Поршневой двигатель внутреннего сгорания: Поршневой двигатель внутреннего сгорания | это… Что такое Поршневой двигатель внутреннего сгорания?

Какие бывают двигатели и что они едят

07.05.2020


  • На сегодняшний день наиболее распространённым двигателем является поршневой двигатель внутреннего сгорания с искровым зажиганием, или Отто-мотор. Он установлен на большинстве автомобилей в мире. Это легкий, дешевый, тихий и хорошо изученный двигатель. Однако человечество постоянно пытается придумать ему альтернативу как по устройству, так и использованию другого рабочего тела – топлива. И иногда у инженеров получаются весьма занятные экземпляры.

    Гибридный двигатель на сжатом воздухе

    В 2013 году французский концерн PSA представил систему Hybrid Air, работающую на сжатом воздухе. Однако они были далеко не первыми. Motor Development International на Женевском автосалоне 2009 года представили пневмоколяску MDI AIRpod и ее более серьезный вариант MDI OneFlowAir. В 2011 году японцы провели тест-драйв концепт-кара Toyota Ku Rin, который проехал 3,2 км на одном «заряде» сжатого воздуха. А в 2012 году Tata Motors представила трехместный и трехколесный автомобиль Tata AIRPod.

    В отличие от предшественников, разработка PSA оказалась элегантнее и проще. Два баллона со сжатым воздухом, компрессор, нагнетающий воздух, и гидравлический мотор, передающий энергию сжатого воздуха в КПП. Система сама пополняла воздушные запасы (например, Tata Airpod требовалось «накачивать» каждые 200 км). Помимо установки со сжатым воздухом, под капотом Hybrid Air предполагалось устанавливать классический 3-цилиндровый двигатель внутреннего сгорания, который бы играл роль насоса и вспомогательного мотора.

    В городе машина с Hybrid Air может до 80% времени ехать только на воздухе, не загрязняя атмосферу. Топливная экономичность варьируется от нулевых значений расхода и выбросов до 2,9 л/100 км и 69 г/км при использовании двигателя внутреннего сгорания соответственно. В компании планировали ставить систему Hybrid Air начиная с 2016 года, но – не сложилось.

    Водородные топливные элементы

    Существует три типа двигателей, использующих водород: одни работают как обычный двигатель внутреннего сгорания, другие – газотурбинные, третьи – агрегаты, использующие химическую реакцию водорода.

    Первый двигатель внутреннего сгорания, работающий на водороде, появился в 1806 году, водород в нем использовался как обычный бензин. Однако использовать такие оригинальные двигатели накладно. В газотурбинных двигателях газ сжимается и нагревается, затем выделяемая энергия преобразуется в механическую. В качестве топлива можно использовать практически любое горючее.

    Но самые интересные из водородных силовых установок – «химические». Концерны BMW и Toyota представили кроссовер i Hydrogen NEXT на базе последнего X5. Его силовая установка состоит из электродвигателя и литий-ионной батареи, стеков с водородными топливными элементами, химического преобразователя и двух баков, в которых под давлением 700 бар хранится 6 кг водорода. Стек специальных ячеек, наполненных водородом, конвертирует химическую энергию газа в электричество, которое аккумулируется в батарее, а она в свою очередь питает электромотор. Электрохимический генератор в составе топливного элемента выдает мощность 125 кВт (170 л. с.), а пиковая мощность силовой установки — 275 кВт (374 л.с.). В качестве топлива используется смесь водорода и кислорода из окружающего воздуха, вместо вредных выбросов система вырабатывает водяной пар. В BMW заявляют, что к 2022 году планируют выпустить первую партию водородомобилей.

    Дизельный двигатель

    Более ста лет назад, 23 февраля 1892 года Рудольф Дизель получил патент на свой двигатель. Принципиальным отличием его двигателя от Отто-мотора было то, что топливо в нем нагревалось быстрым сжатием, а не поджогом. Удивительно, но первые двигатели Дизеля работали на растительных маслах или легких нефтепродуктах. Кроме того, первоначально в качестве идеального топлива он предлагал использовать каменноугольную пыль, так как в Германии не было запасов нефти.

