выполнялись в течении часа, а показания о максимальной температуре снимались с помощью программы HWMonitor.

Из графика следует, что охлаждение водой значительно эффективнее, чем охлаждение воздухом. В частности, в системе охлаждаемой воздухом, во время простоя, зафиксированы параметры нагрева аналогичные нагруженной системы охлаждаемой водой! Система, охлаждаемая во время работы 3D теста воздухом, достаточно быстро прогрела воздух внутри системного блока до температуры выше 45 градусов. Неудивительно, что температура процессоров приблизилась к 80 градусам, а вентиляторы зашумели на полную мощность.

Бесшумный компьютер собран и работает

Цена вопроса и вопрос цены

Многие задают себе вопрос, какова цена тишины. Ниже приведена таблица, отражающая примерное удорожание компьютера с различными вариантами охлаждения. В качестве «эталона» была подсчитана стоимость типичного компьютера базовой конфигурации:

  • Процессор Intel Core Duo E7200 — 3600р.
  • Кулер GlacialTech Igloo 5062 — 250р
  • Материнская плата Elitegroup P35T-A — 2050р
  • Память 2×2 ГБ DDR2 PC6400 — 1900р
  • Видеокарта Sapphire Radeon HD 3870 512 МБ — 4350р
  • Жесткий диск 250 ГБ Seagate Barracuda 7200.10 SATA — 1400р
  • DVD-RW NEC-7190 SATA — 700
  • Корпус Delux DLC-Sh596 400 Вт — 2000р
  • Дисковод FDD 3,5 TEAC — 150р
  • Итого: 16400р
Охлаждение Улучшенное воздушное Бесшумное воздушное Водяное Бесшумное водяное
Компоненты CPU Cooler Zalman CNPS9700Видеоплата HIS 3870 ICEQ3 Zalman TNN 300 Thermaltake
Big Water 745ватерблоки Zalman
NWB1 и GWB2
Zalman Reserator 2БП FSP ZEN 400
Удорожание 2300р 14% 14800р 90% 5000р 30% 10900р 65%

Для корректного подсчета, цена заменяемых компонент вычиталась из общей суммы, и графа удорожание содержит «чистую» сумму, на которую данная конфигурация становится дороже базовой.

Для интересующихся, привожу расчет удорожания описанной в статье системы:

  • Корпус Koolance PS2-901BW Б/У — 1000р
  • Ватерблок Zalman ZM-WB4 Plus — 700р
  • Ватерблок Zalman ZM-NWB1 — 500р
  • Ватерблок Zalman ZM-GWB1 — 500р
  • Ватерблок Zalman ZM-NWB2 — 500р
  • Ватерблок Thermaltake Big Water Б/У — 200р
  • Трубка силиконовая 10 метров — 250р
  • БП FSP ZEN 400 — 3700р
  • Твердотельный жесткий диск 32 ГБ Transcend — 3100р
  • Фильтр тонкой очистки воды — 300р
  • Регулятор давления воды — 250р
  • Шумоизолирующий материал Noisebuster — 350р

С зачетом корпуса и блока питания, сумма удорожания составляет 8250р или 50%, бесшумный жесткий диск прибавляет к этому еще 3200р (20%). Такова на настоящее время цена полной бесшумности компьютера.

Что дальше?

С целью экономии воды, возможно изготовление трехконтурной системы охлаждения, в которой теплообменник крепится непосредственно на трубу магистрали холодной воды, и жидкость этой, промежуточной системы, прокачивается отдельной помпой. Весьма интересна возможность расположить между первым и вторым контуром полупроводниковый холодильник на эффекте Пельтье.

Применение подобных, прогрессивных решений, позволяет достигнуть рекордной производительности при полном отсутствии шума.

В связи с вышеизложенным, непонятна низкая активность производителей комплектующих по оснащению материнских плат, видеокарт и блоков питания системами водяного охлаждения. Крайне необходимой является разработка штуцера, конструкция которого позволит подключать компоненты без риска разлива теплоносителя.