    Спектр видов топлива для дизельных двигателей весьма широк. Сюда включаются все фракции нефтеперегонки от керосина до мазута и ряд продуктов природного происхождения: рапсовое масло, фритюрный жир, пальмовое масло и многие другие. Дизельный двигатель может с определенным успехом работать даже на сырой нефти.

    Кстати, в 1898 году на Путиловском заводе в Петербурге был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления» – агрегат, аналогичный мотору Дизеля. Наша конструкция оказалась более совершенной и перспективной. Но под давлением владельцев лицензий Дизеля все работы над отечественным аналогом дизельного двигателя были остановлены.

    Роторный двигатель

    Самый престарелый из всех тепловых двигателей именно роторный. С древности известны колеса ветряных и водяных мельниц, которые можно отнести к примитивным роторным двигательным механизмам. В 19 веке стали активно использовать роторные паровые двигатели.

    В 1957 года Феликс Ванкель и Вальтер Фройде показали общественности полностью работоспособный роторно-поршневой двигатель (РПД) внутреннего сгорания. Через 7 лет этот движок установили на спорткар NSU Spider, который стал первым серийником с роторно-поршневой двигатель.

    Такой двигатель лишен большого количества движущихся частей, он проще, а особая конструкция мотора позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Но из-за конструктивных особенностей у роторных двигателей крайне низкий ресурс, высокий расход масла и топлива, хотя и большая отдача с меньшего объема.

    Из-за этих особенностей единственной компанией, которая массово, помимо NSU, выпускала автомобили с роторно-поршневым движком была Mazda. И легендарная Mazda RX-8 была скорее имиджевой моделью, нежели коммерческой. В итоге в начале 2000-х работу с роторно-поршневыми двигателями свернули.

    По материалам портала «Популярная механика»



  • Новости по теме

    02.06.2020

    Как строили самый мощный двигатель на СПГ

    CMA CGM поделилась видео строительства самого мощного двигателя, работающего на сжиженном природном газе. Двигатель […]

    14.01.2020

    Самый большой дизельный двигатель в мире

    Сегодня дизельные двигатели используются повсеместно: на тепловозах и грузовиках, судах и тракторах, легковых автомобилях […]

  • Помните: для этого контента требуется JavaScript.

  • Войти

    Запомнить меня

  • Помните: для этого контента требуется JavaScript.

  • Помните: для этого контента требуется JavaScript.

  • Двигатель внутреннего сгорания

    26.07.2014 / 30.03.2019   •   62380 / 13124

    ДВС или двигатель внутреннего сгорания — это механизм, который принадлежит к тепловым машинам. Принцип действия двигателя внутреннего сгорания — преобразование тепловой энергии, получаемой от сгорания жидкого топлива, в механическую.

    Поршни и шатуны

    Простейший ДВС состоит из блока двигателя — чугунной или алюминиевой детали, в которой вырезается рабочий цилиндр. По цилиндру, совершая возвратно-поступательные движения движется поршень. Поршень, как правило, сделан из легкого и прочного сплава, поскольку должен длительное время выдерживать значительные нагрузки и температуры, при этом не разрушаясь и не деформируясь.

    С одной стороны поршень соединен с шатуном. Это узел, обеспечивающий связь поршня с коленчатым валом. Представляет из себя цельнолитую деталь со сквозным неразъемным отверстием со стороны поршня и сквозным разъемным кольцом со стороны коленчатого вала. Шатун, соединенный с поршнем называется поршневой группой, поскольку сами по себе они практически бесполезны.