Искусственное охлаждение — Википедия

У этого термина существуют и другие значения, см. Охлаждение.
Холодильник в супермаркете

Охлаждение или рефрижерация[1] (англ. refrigeration) — отвод теплоты из одного места в другое, процесс понижения температуры (получение искусственного холода) тела или среды с помощью специальной техники, приспособлений и устройств; противоположно нагреву.
В промышленности и технике искусственный холод получают в основном используя холодильные машины и охлаждающие смеси[2].

В прикладных целях достигается отводом определённого количества теплоты и традиционно осуществляется с помощью механической работы, но может осуществляться под действием тепла, магнетизма, кинетического испарения атомов, электричества, испарения, с помощью лазера и другими способами.
Установки для создания искусственного холода — холодильники и кондиционеры производят отбор тепла либо просто перемещением теплоносителя (например, воздуха) из менее нагретых мест в охлаждаемые, либо по принципу теплового насоса, путём создания возле охлаждаемой области разрежения для испарения жидкости-теплоносителя, например, перекачиванием фреона по трубкам, либо (реже) посредством эффекта Пельтье.
Для относительно кратковременного искусственного холода в условиях отсутствия источника энергии применяют аккумуляторы холода или сухой лёд.

Тепловые насосы могут использовать теплоту, выделяемую при процессе охлаждения, а также могут работать по обратному циклу, при этом они аналогичны холодильным установкам.

Охлаждение имеет множество применений, включая, но не ограничиваясь: бытовые холодильники, промышленные морозильники, криогенную технику и кондиционирование воздуха. Развитие методов охлаждения оказало большое влияние на промышленность, образ жизни, сельское хозяйство и урбанизацию.

Идея сохранения продуктов с помощью охлаждения восходит к древним Римской и Китайской империям. Однако, в XIX веке холодильная техника быстро эволюционировала от сбора льда и снега до железнодорожных вагонов с контролируемой температурой. Появление рефрижераторных вагонов способствовало экспансии на запад Соединённых Штатов Америки, возникли поселения в районах, которые не были на основных транспортных каналах таких как, например, реки, гавани, или горные тропы. Поселения также появились в бесплодных районах страны, богатых природными ресурсами. Развитие холодильной техники способствовало строительству крупных городов, которые стали процветать в областях, где без холодильников и кондиционеров жизнь была бы неустойчивой, таких как Хьюстон, штат Техас, и Лас-Вегас, штат Невада.

Развитие производства продуктов питания, их доступность для всего населения, оказали большое влияние на питание общества. В большинстве развитых стран города сильно зависят от холодильников в супермаркетах, выживание зависит от получения пищи для ежедневного потребления. Увеличение спроса на продукты питания привело к большей производительности сельскохозяйственных земель и уменьшению количества существующих хозяйств. Фермы сегодня производят гораздо больше продукции на одного занятого в хозяйстве человека по сравнению с концом 1800-х годов.

Методы охлаждения могут быть классифицированы как:

  • нециклические,
  • циклические,
  • термоэлектрические,
  • магнитные.

Нециклическое охлаждение[править | править код]

Изолированный кулер для охлаждения напитков
Спасатели несут переносной холодильник

Нециклическое охлаждение осуществляется за счет таяния льда или сублимации сухого льда (твердой формы углекислого газа). Эти методы используются для небольших холодильников, например, в лабораториях и мастерских, или для переносных холодильников.

Система охлаждения[править | править код]

Влияние на сельское хозяйство и пищевую промышленность[править | править код]

Роль сельского хозяйства в развитых странах резко изменилась в прошлом веке из-за многих факторов, в том числе развития холодильных технологий. Статистика переписи 2007 года дает информацию о большей производительности сельскохозяйственных земель и уменьшении количества существующих хозяйств в Соединённых Штатах Америки. Частично это результат рынка замороженного мяса, созданного первыми успешными продажами партий замороженных овечьих туш, поступающих из Новой Зеландии в 1880-х годах. Так как рынок продолжал расти были введены правила пищевой обработки и контроль за качеством. В дальнейшем электричество, проведённое в сельские дома в США, что позволило использовать холодильную технику, привело в дальнейшем к развитию фермерских хозяйств, увеличению их производительности. Сегодня использование холодильников на фермах позволяет избежать порчи из-за роста бактерий и способствует сохранению продуктов.