    Коленчатый вал

    Коленчатый вал — это вторая по массивности деталь двигателя. Представляет собой сложный вал, разбитый на условные сектора, некоторые из которых смещены относительно центра вращения вала. Каждый такой сектор отполирован до зеркальной поверхности и называется шейкой. Каждая шейка коленчатого вала — создана для того, чтобы работать в скользящей паре «шейка — шатун» или «шейка — опорный подшипник». Подшипники, на которых лежит коленвал, как правило скольжения. Он отполирован до зеркального состояния. На противоположной стороне колена, называемого шейкой, обычно делается наплыв для балансировки вала. Такая система называется кривошипно-шатунный механизм (КШМ).

    Вал, соединенный с поршнем через шатун, создает жесткую структуру, которая обеспечивает преобразование вращательных движений коленвала в возвратно-поступательные движения поршня в цилиндре и наоборот.

    Сверху блок цилиндров закрывается головкой двигателя, в которой находится распределительнй вал, клапана и каналы впуска-выпуска. Распредвал жестко связан с коленвалом посредством цепной или ременной передачи. Распредвал открывает и закрывает впускные и выпускные клапана. Такая конструкция применяется в четырехтактном двигателе Отто. Этот механизм ДВС называется газораспределительный механизм (ГРМ). Он обеспечивает отвод выхлопных газов из цилиндра, впуск топливовоздушной смеси в цилиндр перед тактом сжатия, обеспечивает герметичность камеры во время сжатия и сгорания топливной смеси.

    Система запускается с помощью стартера. Стартер представляет собой либо механический привод, например педаль в мопедах и некоторых мотоциклах, или шнур в мотопилах или газонокосилках. В четырехтактных двс используется, как правило электрический стартер, который приводится в движение с помощью аккумуляторной батареи.

    Двигатель внутреннего сгорания может быть двух, четырех и даже шести тактным.

    Такты ДВС

    Каждый такт поршневого двигателя внутреннего сгорания обозначает завершенное действие. Например в двухтактном двигателе тактов два — первый — рабочий, когда топливо засасывается, одновременно с выходом наружу отработанных газов, второй — когда топливо сжимается и происходит его сгорание. В двухтактном двигателя каналы впуска и выпуска входят прямо в цилиндр, но расположены на разному ровне, что позволяет отработанным газам выходить раньше, чем поршень открывает второй, впускной канал.

    Четырехтактный двигатель, соответственно, имеет четыре этапа действия.

    Первый — поршень идет вниз, при этом открыт впускной клапан открыт — в рабочий объем засасывается порция топливно-воздушной смеси (ТВС).

    Второй такт — оба клапана закрыты, поршень идет вверх, сжимая ТВС. Когда поршень доходит до верхней мертвой точки (ВМТ), второй такт заканчивается.

    Начинается третий такт — поршень проходит ВМТ, коленвал при этом поворачивается примерно на два-три градуса и происходит запал ТВС путем мощной искры из свечи зажигания. ТВС воспламеняется и начинает расширяться, активно сгорая. Поршень уходит вниз. В нижней мертвой точке НМТ, заканчивается третий такт.

    Четвертый такт — поршень идет вверх, открывается выпускной клапан цилиндра — отработанные газы выходят в выхлопной коллектор.

    01:4025.12.2007

    Work cycle of 4-stroke internal combustion engine 3D

    Рабочий цикл 4-х тактного двигателя внутреннего сгорания

    03:1311.10.2006

    Deutz engine 1

    mechanical engineering is really interesting! Dont judge a book by its cover.

    Преимуществом четырехтактного двигателя является высокий коэффициент наполнения во всем диапазоне частот вращения коленчатого вала, низкая чувствительность к падению давления в выпускной системе, возможность управления кривой наполнения путем подбора фаз газораспределения и конструкцией впускной системы. Почти все автомобильные двигатели это четырехтактные поршневые двигатели внутреннего сгорания. Они обладают множеством характеристик – такие как крутящий момент, мощность, степень сжатия, расход топлива, выброс вредных веществ и т. д., которые во многом зависят от их конструктивных особенностей.

    Любой ДВС — это по сути насос, который способен черпать энергию из прокачиваемого топлива, сгораемого в нем в процессе прокачки.

    Из чего состоит двигатель?

    Названия групп автозапчастей

    Предлагаем услуги:

    Где Вы предпочитаете обслуживать двигатель?

    На специализированной СТО

    На фирменной СТО

    По рекомендации

    Где дешевле

    Несложные работы — сам

    Обслуживаю полностью сам

    Поршень | Двигатель | Мой автомобильный словарь

    Во время рабочего цикла двигателя внутреннего сгорания энергия, содержащаяся в топливе, за очень короткий промежуток времени преобразуется в тепло и давление в цилиндре. Этот процесс носит взрывной характер. Он вызывает температуру и давление…

    Функция

    Во время рабочего цикла двигателя внутреннего сгорания энергия, содержащаяся в топливе, за очень короткий промежуток времени преобразуется в тепло и давление в цилиндре. Этот процесс носит взрывной характер. Это приводит к очень значительному повышению значений температуры и давления в цилиндре за доли секунды.

    Поршень — подвижная часть камеры сгорания. Он отвечает за преобразование энергии, выделяемой в процессе горения, в механическую работу. Поршень также выполняет ряд других важных задач:

    • Герметизирует камеру сгорания
    • Направляет шатун (в тронковых двигателях)
    • Рассеивает тепло, образующееся в камере сгорания
    • Поддерживает газообмен ( за счет всасывания и выброса газа)
    • Поддерживает приготовление смеси благодаря специальной конструкции поверхности поршня со стороны камеры сгорания, известной как днище поршня.
    • В нем находятся уплотнительные элементы (поршневые кольца).

    Площадки

    По своей базовой конструкции поршень представляет собой полый цилиндр, герметизированный с одной стороны. Он состоит из следующих областей:

    • Головка поршня с кольцевым ремнем,
    • ступица поршня и
    • вал.

    Головка поршня передает силы сжатия, возникающие при сгорании топливно-воздушной смеси, на коленчатый вал через ступицу поршня, головку поршня и шатун.

    Функциональность поршня

    Поршень подвергается воздействию различных сил. Когда двигатель работает, он постоянно движется вверх и вниз в цилиндре. В каждой точке поворота он резко тормозится, а затем снова ускоряется. Это создает силы инерции массы, действующие на поршень. Вместе с силами, создаваемыми давлением газа, они образуют поршневую силу.

    Усилие поршня передается на шатун и коленчатый вал. Однако шатун строго вертикальен только в верхней и нижней точках реверсирования (известных как мертвая точка). Наклон шатуна толкает поршень в сторону, т.е. к стенке цилиндра. Степень этой силы (также известной как боковая сила или нормальная сила) несколько раз меняет направление в течение рабочего цикла. Оно определяется силой поршня и углом днища поршня по отношению к оси шатуна. Боковая сила может быть получена из параллелограмма сил.

    Каждый поршень оснащен поршневыми кольцами. Поршневые кольца должны изолировать камеру сгорания и рабочее пространство от картера и снимать масло со стенок цилиндра, тем самым регулируя расход масла. Они также должны отводить тепло, поглощаемое поршнем во время сгорания, на охлаждаемый цилиндр.

    Охрана окружающей среды

    Конструкция, конструкция и состав материалов поршней, используемых в современных двигателях внутреннего сгорания, в значительной степени способствуют достижению низкого уровня выбросов и полного сгорания. Кроме того, современные поршни по своей конструкции снижают трение и расход масла. При этом они вносят существенный вклад в защиту окружающей среды и сохранение ресурсов.

    Амортизация

    Чтобы поршень надежно выполнял свою задачу на протяжении всего срока службы автомобиля, в бензиновых двигателях можно использовать только топливо с октановым числом, установленным производителем. Это также относится к свечам зажигания, которые также необходимо регулярно проверять. Если используется биотопливо, масло необходимо менять через гораздо более частые промежутки времени.