Производство мясных продуктов и торговля[править | править код]

К 1882 году на Южном острове Новой Зеландии добились успехов в посеве трав и селекции овец, что сразу дало экономический потенциал для экспорта фермерского мяса. В 1882 году первая партия замороженных овечьих туш была успешно отгружена и отправлена из порта Чалмерс в Данидине, Новая Зеландия, в Лондон. В 1890-х годах торговля мясом стала прибыльным бизнесом в Новой Зеландии, особенно в Кентербери, где 50 % овечьих туш шло на экспорт в 1900 году. Вскоре кентерберийское мясо стало известно за высокое качество, создав спрос на новозеландское мясо по всему миру. Для удовлетворения этого спроса фермеры улучшили питание овец, откармливая их на убой всего за семь месяцев. Метод доставки в замороженном виде привёл к экономическому буму в Новой Зеландии в середине 1890-х годов[3].

В США в 1891 году был принят «Закон о контроле качества мясных продуктов», потому что местные мясники почувствовали, что система рефрижераторных вагонов была нездоровой[4]. Когда производство мясных продуктов начало расти, потребители стали нервничать по поводу качества мяса для потребления. Книга The Jungle Эптона Синклера привлекла негативное внимание к мясной промышленности и вывела на свет антисанитарные условия труда и переработку больных животных. Эта книга привлекла внимание президента Теодора Рузвельта, и в 1906 году был введен в действие «Закон о контроле качества мясных продуктов» в качестве поправки к «Закону о контроле качества мясных продуктов» 1891 года. Этот новый закон регламентировал качество мяса и условия его переработки[5].

Какой холодильник лучше? Система охлаждения холодильника

   Прежде всего, основной задачей любого бытового холодильника является хранение продуктов. Именно этот критерий является самым важным — качество хранения и длительность хранения. Большинство покупателей часто забывают об этом, глядя на красивый дизайн или увидев красивую рекламу. Да, эстетический вид и удобство фурнитуры холодильника вещь так же важная, особенно для современных покупателей. Но какой смысл в красоте, если ваш холодильник не выполняет своей основной функции — качественное хранение продуктов? Давайте всё же разберёмся, какой холодильник лучше?

   Система охлаждения современного холодильника — это та основа, которую должен знать и понимать любой покупатель. Владея актуальной информацией и понимая принцип устройства, для покупателя не составит большого труда выбрать оптимальный для себя агрегат. От того как устроен принцип охлаждения в холодильнике зависит не только качество хранения, но и длительность. На сегодняшний день системы охлаждения современных холодильников можно разделить на 3 группы: статическое охлаждение, охлаждение No Frost и динамическое охлаждение. Именно эти три группы и являются основой основ любого холодильного агрегата. Рассмотрим принцип работы каждой системы.

Какой холодильник лучше, статическое охлаждение

   Статическая система охлаждения

   Самой простой и надежной системой, проверенной временем, является статическое охлаждение. Его второе название, более запомнившееся покупателям — «плачущая стена». Еще эту систему называют «Direct Cool». Принцип работы этот системы очень прост. Когда работает компрессор, температура в холодильном отделении начинает понижаться за счет отбора тепла испарителем, который спрятан в задней стенке холодильника. Температура задней стенки очень низка и вся влага начинает скапливаться и замерзать на задней стенке холодильника. Когда температура понизилась до заданного пользователем значения, компрессор выключается и воздух в холодильной камере естественным путем начинает повышаться. Замерзшие капли влаги на стенке начинают оттаивать и стекать в специальное отверстие, откуда вся вода попадает в специальный контейнер, расположенный снаружи холодильника.

   Отсюда и появилось название «плачущая стена». Температура повышается до максимального значения заданным настройкам и компрессор снова включается и все повторяется снова и снова. Температура в морозильной камере всегда поддерживается отрицательной за счет конструкции утеплителя и площади испарителя. Многие путают и называют данную систему капельной системой. На самом же деле капельная система подразумевает систему размораживания, а не охлаждения. Замерзшая влага в виде капель оттаивает и капли стекают вниз — поэтому и капельная, она же «плачущая стена».