    Кроме того, при осмотре и техническом обслуживании необходимо следить за тем, чтобы использовались только моторные масла, одобренные изготовителем двигателя. Также необходимо проверить давление масла. Если давление масла слишком низкое, масляный насос может быть изношен, масляный фильтр может быть загрязнен, клапан избыточного давления в масляном насосе может быть неисправен или масло может быть разбавлено. Водитель также должен регулярно проверять уровень масла и при необходимости доливать его.

    Производитель

    Все, что вы хотели знать о поршнях – Статья – Автомобиль и водитель 3

    Автомобиль и Водитель

    Кусочки алюминия внутри вашего двигателя живут в огненном аду.

    При полностью открытой дроссельной заслонке и 6000 об/мин поршень бензинового двигателя подвергается воздействию силы почти в 10 тонн каждые 0,02 секунды, поскольку повторяющиеся взрывы нагревают металл до более чем 600 градусов по Фаренгейту.

    В наши дни этот цилиндрический Аид горячее и интенсивнее, чем когда-либо, и для поршней, скорее всего, станет только хуже. Поскольку автопроизводители стремятся к повышению эффективности, производители поршней готовятся к будущему, в котором самые мощные безнаддувные бензиновые двигатели будут производить 175 лошадиных сил на литр по сравнению со 130 сегодняшними. С турбонаддувом и повышенной мощностью условия становятся еще более жесткими. За последнее десятилетие рабочая температура поршня поднялась на 120 градусов, а пиковое давление в цилиндре увеличилось с 1500 фунтов на квадратный дюйм до 2200 фунтов на квадратный дюйм.

    Поршень рассказывает историю о двигателе, в котором он находится. Коронка может показать отверстие, количество клапанов и то, впрыскивается ли топливо непосредственно в цилиндр. Тем не менее, конструкция и технология поршня также могут многое сказать о более широких тенденциях и проблемах, стоящих перед автомобильной промышленностью. Выдумывая максиму: как движется автомобиль, так работает и двигатель; и как движется двигатель, так движется и поршень. В поисках лучшей экономии топлива и снижения выбросов автопроизводители требуют более легких поршней с меньшим коэффициентом трения и выносливостью, чтобы выдерживать более жесткие условия эксплуатации. Именно эти три проблемы — долговечность, трение и масса — поглощают рабочие дни поставщиков поршней.

    Во многих отношениях развитие бензиновых двигателей идет по пути, проложенному дизелями 15 лет назад. Чтобы компенсировать 50-процентное увеличение пикового давления в цилиндре, некоторые алюминиевые поршни теперь имеют вставку из железа или стали для поддержки верхнего кольца. Самые горячие бензиновые двигатели скоро потребуют охлаждающей галереи или закрытого канала на нижней стороне головки, который более эффективен для отвода тепла, чем сегодняшний метод простого распыления масла на нижнюю часть поршня. Разбрызгиватели стреляют маслом в маленькое отверстие в нижней части поршня, которое питает галерею. Однако кажущаяся простой технология непроста в производстве. Создание полого канала означает отливку поршня из двух частей и их соединение трением или лазерной сваркой.

    На поршни приходится не менее 60 процентов трения двигателя, и улучшения здесь напрямую влияют на расход топлива. Снижающие трение пропитанные графитом смоляные накладки, нанесенные трафаретной печатью на юбку, теперь почти универсальны. Поставщик поршней Federal-Mogul экспериментирует с конической поверхностью маслосъемного кольца, что позволяет уменьшить натяжение кольца без увеличения расхода масла. Трение нижнего кольца может разблокировать до 0,15 лошадиных сил на цилиндр.

    Автопроизводители также жаждут новых покрытий, снижающих трение между деталями, которые трутся или вращаются друг о друга. Твердое и скользкое алмазоподобное покрытие, или DLC, перспективно для гильз цилиндров, поршневых колец и поршневых пальцев, где оно может устранить необходимость в подшипниках между пальцем и шатуном. Но это дорого и мало применимо в современных автомобилях.

    «[Производители] часто обсуждают DLC, но попадут ли они в серийные автомобили — это знак вопроса», — говорит Йоахим Вагенбласт, старший директор по разработке продуктов в Mahle, немецком поставщике автозапчастей.

    Все более сложное компьютерное моделирование и более точные методы производства также позволяют создавать более сложные формы. В дополнение к чашам, куполам и углублениям клапана, необходимым для зазора и достижения определенной степени сжатия, асимметричные юбки имеют меньшую и более жесткую область на упорной стороне поршня, чтобы уменьшить трение и концентрацию напряжения. Переверните поршень, и вы увидите конические стенки толщиной едва ли более 0,1 дюйма. Более тонкие стенки требуют более жесткого контроля за допусками, которые уже измеряются в микронах или тысячных долях миллиметра.

    Тонкие стены также требуют лучшего понимания теплового расширения объекта, который иногда должен нагреваться от нуля до нескольких сотен градусов за считанные секунды. Металл в вашем двигателе неравномерно расширяется при нагревании, поэтому оптимизация допусков требует опыта проектирования и точных возможностей обработки для создания небольших эксцентриситетов в деталях.

    «Ничто из того, что мы делаем, не является прямым или круглым, — говорит Кери Уэстбрук, директор по разработкам и технологиям в Federal-Mogul. «Мы всегда строим некоторую компенсацию».

    Поршни дизельных двигателей претерпевают собственную эволюцию по мере того, как пиковое давление в цилиндрах возрастает до 3600 фунтов на квадратный дюйм. Mahle и Federal-Mogul предсказывают переход от литого алюминия к поршням из кованой стали. Сталь плотнее алюминия, но в три раза прочнее, благодаря чему поршень более устойчив к более высоким давлениям и температурам без увеличения веса.

    Сталь позволяет заметно изменить геометрию за счет уменьшения высоты сжатия поршня, определяемой как расстояние от центра поршневого пальца до вершины головки. На эту площадь приходится 80 процентов веса поршня, поэтому короче обычно означает легче. Важно отметить, что более низкая компрессионная высота не только сжимает поршни. Это также позволяет использовать более короткий и легкий блок двигателя, поскольку высота платформы уменьшена.

    Mahle производит стальные поршни для передовых турбодизельных двигателей, таких как Audi R18 TDI, четырехкратный победитель Ле-Мана, и двигатель Mazda LMP2 Skyactiv-D. В конце этого года компания начнет поставки своих первых стальных поршней для серийного дизельного двигателя малой грузоподъемности — 1,5-литрового четырехцилиндрового двигателя Renault.

    Непреходящая актуальность двигателя внутреннего сгорания обусловлена ​​постоянной эволюцией его компонентов. Поршни не сексуальны. Они не такие модные, как литий-ионный аккумулятор, не такие сложные, как коробка передач с двойным сцеплением, и не такие интересные, как дифференциал с вектором крутящего момента. Тем не менее, после более чем столетия автомобильного прогресса поршни с возвратно-поступательным движением продолжают производить большую часть движущей силы.

    1. Ferrari F136

    РОЙ РИЧИ, МАРК БРЭМЛИ, МАЙКЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

    Применения: 900 76 Ferrari 458 Italia (на фото) , 458 Spider

    Тип двигателя: DOHC V-8

    Рабочий объем: 274 куб. дюйма, 4497 ​​см3

    Удельная мощность: 125,0 л.с./л

    Максимальная скорость двигателя: 9000 об/мин

    Отверстие: 3,70 дюйма

    Вес: 2,1 фунта

    2. Ford Fox

    РОЙ РИЧИ, МАРК БРЭМЛИ, МАЙКЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

    Применение: Форд Фиеста (показан) , Фокус

    Тип двигателя : рядный 3-цилиндровый DOHC с турбонаддувом

    Рабочий объем: 61 куб. дюйм, 999 см3

    Удельная мощность: 123,1 л.с./л.