   Размораживание в холодильниках со статической системой охлаждения называют ручным. Под размораживанием понимают морозильную камеру, поскольку из-за постоянной отрицательной температуры, влага постоянно намерзает на стенках камеры. В холодильной камере размораживание происходит автоматически. На самом же деле, ручное размораживание современного холодильника, это не еженедельное размораживание старенького отечественного холодильника. По условиям производителей, размораживание холодильника необходимо производить 2 раза в год. Реально же процесс размораживания выполняется не чаще 1 раза за 7 месяцев, а то и в год.

   Недостатком такой системы охлаждения являются испорченные, за короткое время, продукты на верхних полках, поскольку система не обеспечивает равномерное охлаждение по всему объему камеры. Холодный воздух опускается вниз, а более теплый поднимается вверх что пагубно влияет на качество хранения продуктов. Интенсивность охлаждения в статических системах самая медленная. Если забить холодильник только купленными продуктами — он очень медленно и долго будет набирать нужную температуру. Достоинством статических систем является максимальное сохранение влаги продуктов. Если мы на полку кладем клубнику в тарелке, то достав ее мы получаем полноценный сочный вкус.

Какой холодильник лучше, охлаждение No Frost

   Система NoFrost

   Система охлаждения No Frost («без инея») весьма моложе статической, но достаточно популярна. Основной идеей такой системы стал холодильник, который не нужно размораживать, который может работать без разморозки все время пока не сломается. У такого принципа охлаждения есть свои достоинства и недостатки, но об этом позже.

   Принцип работы следующий — испаритель в таких холодильниках не спрятан, а «открыт» и воздух в камерах непосредственно контактирует с ним. В основу процесса охлаждения заложена принудительная циркуляция воздуха в камере через испаритель. Когда работает компрессор воздух специальным вентилятором «протягивается» через испаритель, который отбирает тепло и имеет достаточно низкую температуру. Вся влага, которая содержится в воздухе, мгновенно намерзает на самом испарителе. За счет этого и не возникает намерзания влаги на стенках холодильной и морозильной камерах. Когда компрессор перестает работать и достигнута нужная температура, влага на испарителе тает и выводится специальным дренажем наружу. Такой же процесс происходит и в морозильной камере. Таким образом мы имеем холодильник с чистыми стенками на камерах без всякого намерзшего льда. Компания Samsung и компания LG выпускают холодильники только с системой No Frost и являются одними из ведущих данное направление производителями.

   Вместе с системой No Frot очень часто применяется понятие многопоточной системы охлаждения Air Flow или Multi Air Flow. Отдельно как систему охлаждения ее рассматривать нельзя, поскольку это система циркуляции воздуха между полок, которая повышает эффективность охлаждения. Важно не путать эти понятия между собой.

   Достоинством систем No Frost является высокая эффективность охлаждения. Равномерный распределенный воздушный поток между полок образует единую температуру в любом уголке камеры, что положительно отражается на качестве хранения. С другой стороны продукты в таких холодильниках быстрее теряют свою влагу и в определенных случаях есть необходимость хранить продукты в контейнерах.

Какой холодильник лучше, динамическое охлаждение

   Динамическое охлаждение

   Динамическая система охлаждения по сути, является статической системой но с определенным усовершенствованием, которое заключается в наличии вентилятора в холодильной камере. Принцип работы совершенно идентичен со статическим охлаждением. Отличием является работа вентилятора, в задачу которого входит принудительная циркуляция воздуха по камере. Динамическое охлаждение, так же как и No Frost, решает проблему однородной температуры в камере циркуляцией воздуха. В результате мы имеем более менее сбалансированную температуру на разных уровнях в холодильной камере. Эта система сочетает в себе достоинства статической и No Frost систем, обеспечивая максимально комфортные условия для хранения продуктов. Такие холодильники не могут похвастаться эффективностью систем No Frost, но качество хранения выше.