    Максимальная частота вращения двигателя: 6500 об/мин

    Отверстие: 2,83 дюйма

    Вес: 1,5 фунта

    3. Cummins ISB 6.7

    РОЙ РИЧИ, МАРК БРЭМЛИ, МАЙКЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

    : Ram Heavy Duty (на фото)

    Тип двигателя : рядный шестицилиндровый дизельный двигатель с толкателем и турбонаддувом

    Рабочий объем: 408 куб. дюймов, 6690 куб.см

    Удельная мощность: 55,3 л.с./л

    Максимальная скорость двигателя: 3200 об/мин

    Отверстие: 4,21 дюйма

    Вес: 8,9 фунта

    4. Ford Coyote

    РОЙ РИЧИ, МАРК БРЭМЛИ, МАЙКЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

    Применения: 900 76 Ford F-150, Mustang (на фото)

    Тип двигателя: DOHC V-8

    Рабочий объем: 302 куб. дюйма, 4951 см3

    Удельная мощность: до 84,8 л.с./л

    Максимальная скорость двигателя: 7000 об/мин

    Отверстие: 3,63 дюйма

    Вес: 2,4 фунта

    5. Fiat Fire 1.4L Turbo

    РОЙ РИЧИ, МАРК БРЭМЛИ, МАЙКЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

    Применение с: Додж Дарт; Фиат 500 Абарт (на фото) , 500 л, 500 Turbo

    Тип двигателя: рядный четырехцилиндровый SOHC с турбонаддувом

    Рабочий объем: 83 куб. дюйма, 1368 куб.см

    Удельная мощность: до 117,0 л.с./л

    Максимальная скорость двигателя: 6500 об/мин

    Отверстие: 2,83 дюйма

    Вес: 1,5 фунта

    6. Cummins ISX15

    РОЙ РИЧИ, МАРК БРЭМЛИ, МАЙКЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

    Применение: тяжелые грузовики (показан International Prostar)

    Тип двигателя: рядный шестицилиндровый дизель SOHC с турбонаддувом

    Рабочий объем: 912 куб. дюймов, 14 948 куб.

    Удельная мощность: до 40,1 л.с./л

    Максимальная частота вращения двигателя: 2000 об/мин

    Отверстие: 5,39 дюйма

    Вес: 26,4 фунта

    7. Chrysler LA-серии Magnum V-10

    РОЙ РИЧИ, МАРК БРЭМЛИ, МАЙКЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

    Применение: Dodge Viper (на фото) 90 003

    Тип двигателя: толкатель V-10

    Рабочий объем: 512 куб. дюймов, 8382 куб. см

    Удельная мощность: 76,4 л.с./л

    Максимальная скорость двигателя: 6400 об/мин

    Отверстие: 4,06 дюйма

    Вес: 9 шт.0076 2,8 фунта

    8. Ford EcoBoost 3.5L

    РОЙ РИЧИ, МАРК БРЭМЛИ, МАЙКЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

    : Ford Expedition, Explorer Sport, F-150 (на фото) , Телец ШО, Транзит; Lincoln MKS, MKT, Navigator

    Тип двигателя: с двойным турбонаддувом DOHC V-6

    Рабочий объем: 213 куб. дюймов, 3496 см3

    Конкретный вывод: до 105,8 л.с./л

    Максимальная скорость двигателя: 6500 об/мин

    Отверстие: 3,64 дюйма

    Вес: 2,6 фунта

    9. Toyota 2AR-FE

    РОЙ РИЧИ, МАРК БРЭМЛИ, МАЙКЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

    Применения: 9 0076 Scion TC (на фото) ; Toyota Camry, RAV4

    Тип двигателя: DOHC рядный четырехцилиндровый

    Рабочий объем: 152 куб. дюйма, 2494 куб.см

    Удельная мощность: до 72,2 л.с./л

    Максимальная скорость двигателя: 6500 об/мин

    Отверстие: 3,54 дюйма

    Вес: 2,5 фунта

    10. Цепная пила Stihl MS441

    РОЙ РИЧИ, МАРК БРЭМЛИ, МАЙКЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