   На сегодняшний день в холодильниках стали применять комбинации систем охлаждения из-за чего холодильник нельзя рассматривать как с одной конкретной системой. Например, концерн Electrolux выпускает холодильники с так называемой системой Frost Free, а в холодильниках Sharp это гибридная система охлаждения. На самом деле это комбинация статической или динамической системы в холодильной камере, и системы No Frost в морозильной. Подобное решение есть и у других производителей, поэтому важно не запутаться и понимать что Вам предлагают.

Так же читайте про индукционную плиту в нашей статье «Что такое индукционная плита? Описание принципа работы.«

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Охладители для систем вентиляции

Быстрый переход:

Получить коммерческое предложение

Компания ООО «Пром Климат» (г. Москва) — профессиональная инжиниринговая компания. Мы реализуем инженерные системы здания или помещения на вашем объекте «под ключ».

Звоните: 8 (495) 410-11-73 или отправьте быструю заявку.

Очень многие думают, что если в загородном доме или городской квартире установить кондиционер, то воздух будет прохладным и свежим, а здоровье — «как в раю». Хотим вас огорчить: установка кондиционера — прямой путь на больничную койку!

Не верите? Читайте внимательно:

Что вы делаете при наличии в помещении настенного кондиционера? Как только вам становится душно-жарко, вы включаете кондиционер на полную, да выставляете температуру пониже, градусов на 17-18. Весь этот ледяной поток вы направляете куда? Правильно, на себя любимого, точнее прямо на свою голову! Что мы получаем в итоге? Точно, смертельный перепад температур, точнее локальное переохлаждение с диагнозом и больничной койкой.

Если же вы выходите из переохлажденного помещения на улицу, в жару, то ваш организм снова сталкивается с той же проблемой — он попросту не успевает защитить вас и вашу голову, не хватает иммунитета, скорость перепада температур слишком велика. Результат тот же — диагноз и больничная койка.

Конечно же, вы можете сказать, что направите холодный воздух вверх, а температуру выставите близкую к оптимальной, с ее перепадом в пределах физической нормы, градусов в 5-6. Для лета это 21′С, для зимы — 23′С. Прекрасно, это хоть как-то убережет от болезни. Но проблема-то не решена!

Какой же тогда выход?

На самом деле, секрет прост: в помещении становиться душно и жарко не из-за того, что нет потока холодного воздуха от кондиционера, а из-за того, что воздух внутри помещения совершенно не циркулирует и не обновляется. Он просто стоит колом и не колышется. Чем больше людей в помещении или чем больше вы готовите-стираете — тем душнее и жарче становится.

У вас срабатывает стереотип — вам нужен холод от кондиционера! На самом деле вам нужен совсем не холод — вам нужен просто чистый и свежий воздух, этого будет вполне достаточно. Вспомните простой пример, когда в знойную жару мы с нетерпением ждем легко ветерка: слегка подул — стало хорошо. Этот ветерок на самом деле является не ледяной «кондей-струей», а просто потоком свежего воздуха и его тепература ни чем не отличается от того воздуха, в котором вы сейчас находитесь.

В кондиционер заложена одна-единственная функция — охлаждать. В него не заложена функция вентиляции и проветривания помещения, такая возможность у кондиционера просто отсутствует по определению. Включить кондиционер и открыть окна — тоже бред. Летом вы выпустите в открытые окна весь холод, а в ответ получите очередную порцию горячего пыльного воздуха. Зимой — то же самое, только наоборот. А главное, спертый душный воздух останется в помещении, а свежего чистого воздуха вы не получите ни грамма.

А как же влажность? Действительно, очень важно внутри помещения отрегулировать влажность. Будет большая влажность — будете сидеть-потеть и будут расцветать грибок-плесень, маленькая — будут сохнуть кожа-глаза и снова будут портиться натуральные материалы отделки дома. Тут важна и нужна золотая середина — идеальная влажность, которую можно выставить не кондиционером, а … вентиляционной установкой, вернее, ее пультом управления. Вы выставляете желаемую влажность в помещении, датчики следят за этой величиной, включают-выключают вентиляционную установку, в результате вы получаете чистый и свежий воздух той влажности, которую хотите — все очень просто!

Кондиционер без вентиляции — деньги на ветер

деньги_на_ветер.jpg

Вывод один: кондиционер без вентиляции — деньги на ветер, а при неправильной его экплуатации еще и огромное зло! Выбросьте свои ошибочные убеждения! Для отличного самочувствия в помещении и в летнее и в зимнее время кондиционер совершенно не нужен — нам нужен лишь воздух, чистый и свежий, который может дать только правильная система вентиляции!

Идеальным было бы установить и приточно-вытяжную вентиляцию с рекуперацией, и кондиционер. Великолепная связка! И прохлада есть, и свежий воздух, и энергозатраты гораздо ниже станут. Есть еще один вариант здорового охлаждения помещения, вообще без кондиционера и его прожорливости. Этот вариант сегодня возможен только в тандеме вентиляции с геотермальным тепловым насосом. Если ваш выбор — традиционный обогрев дома с помощью газа или электричества, то с этим вариантом придется проститься. Если же вы готовы рассмотреть вариант обогрева дома с помощью теплового насоса, то это просто великолепно! Бонус — бесплатное охлаждение вашего дома и ноль затрат на него!

Этот вариант идеален не только в существенной экономии и сохранении ваших затрат. Установив тепловой насос, вы не сжигаете газ, соответственно не получаете продукты его сгорания и не выжигаете кислород, плюс вы не тратите ресурсы, необходимые для получения огромного количества электричества в случае электроотопления, сказать по простому — вы сохраняете себя и нашу планету! А вообще, это целая отдельная тема для разговора…

Внимание! Мы предлагаем лучшее готовое решение для вашего дома — установку системы, в которой совмещены отопление, вентиляция и охлаждение воздуха. В результате в современном доме, достаточно герметичном и утепленном, с успехом можно проживать круглогодично, без водяного отопления и газа.

При этом вся система будет потреблять энергии всего 1,5 кВт/ч — фантастический результат! Например, для правильно утепленного каменного дома площадью 180 кв.м энергозатраты на его обогрев не превысят 10 500 кВт/год, что в деньгах составит всего 2500-4000 руб/мес за его отопление в зимний период.

В крупных центрах, где скапливается огромное количество людей без качественного канального охладителя, который будет обеспечивать   вентиляцию помещения, просто не обойтись.

Канальные охладители: назначение и применение

Канальные охладители в систему вентиляции. Основная функция снижать температуру, осушая при этом подаваемый воздух в здании.

деньги_на_ветер.jpg

Состав хладагента может быть водный, из незамерзающей жидкости, фреона, циркулирующих в теплообменнике. В большинстве обычных охладителей показатели давления жидкости в системе трубопровода теплообменников максимальны: 1,6 -3,3 МПа

Применяются в общественных, жилых, так и на производственных зданиях. Наиболее действенными считаются конструкции, обеспечивающие приточную и вытяжную вентиляционную систему: запуск в здание прохладных воздушных масс, выход из него обработанных.

Вытяжка представляет собой несложную конструкцию, зато подача воздуха сложнее. Она включает такие функции как

  • отфильтровка,
  • нагревание,
  • охлаждение,
  • увлажнение и ионизация.

Для улучшения качества работы и эксплуатации, требуется в обязательном порядке использовать механические фильтры, способные обеспечивать чистку вводящих воздушных потоков от всевозможных пылевых частиц.

Конструкция

Агрегат представлен в виде моноблочного узла, состоящего из корпуса, теплообменника, каплеуловителя, поддона для сбора конденсата.

  • Корпус оцинкованный.  Размеры его стандартные, соответствуют типоразмерным рядами прямоугольных воздуховодов.  Простоту установки обеспечивает фланцевое болтовое крепление
  • Непосредственно в стане расположены составляющие теплообменника. Он состоит из ряда медных трубочек, по которым проходят различные хладагенты, а также алюминиевых пластин, обеспечивающих расширение пространства охлаждения.
  • Идущие по теплообменнику воздушные массы, отдав свою энергию охлаждаются, преобразуюсь на холодной поверхности медных труб и алюминиевых пластинок в конденсат.
  • Сбор лишней влаги обеспечивает каплеуловитель.  В него включены пластиковые ребра, по которым конденсат поступает в поддон, находящийся внизу корпуса. Эффективность каплеуловителя обеспечивается движением воздушных потоков больше чем 2,5 м/с, при минимальных показателях его можно не использовать.

 Для бесперебойного спуска конденсата поддон монтируется только в горизонтальном положении.   Слив лишней влаги осуществляется в поддоне, где предусмотрена дополнительная теплоизоляция и дренажная трубка.

Виды

От состава применяемого хладагента различают фреоновый и водяной.

  • Фреоновый представляет из себя разновидность теплообменника, находящегося в приточной вентиляционной системе. Он состоит из ряда медных труб, с алюминиевыми оребрениями. Оборудование предназначено для охлаждения помещений при помощи фреона.  В теплообменнике происходит сжимание фреона, что приводит к работе конденсаторно-компрессорного блока. Выбирают необходимый охладитель по определенным характеристикам: объем расходов воздуха, учет параметров, как расчетных, так и требуемых.
  • Другая разновидность — водяной. Хладагентами выступают вода, иногда вода с добавлением гликоля. Система имеет возможность как охлаждать воздушные массы, так и осушать. Рекомендовано к использованию в холодильных установках.       Охладители на воде состоят из тех же медных трубок и алюминиевых пластин, что фреоновые.  Используются канальные водяные охладители с 2-мя видами сечения: круглым и прямоугольным.

Установка

В вентиляционную систему монтировать оборудование следует в несколько этапов

Установка корпуса

Обычно корпус производится стандартным, подходящим по размеру с воздуховодами.  К системе вентиляции корпус крепится с помощью болтовых фланцев. Минимально возможное расстояние до ближайших элементов в системе вентиляции, не должно меньше размеров самого охладителя.

Установка проводится так, чтобы идущий поток воздуха одинаково распылялся на всей территории охладителя В воздухе не должно быть волокнистого, клейкого вещества, частиц, агрессивной примеси, вызывающих коррозию. В этом случае уместным будет установить фильтр.

Расстояние между канальным охладителем и вентилятором не должно быть менее 1.5 метра.

Подведение хладоносителя

Специально для подведения хладагентов к теплообменникам имеется входные и выходные патрубки.

Теплообменник необходимо подсоединять по принципам противотока, так холодопроизводительность будет максимально эффективной.

Патрубки и основная магистраль припаяны и прикреплены резьбовыми соединениями. Патрубки располагаются по правую и левую сторону.

 Отвод конденсата

Скопившаяся жидкость выводится через канализацию и на улицу с помощью специальной трубки, присоединенной к патрубку.

На трубке прикрепляется сифон, который не дает посторонним запахам проникать сквозь дренаж, осуществляя функцию гидрозатвора сечения. От того насколько высоким будет давление, зависит и размер сифона. Как только произведен монтаж в сифон нужно залить воду

Управление и регулировка

Холодопроизводительность регулируется как вручную, так и автоматически.

Ручная система управления осуществляется регулировкой поточных масс хладагента с помощью дроссельных или трехходовых клапанов.

Автоматическую систему используют, когда необходимо обеспечить бесперебойный и безопасный способ управления. Автоматика осуществляет не только контролирование, но и регулирование охладительного агрегата, а также управление всем вентиляционным оборудованием в комплексе.

Управление в автоматизированном режиме способствует:

  • осуществлению контроля за температурными показателями в здании и на основании полученных сведений автоматически регулировать холодопроизводительность
  • реализации защиты от перемораживания (особенно важно для наружной системы) актуально для наружных систем с водяным охлаждение

Как узнать цену и получить коммерческое предложение

Чтобы узнать цену решения для вашего объекта, вы можете:

  • Отправить быструю заявку, приложив проект, план или смету.
  • Отправить заявку на email: [email protected]
  • Позвонить прямо сейчас по телефону 8 (495) 410-11-73 и получить профессиональную консультацию.

Отправить заявку

Отправить ответ

avatar
  Подписаться  
Уведомление о