    Применение: MS441 Цепная пила C-M Magnum (на фото) , MS441 Цепная пила C-MQ Magnum

    Тип двигателя: двухтактный одноцилиндровый

    Рабочий объем: 4 куб. дюйма, 71 см3

    Удельная мощность: 79,7 л.с./л

    Максимальная скорость двигателя: 13 500 об/мин

    Отверстие: 1,97 дюйма

    Вес: 0,4 фунта

    11. Chrysler Hellcat 6.2L

    РОЙ РИЧИ, МАРК БРЭМЛИ, МАЙКЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

    Применение: Dodge Challenger SRT Hellcat

    Тип двигателя: толкатель V-8 с наддувом

    Рабочий объем: 376 куб. дюймов, 6166 куб.см

    Удельная мощность: 114,7 л.с./л.

    Максимальная скорость двигателя: 6200 об/мин

    Отверстие: 4,09 дюйма

    Вес: 3,0 фунта

    РОЙ РИЧИ, МАРК БРЭМЛИ, МАЙКЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

    По мере увеличения нагрузки на поршни растут и требования к шатунам. Более высокое давление сгорания приводит к большим нагрузкам на стержни, соединяющие поршни с кривошипом. За редким исключением экзотических деталей из титана, шатуны обычно либо изготавливаются из порошковой стали, прессуются и нагреваются в форме, либо выковываются из стальной заготовки для более высокопроизводительных приложений. Основным технологическим сдвигом является растрескивание крышек шатунов как для порошковых, так и для кованых шатунов. Раньше шатун и торцевая крышка шатуна изготавливались как отдельные детали. Стержни с треснутыми крышками выходят из формы как единое целое в форме накидного ключа. Конец шатунной шейки травится, а затем защелкивается пополам с помощью пресса. Полученная неровная поверхность улучшает выравнивание; обеспечивает более надежное соединение крышки со стержнем; и позволяет использовать более тонкий и легкий шатун в сборе.

    РОЙ РИЧИ, МАРК БРЭМЛИ, МАЙКЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

    Неметаллические поршни: Керамика и композиты обеспечивают привлекательность более низкого теплового расширения, меньшего веса, более высокой прочности и жесткости по сравнению с алюминий. В 1980-х Mercedes-Benz использовал грант правительства Германии для создания двигателя 190E с поршнями из углеродного композита, который без проблем проехал 15 000 миль. В то время как технология надежна, производство было ограничивающим фактором. А 1990 Исследование НАСА показало, что обработка одного поршня из углерод-углеродной заготовки стоит 2000 долларов. Альтернативой был трудоемкий процесс ручной укладки.

    Роторы Ванкеля: Хорошо, хорошо, мы знаем, что это не возвратно-поступательный поршень, но чугунный треугольный ротор является аналогом поршня двигателя Ванкеля, потому что он преобразует энергию сгорания в крутящий момент. Пока новой Mazda RX не предвидится, нашей единственной надеждой на возрождение роторного двигателя остается Audi, которая дразнила нас расширителем диапазона Ванкеля в своей гибридной концепции Audi A1 e-tron 2010 года.

    Овальные поршни: В то время, когда двухтактные мотоциклетные двигатели были нормой, в 1979 году Honda представила на Всемирном Гран-при мотоциклов четырехтактный двигатель. Это один из самых странных двигателей в истории. Мотоцикл Honda NR500 GP был оснащен двигателем V-4 с углом V-образного сечения 100 градусов, овальными цилиндрами с восемью клапанами на каждом и двумя шатунами на поршень. Герметизация овальных поршней оказалась сложной задачей (первоначальный бизнес Соитиро Хонды заключался в поставке поршневых колец для Toyota), но это было одной из меньших забот команды.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *