Поршни двигателя: конструкция, функции, причины износа и способы его предотвращения

Содержание

конструкция, функции, причины износа и способы его предотвращения

В процессе работы поршни испытывают экстремально высокие давления, нагрузки и температуры. Выдержать такие условия им помогают особо прочные конструкционные материалы и специальные антифрикционные покрытия.

Поршень двигателя – один из основных составных элементов цилиндро-поршневой группы. Он воспринимает давление газов, образующихся при сгорании топливно-воздушной смеси, а затем передает его на шатун.

Экстремальные условия эксплуатации поршней – высокие давления, инерционные нагрузки и температуры – требуют использования для их изготовления материалов с особыми параметрами:

  • Высокой механической прочностью
  • Хорошей теплопроводностью
  • Малой плотностью
  • Незначительным коэффициентом линейного расширения
  • Антифрикционными свойствами
  • Коррозионной устойчивостью

Такими свойствами обладают специальные алюминиевые сплавы, отличающиеся легкостью и термостойкостью. Реже в изготовлении поршней используются серые чугуны и сплавы стали.

Поршни могут быть литыми или коваными. Первые производятся путем литья под давлением, вторые – методом штамповки из алюминиевого сплава с небольшим добавлением кремния (около 15 %). Это значительно увеличивает их прочность и снижает степень расширения материала в диапазоне рабочих температур.


Устройство поршня

Стандартный поршень автомобильного двигателя состоит из трех основных частей: днища, поршневых колец и направляющей (юбки).

Рассмотрим каждый компонент подробнее.


Днище поршня

Форма днища зависит от типа двигателя, особенностей камеры сгорания и многих других факторов. Поршень может иметь плоское, вогнутое или выпуклое днище.

Детали с плоским днищем наиболее просты в производстве, используются как в бензиновых, так и дизельных двигателях вихрекамерного и предкамерного типа.

Поршни с вогнутым днищем свойственны для дизельных двигателей. Они обеспечивает более эффективную работу камеры сгорания, однако способствуют большему образованию отложений при сгорании топлива.

Выпуклая форма днища улучшает производительность поршня, но при этом снижает эффективность процесса сгорания топливной смеси в камере.

Днище поршня принимает на себя основную термонагрузку, в связи с чем имеет самую большую, по сравнению с другими деталями, толщину: 7-9 мм в обычных бензиновых двигателях, 11 мм – в турбомоторах, 10-16 мм – в дизельных двигателях.

Существуют также автомобили, в которых установлены поршни с толщиной днища меньше стандартной – например, в некоторых моделях Honda она составляет всего 5,5-6 мм.

Днища некоторых поршней в целях увеличения прочности, снижения вероятности перегрева и прогорания подвергаются твердому анодированию: на верхний слой алюминия накладывается керамическое покрытие толщиной 8-12 мкм.

Уплотняющая часть

К уплотняющей части поршня относятся поршневые кольца, установленные в специальных канавках. В большинстве современных двигателей используется три кольца – одно маслосъемное и два компрессионных.

Маслосъемные кольца, как следует из названия, предназначены для удаления излишков масла со стенок цилиндра и предотвращения их попадания в камеру сгорания. Для этих целей служат сквозные отверстия, расположенные по периметру кольца.

Сквозь них масло поступает внутрь поршня, а затем отводится в поддон картера двигателя.

Компрессионные кольца предотвращают попадание отработавших газов из камеры сгорания в картер.

По форме они могут быть трапециевидными, коническими или бочкообразными. Некоторые виды колец оснащены пружинным расширителем.

Наибольшие нагрузки воспринимает первое (верхнее) компрессионное кольцо, поэтому для увеличения ресурса данной детали ее канавку укрепляют при помощи стальной вставки.

Диаметр уплотняющей части поршня меньше диаметра его направляющей части. Это связано с неодинаковым нагревом этих зон – в районе колец он больше. Минимальный диаметр жарового пояса позволяет избежать задиров и заклинивания колец в канавках.

Качество колец имеет огромное значение для уплотнения поршня. В этом отношении чугунные маслосъемные кольца намного надежнее составных, так как при их установке возникает меньше ошибок.


Направляющая часть

Направляющая (тронковую) часть поршня называют юбкой. С внутренней стороны она имеет бобышки, в которых находится отверстие под поршневой палец.

Нижняя кромка юбки предназначена для расточки и подгонки поршня. На ней имеется специальный буртик, с внутренней стороны которого в процессе механической обработки снимается часть металла.

В местах отверстий под поршневой палец с наружной части юбки вырезаются специальные углубления, вследствие чего стенки этих зон не взаимодействуют со стенками цилиндра, образуя так называемые «холодильники».

Стенки юбки предназначены для восприятия бокового давления. Естественно, что трение поршня о стенки цилиндра и нагрев обеих деталей при этом увеличивается.

Чтобы обеспечить свободное перемещение поршня в цилиндре, между юбкой и стенками гильзы предусмотрен зазор. Его величина зависит от линейного расширения металла поршня и цилиндра при нормальной работе двигателя. При слишком маленьком зазоре возникает перегрев, грозящий образованием задиров на поверхностях и заклиниванием поршня в цилиндре.

Большой зазор также не рекомендован, так как поршень при этом не выполняет своих уплотняющих свойств.

Многие автопроизводители еще на этапе производства поршней наносят на юбки специальные антифрикционные покрытия. Это позволяет защитить их поверхности от преждевременного износа и облегчить приработку.

В последнее время большую популярность не только в промышленности, но и в частном использовании приобрело антифрикционное твердосмазочное покрытие MODENGY Для деталей ДВС. Оно предназначено не только для поршней, но и для других деталей двигателя: коренных подшипников коленчатого вала, втулок пальцев, распредвалов, дроссельной заслонки.

Данное покрытие эффективно снижает износ и трение, предотвращает скачкообразное движение сопряженных поверхностей, появление на них задиров и заклинивание поршня в цилиндре.

Средство устойчиво к длительному воздействию моторного масла, сохраняет работоспособность двигателя в режиме масляного голодания.

Полимеризация покрытия MODENGY Для деталей ДВС возможна как при комнатной температуре (за 12 часов), так и при нагреве до +200 °С (за 20 минут).

Удобная аэрозольная упаковка с тщательно настроенными параметрами распыления упрощает процесс нанесения состава.

Перед использованием покрытия производитель рекомендует провести предварительную подготовку деталей Специальным очистителем-активатором MODENGY. Это гарантирует отличную адгезию материала и его долговременную работу.

MODENGY Для деталей ДВС и Специальный очиститель-активатор MODENGY доступны в одном наборе. Поэтапное использование этих средств не требует особых навыков и дополнительного оборудования.

Причины износа поршней

При ежедневной эксплуатации транспортного средства двигатель работает стабильно лишь до определенного момента. Поршни, как и любые другие элементы двигателя, подвержены износу и возникновению неисправностей.

О некорректной работе поршневой группы свидетельствуют:

  • Повышенный расход моторного масла и топлива
  • Выделение из выхлопной трубы синего дыма
  • Нестабильная работа двигателя на холостых оборотах (вибрация рычага КПП)
  • Снижение мощности двигателя и т.д.
  • Нагар на свечах зажигания

При демонтаже ЦПГ могут наблюдаться проблемы, требующие срочного решения и определения причин.

Так, задиры на днище поршня возникают вследствие его перегрева, к которому, в свою очередь, могли привести нарушения процесса сгорания топливно-воздушной смеси, деформация или засорение масляной форсунки, установка поршней неправильного размера и параметров, неисправности в системе охлаждения.

Следы от ударов на днище свидетельствуют о слишком большом выступе детали, неправильной посадке клапана, отложениях масляного нагара, неподходящем уплотнении ГБЦ и др. проблемах.

К появлению трещин на днище приводят недостаточная компрессия в цилиндрах, плохое охлаждение поршня, неисправность впрыскивающей форсунки.

Поршневые кольца могут повреждаться вследствие неправильной установки поршней. В таких случаях кольца подвергаются вибрации и сильному износу в области канавок.

Радиальный износ поршней возникает вследствие избыточного количества топлива в камере сгорания: из-за сбоев в приготовлении смеси, нарушения процесса сгорания, недостаточного давления сжатия, неправильного размера выступов поршней.

Осевой износ происходит в результате загрязнения поршней продуктами износа, образующимися во время приработки двигателя.

Повреждения юбки поршня могут возникать по многим причинам. Например, вследствие ассиметричного пятна контакта, которое вызвано скручиванием и/или деформацией шатуна, большим люфтом шатунного подшипника.

Задиры, расположенные под углом, образуются из-за слишком тесной посадки поршней, ошибок при монтаже шатуна горячим прессованием, недостаточной смазки при первом пуске двигателя.

Поверхности юбки подвергаются усиленному трению из-за переобогащения топливно-воздушной смеси, ее недостаточного сжатия, неисправности пускового устройства холодного двигателя, перебоев в зажигании и т.д.

Основной причиной выхода из строя гильз является кавитация, вызванная недостаточным охлаждением, применением некачественной охлаждающей жидкости, неправильной или неточной посадкой гильз цилиндров, а также использованием неподходящих уплотнительных колец с круглым сечением.

Блестящие места в верхней части цилиндра – не что иное как масляный нагар. Он возникает вследствие неисправности некоторых деталей и проникновения масла вместе с газами во всасывающий тракт.

Возникновение вышеописанных проблем, особенно в комплексе, требует серьезного внимания и безотлагательных действий. Промедление в таких случаях грозит дорогостоящим ремонтом или полной заменой двигателя.


Справочная и техническая информация о деталях двигателей

При расточке блока и установке поршней в блок цилиндров, требуется следовать рекомендациям производителя поршней по обработке цилиндров, монтажу и установке деталей цилиндропоршневой группы. Основная информация нанесена на верней части поршня. Если какая либо информация не указана производителем поршней, ни на упаковке, ни на самом поршне, то необходимо следовать рекомендациям производителя автомобиля. Расшифровка символов и значений приведена ниже.

Информация на верхней части.

  • Размер поршня. Некоторые производителей поршней наносят на днище поршня размер самого поршня в сотых долях миллиметра, этот контрольный параметр позволяет проверить качество изготовления поршней и точность размеров, пред непосредственной установкой. Например: 83.93. Это означает, что в измеряемых точках размер поршня не превышает указанного размера (с учетом поля допуска). Измерение следует производить при температуре поршня (+20 градусов), с помощью микрометра или аналогичного измерительного инструмента, с точностью измерения до одной сотой доли миллиметра (0,01мм).
  • Монтажный зазор. Для того, что бы обеспечить уплотнение рабочей полости цилиндра и минимальную работу трения поршня, а так же предотвратить горячий поршень от заклинивания, между поршнем и стенкой цилиндра предусматривается монтажный (температурный) зазор ( Sp ). При повышенном зазоре между поршнем и стенкой цилиндра работа двигателя заметно ухудшается — имеет место прорыв газов в картер двигателя, ухудшается из-за этого качество масла, закоксовываются кольца и снижается мощность двигателя. Величина этого зазора задается производителем поршней для начальной температуры деталей цилиндропоршневой группы (обычно +20 градусов), и зависит в основном от разности температур, массы поршня и свойств материалов соприкасающихся деталей. Пример: Sp=0.04. Это означает, что зазор между поршнем  (по максимальному размеру юбки поршня) и цилиндром должен быть 0,04 мм (с учетом поля допуска).
  • Товарный знак. Каждый серьезный производитель поршней маркирует свою продукцию своим фирменным товарным знаком. Во первых, это часть борьбы с подделок своей продукции, а во вторых демонтировав при ремонте старый поршень сразу становится возможным идентифицировать его, с помощью номера отливки на днище поршня.
  • Направление установки. Поршни современных двигателей имеют строго определенное положение в двигателе, в частности, это связано с тем ось поршневого пальца имеет некоторое смещение, относительно центрально оси симметрии поршня. Это сделано для уменьшения шума при работе двигателя, а точнее ударных нагрузок на стенки цилиндра при перекладке поршня в крайнем положении. Как правило, производители используют два способа изображения направления установки– (для двигателей размещаемых спереди и сзади автомобиля). На днище наносится либо стрелка, указывающее направление передней части автомобиля (направление движения), либо схематично изображается коленчатый вал с маховиком.

 

Направление установки поршней для двигателя, установленного в
передней части автомобиля
  Направление установки поршней для двигателя, установленного в
задней части автомобиля

Номер отливки на внутренней части поршня.

Пример расположения номера отливки для поршней,
фирмы Kolbenschmidt

 

  Пример расположения номера отливки для поршней,
фирмы MAHLE

 

Опытные мотористы часто сталкиваются в своей работе с трудностью, когда в ремонт поступает очень старый автомобиль, и нет какой либо возможности точно идентифицировать тип его двигателя. Часто просто бывает не корректная информация в документах, на автомобиль, например ошибка (опечатка) в VIN коде или в графе «ТИП ДВИГАТЕЛЯ». Но ремонтировать нужно, и необходимо правильно подобрать ремонтные поршни.
Тогда на помощь приходит информация о номере отливки на внутренней части поршня. Следует извлечь поршень из блока цилиндров, очистить от нагара внутреннюю полость и прочесть отлитые цифры и буквы. Подобный способ подходит не для всех поршней, но основные поставщики конвейеров европейских автомобилей MAHLE, Kolbenschmidt, AE, Nural позволяют расшифровать эти данные.
Что же такое «номер отливки»? Поршни, имеющие одинаковые основные параметры изготавливаются на одном и том же технологическом оборудовании (в частности в одной литьевой форме), затем подвергаются последующей механической обработке в зависимости от требуемого ремонтного размера и модификации. То есть для поршней имеющие STD и ремонтные размеры номера отливок совпадают. Как правило, одному номеру отливки соответствуют несколько поршней на один двигатель, это стандартный поршень и его последующие ремонты. Но есть исключения (когда номер отливки совпадет с несколькими модификациями поршня) тогда необходимо замерить контролируемые геометрические параметры.
Как расшифровать? Мы рекомендуем проверять ваши номера отливок через бумажные каталоги соответствующих производителей. Помимо этого вы можете расшифровать эти данные и с помощью on-line каталогов наших поставщиков. 

Следует определить изготовителя старого поршня по торговой маркировке, а затем, используя его каталог (бумажный или электронный) ввести найденный номер. Значение номера отливки необходимо вводить непосредственно в поле поиска по артикулу детали ( Artikel # ) или поиска по замене номера (Reference No:). Не забывайте проверять полученные результаты по основным геометрическим размером со старыми деталями.

Поршень двигателя (назначение, устройство, принцип работы)

В цилиндро-поршневой группе (ЦПГ) происходит один из основных процессов, благодаря чему двигатель внутреннего сгорания функционирует: выделение энергии в результате сжигания топливовоздушной смеси, которая впоследствии преобразуется в механическое действие – вращение коленвала. Основной рабочий компонент ЦПГ — поршень. Благодаря ему создаются необходимые для сгорания смеси условия. Поршень — первый компонент, участвующий в преобразовании получаемой энергии.

Поршень двигателя имеет цилиндрическую форму. Располагается он в гильзе цилиндра двигателя, это подвижный элемент – в процессе работы он совершает возвратно-поступательные движения и выполняет две функции.

  1. При поступательном движении поршень уменьшает объем камеры сгорания, сжимая топливную смесь, что необходимо для процесса сгорания (в дизельных моторах воспламенение смеси и вовсе происходит от ее сильного сжатия).
  2. После воспламенения топливовоздушной смеси в камере сгорания резко возрастает давление. Стремясь увеличить объем, оно выталкивает поршень обратно, и он совершает возвратное движение, передающееся через шатун коленвалу.

Что такое поршень двигателя внутреннего сгорания автомобиля?

Устройство детали включает в себя три составляющие:

  1. Днище.
  2. Уплотняющая часть.
  3. Юбка.

Указанные составляющие имеются как в цельнолитых поршнях (самый распространенный вариант), так и в составных деталях.

Днище

Днище — основная рабочая поверхность, поскольку она, стенки гильзы и головка блока формируют камеру сгорания, в которой и происходит сжигание топливной смеси.

Главный параметр днища — форма, которая зависит от типа двигателя внутреннего сгорания (ДВС) и его конструктивных особенностей.

В двухтактных двигателях применяются поршни, у которых днище сферической формы – выступ днища, это повышает эффективность наполнения камеры сгорания смесью и отвод отработанных газов.

В четырехтактных бензиновых моторах днище плоское или вогнутое. Дополнительно на поверхности  проделываются технические углубления – выемки под клапанные тарелки (устраняют вероятность столкновения поршня с клапаном), углубления для улучшения смесеобразования.

В дизельных моторах углубления в днище наиболее габаритны и имеют разную форму. Такие выемки называются поршневой камерой сгорания и предназначены они для создания завихрений при подаче воздуха и топлива в цилиндр, чтобы обеспечить лучшее смешивание.

Уплотняющая часть предназначена для установки специальных колец (компрессионных и маслосъемных), задача которых — устранять зазор между поршнем и стенкой гильзы, препятствуя прорыву рабочих газов в подпоршневое пространство и смазки – в камеру сгорания (эти факторы снижают КПД мотора). Это обеспечивает отвод тепла от поршня к гильзе.

Уплотняющая часть

Уплотняющая часть включает в себя проточки в цилиндрической поверхности поршня — канавки, расположенные за днищем, и перемычки между канавками. В двухтактных двигателях в проточки дополнительно помещены специальные вставки, в которые упираются замки колец. Эти вставки необходимы для исключения вероятности проворачивания колец и попадания их замков во впускные и выпускные окна, что может стать  причиной их разрушения.

Перемычка от кромки днища и до первого кольца именуется жаровым поясом. Этот пояс воспринимает на себя наибольшее температурное воздействие, поэтому высота его подбирается, исходя из рабочих условий, создаваемых внутри камеры сгорания, и материала изготовления поршня.

Число канавок, проделанных на уплотняющей части, соответствует количеству поршневых колец (а их может использоваться 2 — 6). Наиболее же распространена конструкция с тремя кольцами — двумя компрессионными и одним маслосъемным.

В канавке под маслосъемное кольцо проделываются отверстия для стека масла, которое снимается кольцом со стенки гильзы.

Вместе с днищем уплотнительная часть формирует головку поршня.

Вас также заинтересует:

Юбка

Юбка выполняет роль направляющей для поршня, не давая ему изменить положение относительно цилиндра и обеспечивая только возвратно-поступательное движение детали. Благодаря этой составляющей осуществляется подвижное соединение поршня с шатуном.

Для соединения в юбке проделаны отверстия для установки поршневого пальца. Чтобы повысить прочность в месте контакта пальца, с внутренней стороны юбки изготовлены специальные массивные наплывы, именуемые бобышками.

Для фиксации пальца в поршне в установочных отверстиях под него предусмотрены проточки для стопорных колец.

Типы поршней

В двигателях внутреннего сгорания применяется два типа поршней, различающихся по конструктивному устройству – цельные и составные.

Цельные детали изготавливаются путем литья с последующей механической обработкой. В процессе литья из металла создается заготовка, которой придается общая форма детали. Далее на металлообрабатывающих станках в полученной заготовке обрабатываются рабочие поверхности, нарезаются канавки под кольца, проделываются технологические отверстия и углубления.

В составных элементах головка и юбка разделены, и в единую конструкцию они собираются в процессе установки на двигатель. Причем сборка в одну деталь осуществляется при соединении поршня с шатуном. Для этого, помимо отверстий под палец в юбке, на головке имеются специальные проушины.

Достоинство составных поршней — возможность комбинирования материалов изготовления, что повышает эксплуатационные качества детали.

Материалы изготовления

В качестве материала изготовления для цельнолитых поршней используются алюминиевые сплавы. Детали из таких сплавов характеризуются малым весом и хорошей теплопроводностью. Но при этом алюминий не является высокопрочным и жаростойким материалом, что ограничивает использование поршней из него.

Литые поршни изготавливаются и из чугуна. Этот материал прочный и устойчивый к высоким температурам. Недостатком их является значительная масса и слабая теплопроводность, что приводит к сильному нагреву поршней в процессе работы двигателя. Из-за этого их не используют на бензиновых моторах, поскольку высокая температура становится причиной возникновения калильного зажигания (топливовоздушная смесь воспламеняется от контакта с разогретыми поверхностями, а не от искры свечи зажигания).

Конструкция составных поршней позволяет комбинировать между собой указанные материалы. В таких элементах юбка изготавливается из алюминиевых сплавов, что обеспечивает хорошую теплопроводность, а головка – из жаропрочной стали или чугуна.

Но и у элементов составного типа есть недостатки, среди которых:

  • возможность использования только в дизельных двигателях;
  • больший вес по сравнению с литыми алюминиевыми;
  • необходимость использования поршневых колец из жаростойких материалов;
  • более высокая цена;

Из-за этих особенностей сфера использования составных поршней ограничена, их применяют только на крупноразмерных дизельных двигателях.

Видео: Принцип работы поршня двигателя.
Устройство

Как устроен поршень двигателя

Восприятие давления газов, герметизация камеры сгорания, отвод тепла и передача усилий на шатун — это основные функции поршня. Термодинамический процесс происходит именно с помощью поршня двигателя.

Высокое давление, всплески температуры и иные нагрузки — это условия, в которых приходится работать поршню. По этой причине был выбран материал, из которого производят поршень — чаще из алюминиевого сплава, редко из стали. Производят их через штамповку или литьем под давлением.

Схема поршня двигателя

Конструкция поршня включает в себя «головку» и «юбку», но считается он цельным элементом. Для определенной модели автомобиля поршень будет выглядеть по разному в зависимости  от того какой тип двигателя, форма камеры сгорания и само сгорание. Поршни для бензинового и дизельного двигателя различны. Поршень бензинового двигателя имеет плоскую головку. В ней могут быть быть канавки для открытия клапанов на 100%. Поршни двигателей с простым впрыском топлива немного сложнее. В дизельном двигателе все наоборот, там выполняется непростая камера сгорания, которая создает значительное завихрение и улучшает улучшают условия для смешивания смесей.

У поршня ниже головки проходят определенные и специальные канавки для поршневых колец. Юбка похожа на конус или на простую бочку. При нагреве такая конструкция может пригодиться, потому что может компенсировать температурное расширение. В условиях, когда достигнута нужная температура поршень становится похож на цилиндр. Дисульфид молибдена, графит находится на поршень, чтобы снизить потери на трении. В юбке поршня есть приспособления для крепления поршневого пальца.

 Охлаждается поршень по разному:

 — масляный туман в цилиндре;

 — разбрызгивание масла через отверстие в шатуне;

 — разбрызгивание масла специальной форсункой;

 — впрыскивание масла в определенный кольцевой канал в зоне колец;

 — циркуляция масла по трубчатому змеевику в головке поршня.

 Поршневые кольца соединены со стенками цилиндра. Они сделаны из модифицированного чугуна. Кольца трутся в поршне и являются самыми главными источниками трения. Потери на трение в кольцах доходит до 30% всех потерь в двигателе, обусловленных механикой.

 Число и расположение колец зависит от того, какой двигатель. Самая часто встречающая схема – 2 компрессионных и 1 маслосъемное кольцо. Компрессионные кольца имеют разные формы — похожи на трапецию, бочку или конус.

 Маслосъемное кольцо справляется с излишками масла с поверхности цилиндра и не дает маслу попасть в камеру сгорания. У кольца много дренажных отверстий. Некоторые конструкции колец имеют пружинный расширитель.

 Соединение поршня с шатуном происходит с помощью поршневого пальца, который имеет трубчатую форму и изготавливается из стали. Как установить поршневой палец? Есть несколько способов. Для начала самы известный способ, это со способностью переворачиваться в бобышках и поршневой головке шатуна во время действия. Чтобы не смещаться его фиксируют стопорными кольцами. Намного редко используется жесткое закрепление концов пальца в поршне или в поршневой головке шатуна.

 Из чего состоит поршневая группа? Из поршня, поршневых колец и пальцев.

 В каталоге запчастей для автомобиля на нашем сайте можно найти все основные элементы двигателя для любого автомобиля ваз или иномарку. На сайте можно посмотреть цены в интернет каталоге, и сделать заказ на поршни двигателя.

Поршни, поршни в сборе, поршневая группа для дизельных двигателей

по порядкупо росту ценыпо снижению ценыпо новизне

  • В 41731061

  • В 41731041

  • В 31354415

  • 6102B 04 01

  • Y480G-04005, цв

  • YD480, н/сч

  • NA385B-04002.3.10

  • NA485B-04100

  • D480 н/сч, GB/T1148-93

Ремонт поршней двигателя в Одинцово

Повышенный расход моторного масла, снижение мощности мотора, детонация отработанных газов и характерный металлический стук – повод обратиться в автосервис. Квалифицированные механики Автоцентра «h3O AUTO» выполняют в Одинцово ремонт поршней двигателя по приемлемым ценам с гарантией на все виды работ 1 год.

Вследствие интенсивной езды и механических нагрузок поршневые кольца изнашиваются, лопаются перегородки между поршнями. При любых неполадках в поршневой группе автовладельцы замечают нестабильную работу двигателя. Автомобиль теряет динамику движения, что очень опасно на дороге.

Можно ли выполнить ремонт поршней двигателя самостоятельно

Бывают случаи, когда отремонтировать этот узел действительно можно самому, например при износе колец, если на цилиндре отсутствуют задиры, борозды, выбоины и другие значимые повреждения. В этом случае достаточно снять с двигателя масляный поддон и демонтировать головку блока цилиндров, не трогая сам мотор.

В большинстве случаев ремонт поршней двигателя требует гораздо больших усилий и специфических знаний. Очень часто изношенную поршневую группу, по результатам диагностики, рекомендуют заменить на новый ремкомплект. Определить это можно только с помощью специализированного оборудования, которое в домашних условиях всегда отсутствует.

4 причины доверить ремонт поршней двигателя Автотехцентру «h3O AUTO»

  1. Опытные механики оперативно определяют причину неисправности посредством глубокой диагностики.
  2. Владея этой информацией, они меняют только те комплектующие, которые действительно износились или вышли из строя. Это значительно экономит средства по сравнению с самостоятельным восстановлением «наугад».
  3. На эту работу, как и на остальные услуги нашего автоцентра Авто Сервис, предоставляется гарантия 1 год.
  4. Цена на ремонт поршней двигателя зависит от объема работ и комплектующих, которые были заменены в механизме, но всегда остается доступной для большинства автомобилистов.

Самостоятельные действия по восстановлению поршневой группы могут привести к неисправностям силового механизма. В свою очередь, своевременные ремонтные работы в исполнении профессионалов вернут двигатель к жизни, добавят ему мощности и динамики. Не рискуйте «сердцем» своего авто – доверьте восстановление поршней нашим специалистам!

Зачем инженеры возвращают встречные поршни — ДРАЙВ

Недавнее известие о том, что миллиардер Билл Гейтс и инвестиционная фирма Khosla Ventures решили вложить миллионы в компанию EcoMotors, проектирующую двигатели со встречным движением поршней, заставило нас детально рассмотреть заокеанскую разработку. У подобных моторов давняя история, но широкого распространения они не получили, во всяком случае на автомобильном транспорте. EcoMotors придала, казалось бы, известному блюду новый вкус.

Свой двигатель с двумя оппозитными цилиндрами, в каждом из которых работает по два встречных поршня, EcoMotors назвала незамысловато — OPOC, что значит Opposed Piston Opposed Cylinder — «оппозитные поршни, оппозитные цилиндры». В принципе, по такой схеме может работать как бензиновый мотор (или ДВС, потребляющий спирт), так и дизельный, но пока компания сосредоточила усилия на втором варианте.

Первый двигатель типа OPOC — дизельную модель EM100 (число означает диаметр цилиндров в миллиметрах) американская компания впервые показала общественности весной 2010 года. По информации EcoMotors, весит агрегат 134 кг, размеры его составляют 58 (длина) х 105 (ширина) х 47 (высота) см, развивает он мощность 325 лошадиных сил и выдаёт крутящий момент 900 Н•м.

Двигатель OPOC — двухтактный, так что за один оборот коленчатого вала встречные поршни каждого из цилиндров совершают рабочий ход. При движении к своим мёртвым точкам они открывают окна в стенках цилиндров. Причём один из поршней заведует впуском, второй — выпуском. На рисунке ниже их легко распознать по цветам — синему и красному соответственно. При этом окна расположены так, что выпускное открывается чуть раньше впускного и закрывается также раньше. Это важно для хорошего газообмена.

Ключевые компоненты OPOC, вид сверху и спереди. Обратите внимание на несимметричное расположение впускных и выпускных патрубков относительно коленвала.

Устранение головок цилиндров, клапанов и механизма их привода упростило мотор, сделало его легче, снизило потери на трение и даже расход масла (по оценке компании, вдвое против обычного дизеля). Но ведь такими преимуществами вроде бы могут похвастать и другие двухтактные моторы со встречными поршнями?

Изюминка новинки в том, что все поршни в ней соединены с единственным центральным коленвалом, в то время как раньше схожие конструкции требовали двух коленчатых валов по краям движка. Соответственно, они были заметно крупнее и тяжелее, и неудивительно, что применение нашли в основном на тепловозах и судах. Ну а OPOC, схема работы которого представлена в ролике ниже, нацелен на куда более широкий спектр машин.

Как любой двухтактник, OPOC нуждается во внешнем устройстве, которое продувало бы цилиндры в момент открытия окон. В рассматриваемом случае конструкторы решили возложить эту обязанность на турбонаддув. Но очевидно, он не поможет при запуске мотора, а сами цилиндры «вдохнуть» и «выдохнуть» не способны.

Решение опять же нашлось в давней идее, которую ряд компаний обкатывал, но до ума никто так и не довёл. На вал классической турбинки инженеры поставили электродвигатель. При запуске и до тех пор, пока ДВС не набрал обороты, этот моторчик получает энергию от батарей, обеспечивая «дыхание» OPOC. А далее мотор отключается, и турбонаддув превращается в самый обычный. Более того, на высоких оборотах, когда поток выхлопных газов велик, электромотор в турбине может превращаться в генератор, подпитывающий батареи машины.

Электрический турбонаддув — один из самых спорных элементов новинки. Для его раскрутки нужно приличное количество энергии, что приводит к необходимости ёмких и мощных батарей, а значит, удорожает конструкцию.

Новая схема, по утверждению её создателей, отличается очень хорошей продувкой цилиндров, а потому позволяет извлечь наибольшую выгоду из самого двухтактного цикла, теоретически позволяющего достичь вдвое большей литровой мощности двигателя, по сравнению с четырёхтактным. Хотя на практике такого показателя ещё не достигалось. Система OPOC обладает рядом иных любопытных особенностей.

При новой конфигурации для того, чтобы обеспечить заданный рабочий объём, каждому из поршней за один ход требуется пройти вдвое меньшее расстояние. Это означает и меньшую скорость движения при фиксированных оборотах, следовательно, и меньшие потери на трение. Всеми этими особенностями двигатель OPOC обязан в первую очередь Петеру Хофбауэру. Основатель, председатель и технический директор EcoMotors ранее много лет возглавлял разработку перспективных двигателей в компании Volkswagen. К примеру, на его счету смещённо-рядный мотор VR6 с малым (15 градусов) углом развала цилиндров. И хотя фирма EcoMotors была основана в 2008 году, сам Хофбауэр начал размышлять над OPOC на несколько лет раньше.

Идея Петера Хофбауэра хотя сама по себе и свежа, но корнями уходит в 1930-е годы. Отправной точкой его изысканиям послужили созданный Гуго Юнкерсом авиационный дизель со встречными поршнями Junkers JUMO 205 (вверху) и бензиновые «оппозитники» Фердинанда Порше (внизу), в числе которых мотор автомобиля, получившего после войны всемирную известность под именем «Жук». Фактически Хофбауэр скрестил эти две конструкции.

Компания сообщает, что OPOC в дизельном варианте на 30–50% легче, чем обычный турбодизель той же мощности, содержит на 50% меньше деталей, занимает в два-четыре раза меньше места под капотом и при этом может быть (при определённых условиях) на 45–50% экономичнее. Последняя цифра вызывает у специалистов самые большие сомнения, однако, даже если выигрыш в расходе преувеличен, основания для оптимистичных заявлений у EcoMotors имеются. Первый образец ДВС OPOC, по утверждению фирмы, провёл на динамометрическом стенде свыше 500 часов. Можно констатировать, что схема работает. С характеристиками дело обстоит не так однозначно. Модель EM100, которую ныне испытывают инженеры, выдаёт заявленные параметры по мощности и крутящему моменту только при настройках, не учитывающих токсичность выхлопа. Такую версию OPOC компания предлагает ставить на военную технику, для которой отношение отдачи к весу важнее прочего.

Для обычного транспорта EcoMotors предлагает настраивать те же движки несколько иначе: на 300 л.с. и 746 Н•м. Улучшение экономичности против обычных дизелей в таком случае обещано «всего» 15-процентное, но и оно выглядит огромным шагом вперёд, так как обычно компании борются за каждый процент. Дальнейшая экономия возможна при объединении пары таких моторов в четырёхцилиндровый агрегат. То, что раньше было самостоятельным мотором, превращается в модуль. Между ними EcoMotors намерена ставить управляемую электроникой муфту. При малой нагрузке, мол, будет работать только один модуль, при большой — подключится второй. А так как OPOC хорошо уравновешен, все действующие силы тут компенсируют друг друга и мотор отличается минимумом вибраций, то и активация «спящей» половинки в любой момент пройдёт гладко.

Замысел этот похож на известное отключение цилиндров в больших V-образных двигателях. Вот только там «холостые» поршни всё равно продолжают движение вверх-вниз, здесь же половина мотора останавливается полностью, а вторая продолжает трудиться в выгодном режиме. Кроме того, в такой бинарной схеме инженеры предлагают ещё немного снизить предельную отдачу каждого модуля — до 240 «лошадок» (480 будет развивать весь агрегат). По соотношению мощности и веса это всё ещё будет очень достойный мотор, причём, мол, удастся добиться максимальной экономии горючего (тех самых 45%) и соответствия самым строгим нормам по токсичности выхлопа, уверяют разработчики.

Пока OPOC — система сырая, а её конструкторы больше раздают обещания. Но они оптимисты и приступили к расширению линейки. На чертежах уже вырисовывается 75-сильный двухцилиндровый мотор EM65 чуть меньшего размера и массы, чем EM100. Его, кстати, хотят перевести на бензин. Сферы же применения EM65 вполне очевидны: лёгкие грузовики и легковушки, в том числе гибриды. Определённым залогом, но не стопроцентной гарантией успеха экзотического ДВС является репутация его главного конструктора: Петер отдал Фольксвагену 20 лет жизни. И удивительно ли, к слову, что его нынешняя работа перекликается с проектами Порше, стоявшего у истоков знаменитой немецкой марки?

Руководство для начинающих: что такое поршень (и для чего он нужен)?

Поршни составляют основу поршневого двигателя внутреннего сгорания, поэтому их часто называют «поршневыми двигателями». По сути, поршень — это просто сплошной металлический цилиндр, который перемещается вверх и вниз в полом цилиндре блока цилиндров . Сам поршень немного меньше отверстия, в которое он входит, но у него есть поршневые кольца, находящиеся под напряжением, чтобы обеспечить (почти) герметичное уплотнение после его установки в цилиндр двигателя.Поршень прикреплен с помощью пальца к шатуну, который, в свою очередь, соединен с коленчатым валом, и вместе они превращают движение вверх и вниз (возвратно-поступательное) в круговое и круговое (вращательное) движение, приводя в движение колеса.

Двигатели внутреннего сгорания могут работать только с одним цилиндром и, следовательно, с одним поршнем (мотоциклы и газонокосилки) или с 12 двигателями, но у большинства автомобилей их четыре, шесть или восемь.

Поршни также используются в двигателях внешнего сгорания, также известных как паровые двигатели, где вода нагревается в котле, а образующийся пар используется для приведения в движение поршней во внешних цилиндрах, которые затем приводят в движение колеса.

В роторном двигателе нет поршней, цилиндров или клапанов, только вращаются роторы треугольной формы. Но в настоящее время роторные двигатели Ванкеля в производстве отсутствуют, последним из них стала Mazda RX-8 в 2012 году.

В каждом четырехтактном (бензиновом или дизельном) двигателе автомобиля процессы впуска, сжатия, сгорания и выпуска происходят над головкой поршня, что заставляет поршень двигаться вверх и вниз (или из стороны в сторону в горизонтально расположенных двигателях). , как Porsche или Subaru) внутри цилиндра.Поршень толкает вверх, сжимая топливо и воздух в гораздо меньшее пространство в головке блока цилиндров, где он воспламеняется свечой зажигания. В результате взрыва поршень опускается вниз, образуя выхлопные газы. Более полное объяснение можно найти здесь или на анимации ниже.

Из чего сделаны поршни?

Компоненты двигателя сегодня должны быть прочными для долговечности и легкими для повышения эффективности, что означает, что все поршни в той или иной форме изготовлены из алюминиевого сплава.Но еще на заре эры безлошадных повозок поршни делали из чугуна, потому что они очень долго изнашивались и устойчивы к нагреванию, которое могло быстро расплавить алюминий. По мере развития металлургии и улучшения контроля температуры за счет более эффективной конструкции легкость алюминия быстро взяла верх и позволила достичь гораздо более высоких оборотов в минуту.

Поршневые кольца продолжали изготавливаться из чугуна и стальных сплавов из-за более высокой жесткости пружины. Пакет колец обычно включает сверху вниз компрессионное кольцо, грязесъемное кольцо и маслосъемное кольцо, изготовленные из чугуна или стали.

Компрессионное кольцо закрывает зазор между поршнем и цилиндром. Второе, грязесъемное кольцо, способствует сжатию, а также удаляет излишки масла со стенок цилиндра при движении поршня вниз. Масляное кольцо на самом деле состоит из 2 колец и расширителя в большинстве двигателей, оно также вытирает масло со стенок цилиндра, а затем позволяет ему стекать обратно через небольшие отверстия в посадочной поверхности кольца. Но со временем кольца могут изнашиваться и терять эластичность, позволяя маслу из картера попасть в камеру сгорания.Чрезмерный расход масла и голубоватый дым из выхлопных труб обычно указывает на износ поршневых колец.

Поршни и шатуны двигателя

Поршень выполняет роль подвижной заглушки в цилиндре, образуя нижнюю часть камеры сгорания. Между поршнем и стенкой цилиндра имеется газонепроницаемое уплотнение, поэтому единственный способ расширения горячих газов сгорания — это прижать поршень вниз. То же самое и с пушечным ядром, но вместо того, чтобы улететь на чей-то любимый пиратский корабль, вращающийся коленчатый вал толкает поршень вверх по цилиндру, и цикл повторяется.

Более 60% трения внутри двигателя происходит за счет движения поршневого узла, и поэтому это одна из основных областей повышения эффективности двигателей. Поршень все еще находится в стадии разработки и исследований, о чем мы вскоре поговорим более подробно.

Огромные силы создаются при изменении направления поршня при его движении вверх и вниз. Более легкий поршневой узел имеет меньший импульс, что приводит к меньшему усилию и позволяет двигателям с более высокими оборотами. Это означает, что происходит постоянный толчок для уменьшения веса шатуна и поршня.

Поршень соединен с коленчатым валом через шатун , часто сокращается до стержень или же шатун . Эти части вместе известны как поршневой узел . Оба конца шатуна могут поворачиваться: часть шатуна, которая соединяется с поршнем, называется малый конец , а конец, который крепится вокруг коленчатого вала, называется большой конец . Большой конец будет иметь Вкладыши подшипники которые минимизируют трение и поддерживают точный масляный зазор с шейкой штока на коленчатом валу.Шатун разделен на две части — с крышка стержня используется для зажима вокруг подшипника шатуна и коленчатого вала.

Компоненты поршневого узла

Поршень

Вся мощность в двигателе достигается за счет силы, воздействующей на верхнюю часть поршня. Эта сила определяется как площадь поршня, умноженная на давление газа. Более крупные поршни и более высокое давление газа обеспечат большую мощность. В целом размер поршня ограничен конструкцией двигателя, но поршень действительно играет жизненно важную роль в поддержании высокого давления газа, создавая газонепроницаемое уплотнение со стенкой цилиндра.

Верхняя поверхность поршня называется кроны (также голова или же купол ). В серийных двигателях корона бывает различной формы, но обычно она бывает плоской, выпуклой или выпуклой.

[Различные формы коронки]

Практически все современные поршни включают предохранительные клапаны которые обеспечивают зазор вокруг клапанов в верхней части хода поршня.

Заводная головка, находящаяся в непосредственном контакте с горячими дымовыми газами, сильно нагревается.Именно эта область расширяется больше всего, поэтому будет небольшой конус внутрь от нижней части поршня, чтобы обеспечить больший зазор вокруг этой верхней площадки между головкой и верхним поршневым кольцом.

Хотя нам требуется газонепроницаемое уплотнение, нам также необходимо, чтобы поршень плавно перемещался по цилиндру с минимальным трением, поэтому поршню необходимо некоторое клиренс . У обычного поршня зазор между ним и стенкой цилиндра составляет 0,1 мм (0,004 дюйма) — это примерно ширина человеческого волоса.Чтобы сохранить этот зазор, поршень должен быть точно обработан, а сплав, из которого он сделан, будет точно определен с учетом теплового расширения.

Небольшой зазор между поршнем и стенкой цилиндра перекрывается кольца поршневые , которые входят в канавки на поршне в области, известной как поршневой ремень . Пространства между этими канавками называются кольцо приземляется .

Поршень прикреплен к шатуну с помощью короткой полой трубки, называемой булавка на запястье , или же поршневой палец .Эта булавка для запястья несет полную силу сгорания.

На поршень при сгорании действуют не только вертикальные силы, но и боковые силы, вызванные постоянно изменяющимся углом шатуна. Из-за этих боковых сил поршню требуются гладкие поверхности, чтобы он мог прилегать к стенке цилиндра и удерживать поршень в вертикальном положении. Боковые поверхности поршня известны как юбка поршня .

[Пышная юбка и юбка-тапочка]

Есть два типа юбок.Самый простой — это полная юбка или сплошная юбка, представляющая собой классический поршень трубчатой ​​формы. Эта конструкция до сих пор используется на грузовиках и больших коммерческих двигателях, но уже давно заменена на автомобили и мотоциклы более легкой конструкцией, известной как тапочек поршневой .

У скользящего поршня часть юбки срезана, остались только поверхности, которые опираются на переднюю и заднюю часть стенки цилиндра. Такое удаление сводит к минимуму вес и уменьшает площадь контакта между поршнем и стенкой цилиндра, тем самым уменьшая трение.

Современные производственные двигатели дополнительно уменьшают трение между поршнем и стенкой цилиндра за счет использования Покрытия поршней с низким коэффициентом трения , как тефлон в сковороде с антипригарным покрытием. Эти покрытия обычно наносятся методом трафаретной печати в виде заплатки на юбки поршней — например, на изображенном на рисунке покрытии на основе графита двигателя Ford Fiesta Ecoboost.

[Поршень Ford]

Когда поршень опускается на такте сгорания, он будет оказывать боковое усилие в направлении, противоположном наклонному шатуну.Направление цилиндра, на которое действует эта сила, известно как сторона осевого напора, и поршень и стенка цилиндра будут испытывать больший износ в этой области.

[Схема тяги]

Поршень становится невероятно горячим, и ему необходимо эффективно отводить это тепло. Тепло от поршня уходит в три места: в виде лучистого тепла в камеру сгорания, в стенки цилиндра через поршневые кольца и вниз по шатуну. Кроме того, во многих двигателях поршень охлаждается с помощью масла, распыляемого на нижнюю часть.

Поршневые кольца

Поршневые кольца плотно прилегают к поршню, перекрывая небольшой зазор между поршнем и стенкой цилиндра. Обычно на поршне имеется три поршневых кольца, выполняющих разные функции.

Компрессионные кольца

Два верхних кольца называются кольца компрессионные (также известен как нажимные кольца или же газовые кольца ) и их основная роль заключается в предотвращении проникновения газов через небольшой зазор между поршнем и стенкой цилиндра.Этот проход газа через поршень в картер известен как минет и должны быть минимизированы для сохранения сжатия.

Компрессионные кольца обычно изготавливаются из твердого чугуна и оказывают внешнее давление на стенку цилиндра. Это внешнее давление возникает из-за естественной упругости колец, но дополняется на такте сгорания давлением газа за кольцами, которое более плотно прижимает их к стенке цилиндра.

[Давление газа за компрессионными кольцами]

Важно отметить, что компрессионные кольца не оказывают бокового давления на поршень и не действуют для него как направляющие.Канавка в поршне будет глубже ширины поршневого кольца, что позволит кольцу скользить по масляной пленке.

Компрессионные кольца также передают тепло от поршня к стенке цилиндра, где оно рассеивается в охлаждающей жидкости, протекающей через водяные рубашки.

Эти кольца сломаны с небольшим зазором, который позволяет устанавливать и снимать их поверх поршня. Ширина этого зазор поршневого кольца указывается производителем, и его можно измерить, поместив кольцо внутрь цилиндра и измерив зазор с помощью щупа.На этом рисунке зазоры сильно преувеличены, на самом деле они будут очень тонкими — 0,2 мм или меньше.

Кольца контроля масла

Кольцо нижнее на поршне масло контрольное кольцо . Масло постоянно разбрызгивается на стенки цилиндров либо из отверстий в шатунах, либо из форсунок, установленных в картере. Для минимального трения нам нужна тонкая масляная пленка, а функция маслосъемного кольца заключается в том, чтобы удалить излишки масла и оставить идеальную масляную пленку для скольжения компрессионных колец и юбки поршня.

Нам определенно не нужно масло в камере сгорания: присутствие масла может вызвать плохое сгорание, высокие выбросы, чрезмерное накопление углерода на клапанах и поршнях и синий дым — все это плохие новости для плавного двигателя.

Маслосъемное кольцо обычно состоит из двух тонких хромированных скребковых колец с проставкой, зажатой между ними для удаления масла. Он разработан, чтобы скользить по маслу при движении вверх и соскребать его при движении вниз. Это называется сегментированным дизайном.В канавке для контроля масла будут просверлены отверстия, чтобы излишки масла могли легко стекать обратно в картер.

Установка новых поршневых колец

Область стенки цилиндра над верхним компрессионным кольцом не охвачена кольцами, что снижает износ. Это может вызвать образование гребня в течение всего срока службы двигателя. Если новые кольца устанавливаются на цилиндр, который не подвергался повторной расточке, тогда может потребоваться кольцо с удаленной выемкой, известное как гребневик, чтобы гарантировать, что новое кольцо не соприкасается с этим гребнем материала.

[Схема смещения колец]

При установке новых колец зазоры должны быть смещены и никогда не должны находиться на одной линии друг с другом, чтобы предотвратить прямой путь для выхода газов.

Булавка на запястье

Поршень прикреплен к шатуну через полую трубку из закаленной стали, известную как булавка на запястье или же поршневой палец . Этот штифт проходит через маленький конец шатуна и позволяет ему поворачиваться на поршне.

Есть два метода закрепления булавки на запястье. А полуплавающий В конструкции штифт закреплен в шатуне, при этом он может свободно вращаться в отверстиях поршня. А полностью плавающий штифт запястья будет свободно вращаться как в малом конце, так и в поршне, и будет зафиксирован на месте с помощью стопорных колец или тефлоновых кнопок на концах штифта. Для полностью плавающей булавки на запястье будет заменяемая втулка внутри малого торцевого отверстия.

Штифт кисти может быть немного смещен в сторону, а не точно по центру поршня.Это известно как штифт запястный со смещением и используется для уменьшения поперечного перемещения поршня внутри цилиндра. Избыточное движение из стороны в сторону известно как удар поршня из-за стука, который он производит.

Шатун

шатун передает силу от поршня к коленчатому валу, он постоянно подвергается растягивающим, сжимающим и изгибающим силам, поскольку он действует как посредник в этих двухтактных отношениях.Шатун должен быть конструктивно прочным, и неслучайно он принимает форму миниатюрной стальной двутавровой балки, похожей на своих более крупных собратьев, поддерживающих небоскребы и мосты. Профиль двутавровой балки обеспечивает максимальную прочность конструкции при минимальной стоимости веса, и, как и поршень, мы хотим сохранить как можно меньший вес шатуна.

Требуемая прочность шатуна означает, что он изготовлен из кованой стали или порошковой стали. У экзотических двигателей могут быть титановые стержни.Чугун не используется из-за его веса.

Верхняя часть шатуна, прикрепленная к поршню, называется малый . Он не всегда будет иметь ориентиры. От малого конца стержень проходит по профилю двутавровой балки до самого конца. большой который разделен на две части, чтобы он мог плотно прилегать к шейке коленчатого вала. Нижняя часть стержня называется крышка стержня и он будет прикреплен шпильками или болтами к самому стержню.

Стержень в настоящее время обычно изготавливается как одно целое, а затем крышка стержня надрезается и отламывается. Это оставляет неровную поверхность сопрягаемой поверхности, но придает большую прочность. Важно, чтобы крышки шатунов не смешивались с другими шатунами — они принадлежат друг другу как единое целое.

Шатунная головка будет иметь вкладыши подшипника в двух половинах, эти вкладыши подшипника будут изготовлены из того же материала, что и вкладыши коренных шейек. Подшипники шатуна смазываются маслом, поступающим под давлением через каналы в коленчатом валу.

Во многих шатунах просверлено отверстие от большого конца вверх, через вал, до выпускного отверстия где-нибудь по их длине. Этот канал позволяет маслу проходить вверх по шатуну от большого конца и распыляться на упорную область стенки цилиндра, где трение является максимальным.

Неисправности

Поршневой удар

Износ стенки цилиндра или юбки поршня может привести к слишком большим зазорам между поршнем и стенкой цилиндра.Это допускает чрезмерное перемещение поршня из стороны в сторону. Когда поршень меняет направление вверху и внизу своего хода, это может привести к его ударам о стенку цилиндра, вызывая шум, известный как поршневой удар .

Поршень обычно усиливается, когда двигатель холодный, прежде чем поршень успеет прогреться и расшириться. Его можно вылечить путем механической обработки цилиндра и использования поршня увеличенного размера.

Модификации и апгрейды

Модернизированные поршни и шатуны

Установка набора более прочных и легких штоков и поршней позволит создать более мощный двигатель.Это может быть необходимо для наддува или наддува двигателя. Переход от кованых стержней к титановой или порошковой (спеченной) стали приведет к более мощному двигателю.

Покрытия поршней

Как обсуждалось выше, недавно разработанные двигатели часто имеют покрытие с низким коэффициентом трения, нанесенное на заводе на их поршни. Но эти покрытия также доступны на вторичном рынке для уменьшения трения и увеличения (или уменьшения) теплопередачи.

[Примеры покрытий]

  • На юбку нанесено покрытие для уменьшения трения между ней и стенкой цилиндра.
  • Керамическое покрытие может быть нанесено на головку и предназначено для отражения тепла обратно в камеру сгорания и уменьшения количества, передаваемого поршню.
  • Нижняя сторона поршня может иметь нескользящее покрытие, известное как масляное покрытие который отталкивает масло, тем самым уменьшая вес узла и обеспечивая более эффективное охлаждение масла.
Двигатель

Поршни — обзор

3.2 Силовые установки на природном газе с поршневым двигателем

Поршневой двигатель или поршневой двигатель имеет долгую историю в производстве электроэнергии.Некоторые из самых первых угольных электростанций, построенных в 19 веке, использовали паровые поршневые двигатели для привода генераторов. Современные поршневые двигатели используются в основном на транспорте. Малогабаритные двигатели используются в отечественных транспортных средствах, а более крупные — в грузовых автомобилях, локомотивах и кораблях. Эквивалентные двигатели могут быть адаптированы для рынка производства электроэнергии. Что касается выходной мощности, размеры могут варьироваться от 0,5 кВт до 65 МВт.

Есть две основные категории поршневых двигателей, подходящих для выработки электроэнергии, двигатели с искровым зажиганием и двигатели с воспламенением от сжатия, но только первая из них может работать на природном газе.Двигатели с воспламенением от сжатия обычно работают на дизельном топливе. Также существуют разные циклы, в которых может работать поршневой двигатель. Два наиболее распространенных — это двухтактный и четырехтактный двигатель. Двигатели, использующие оба типа цикла, могут работать на природном газе.

Еще одна переменная — это соотношение воздуха и топлива в камере сгорания (цилиндре) двигателя. Некоторые работают с примерно стехиометрическим соотношением кислорода из воздуха и топлива, так что кислорода достаточно для сгорания всего топлива.Такие двигатели относят к двигателям с богатым горением. Эти двигатели, как правило, работают при высоких температурах сгорания, что может приводить к образованию относительно высоких уровней оксидов азота, а также других загрязняющих веществ. Альтернативой является двигатель, работающий на обедненной смеси, в котором гораздо больше воздуха (и кислорода), чем требуется для сгорания. Избыточный воздух приводит к более низким температурам сгорания в цилиндрах двигателя и снижению уровня загрязняющих веществ в выхлопных газах двигателя. В нормальных условиях двигатель с обогащенным газом обычно обеспечивает более высокий КПД, чем двигатель с обедненным газом.Однако современная конструкция двигателей, работающих на обедненной смеси, позволяет им достигать столь же высокого уровня эффективности при сохранении более низких уровней выбросов.

Как и в случае паротурбинных установок, работающих на природном газе, основным экологическим фактором является NO x . Для двигателей с интенсивным сгоранием, работающих на природном газе, обычно требуется какая-либо система каталитического восстановления для удаления NO x и приведения уровня выбросов в соответствие с местными нормативами. Некоторые двигатели, работающие на обедненной смеси, могут соответствовать экологическим нормам без необходимости в дополнительных системах контроля выбросов.Двигатели также выделяют углекислый газ, но маловероятно, что применение технологии улавливания углерода в поршневых двигателях будет рентабельным, за исключением самых крупных установок.

Поршневые двигатели, работающие на природном газе, доступны мощностью от 0,5 кВт до примерно 6 МВт. Для электростанций большего размера обычно требуется несколько двигателей. Хотя могут быть построены более крупные поршневые двигатели, они обычно работают на тяжелой нефти в качестве топлива, а не на природном газе. Скорость поршневого двигателя зависит от его размера.Двигатели, работающие на природном газе, могут быть либо высокоскоростными двигателями (1000–3000 об / мин), которые доступны мощностью от 0,5 кВт до 6 МВт, либо среднеоборотными двигателями (275–1000 об / мин), которые обычно начинаются с мощности 1 МВт. Более крупные двигатели с меньшей скоростью обычно более надежны и обычно выбираются для непрерывной работы. Там, где требуется прерывистая работа, часто будут выбираться более компактные высокоскоростные двигатели, потому что они обычно дешевле, но менее надежны.

Использование двигателей, работающих на природном газе, для выработки электроэнергии разнообразно.Многие из них используются для приложений распределенной генерации, где они поставляют электроэнергию непосредственно местным потребителям. Некоторые из этих двигателей используются в режиме когенерации, в котором отработанное тепло двигателя используется для нагрева воды. Это может привести к очень высокой общей эффективности. Еще одно распространенное применение — резервная сеть, когда системы спроектированы таким образом, что они запускаются, как только происходит перерыв в электроснабжении. Двигатели, работающие на природном газе, также могут использоваться в сочетании с возобновляемыми источниками энергии, такими как энергия ветра или солнечная энергия, в приложениях типа микросетей, где они также используются в качестве резервного источника питания.

Поршни не круглые: объяснение профиля и овальности

Профиль и овальность — две основные характеристики конструкции поршня. Здесь мы рассмотрим, почему поршни не имеют идеально круглой формы.

Возьмите июльский выпуск журнала Motocross Action Mag за 2018 год, чтобы получить полную информацию о печати.

Когда вы смотрите на поршень, легко подумать, что он имеет идеально круглую цилиндрическую форму. В конце концов, они входят в круглое отверстие (цилиндр!). Так почему же они не должны быть круглыми?

Дело в том, что внешняя форма поршня очень сложна.Двигатель внутреннего сгорания представляет собой агрессивную среду, в которой газы сгорания могут достигать опасных температур, а из-за неравномерного охлаждения цилиндров могут возникать окна портов и неровности поверхности. Разработка поршня, оптимизированного для условий камеры сгорания, является важной задачей.

На протяжении многих лет материалы поршня и конструктивные характеристики, позволяющие компенсировать расширение при нагревании, претерпели изменения. Ковка поршней из алюминия обеспечивает большую прочность и долговечность, но ее необходимо использовать в правильной конструкции, чтобы должным образом оптимизировать работу поршня.

(слева) Это пример ранней конструкции поршня, в которой в качестве основного материала использовалась сталь. Этого было бы недостаточно для требований современных двигателей. Сравните с разнообразием современных кованых алюминиевых поршней от Wiseco (справа) с различными покрытиями и дизайном.

Подробнее о процессе ковки читайте здесь.

Формы поршней имеют две основные характеристики: профиль и овальность. Менеджер по продукции Wiseco и многолетний инженер Дэйв Сулеки так прокомментировал эти характеристики поршня: «Профиль и овальность поршня являются одними из самых важных характеристик поршня, они действительно определяют не только то, как поршень будет изнашиваться с течением времени, но и насколько хорошо поршень будет изнашиваться с течением времени. может выполнить.Когда инженер рассчитывает зазор между поршнем и цилиндром, это только начало комплексного определения окончательной геометрии поршня ».

Профиль

Если вы катите поршень по плоской поверхности, вы заметите, что он не катится по прямой линии. Вы наблюдаете за признаком номер один: , профиль . Поскольку алюминий проводит очень много тепла, поршни имеют конус — верхняя часть поршня около головки имеет меньший диаметр, чем нижняя часть поршня около юбки.Юбка поршня на самом деле имеет так называемую цилиндрическую форму, как показано ниже. Это связано с тем, что температуры около купола поршня отличаются от температур на юбке поршня, что приводит к различным уровням расширения. Коническая форма позволяет поршню расширяться под воздействием тепла, поэтому поршень не заедает в отверстии цилиндра. Чем выше температура, тем больше расширится поршень. Задача проектирования состоит в том, чтобы рассчитать степень сужения.Слишком узкий зазор может вызвать задир или заедание из-за теплового расширения, а слишком маленький зазор может вызвать шум от поршневой породы.

На этом рисунке показан профиль поршня: форма цилиндра и конусность поршня. Из-за этого измерение диаметра на юбках дает большее число, чем измерение около купола.

«Профиль поршня имеет решающее значение для того, как поршень будет поддерживать себя, когда он совершает возвратно-поступательное движение в канале цилиндра. Например, профиль поршня должен помогать удерживать поршень в вертикальном положении в канале во время сгорания; представьте, что любой чрезмерный наклон поршня позволит поршню кольца, чтобы они «не сидели» и не плотно прилегали к стенке цилиндра », — уточняет Сулеки.

Овальность

Когда вы катите поршень по столу, вы также будете наблюдать, как поршень поднимается и опускается в движении «горб-горб-горб», очень похоже на колесо с плоским пятном. Эта характеристика называется овальностью, также известной как кулачок. Проще говоря, овальность означает, что поршень имеет наименьший размер на уровне отверстия под палец.

Эта диаграмма осевой нагрузки показывает силу, создаваемую поршнями из стороны в сторону.

Когда двигатель начинает движение, шатун движется не только вверх и вниз, но из-за аспекта вращения одновременно перемещается в сторону. Это действие со стороны шатуна и движение коленчатого вала создают силы нагрузки на поршень вдоль плоскости шатуна на одной линии с вращением (известной как «ось тяги»). Чтобы поршень мог свободно перемещаться с этой боковой силой, поршень не может быть идеально круглым, иначе он заедет в круглое отверстие цилиндра.Придавая поршню овальность, поршень может свободно перемещаться вверх и вниз по мере необходимости. Задача дизайна — добиться правильной овальности. Слишком низкая овальность может привести к тому, что поршень будет соприкасаться со стенкой цилиндра, ближайшей к концу поршневого пальца, в то время как слишком большая овальность может привести к тому, что поршень будет слишком сильно упираться в стенку цилиндра вдоль этой «оси тяги». Слишком большая нагрузка вдоль оси тяги может привести к сильному истиранию или заеданию, когда поршень ломает барьер масляной пленки и напрямую контактирует со стенкой цилиндра.

На этом рисунке показана овальность поршня. Эллипс со сплошной линией представляет диаметр поршня, как если бы вы смотрели вниз на купол.

Дэйв Сулеки прокомментировал овальность,

«Овальность — неизвестная вещь, когда большинство людей смотрят на поршень, они думают, что он круглый, и невооруженным глазом это должно быть так. Однако возьмите новый двухтактный поршень и катите его по столу, и что происходит. • Вы увидите неровный «горб», «горб», «горб», когда поршень катится по большой дуге… вы видите как профиль («конусообразную форму» поршня », так и овальность, когда поршень катится неравномерно.Овальность необходима для перемещения поршня вверх и вниз в отверстии цилиндра, поскольку коленчатый вал и шатун пытаются вынудить поршень вверх, а сгорание заставляет поршень опускаться, овальность позволяет поршню двигаться без заедания в круглом отверстии цилиндра. «

Еще одно визуальное представление профиля и овальности поршня.

Овальность — это ключевая деталь, которую следует помнить при измерении размера поршня. Поршень должен быть измерен в нижней части юбки, под углом 90 градусов от отверстия для пальца на запястье, чтобы получить точное измерение.

При измерении диаметра поршня убедитесь, что вы используете подходящие инструменты. Не используйте штангенциркуль для измерения поршня (поршней), так как вы не получите точного измерения. Самый точный инструмент — это набор микрометров наружного диаметра.

Размер поршня должен быть измерен по низу юбки, под углом 90 градусов от отверстия под штифт. Обратите внимание: отображаемые здесь измерения предназначены только для ознакомительных целей. Измерьте каждую из своих частей на точность.

Некоторые поршни Wiseco имеют запатентованные покрытия юбки, такие как ArmorGlide или ArmorFit, которые предназначены для уменьшения износа, обеспечения более плавной и бесшумной работы и применяются в течение всего срока службы поршня. Для определенных поршней с покрытием юбки характеристики измерения зазора между поршнем и стенкой изменятся, поэтому обязательно ознакомьтесь с инструкциями, прилагаемыми к поршню (-ам).

Щелкните здесь, чтобы узнать больше о наших различных покрытиях.

Охлаждение поршня

Охлаждение поршня

Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием.Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Необходимо контролировать максимальную температуру поршня, чтобы предотвратить преждевременный износ поршня и повреждение двигателя. Поршень может охлаждаться струей масляного распылителя, направляемой в нижнюю часть поршня, или маслом, протекающим через охлаждающий канал или галерею, встроенную в поршень.

Температура поршня

Максимальная температура поршня — или, более конкретно, определенных ключевых областей поршня, таких как канавка верхнего кольца и обод барабана — должна контролироваться, чтобы предотвратить преждевременный износ и выход из строя поршня и последующее повреждение двигателя.Около 3-5% энергии топлива в покоящихся камерах сгорания и 6-8% в камерах вихревого типа передается на поршень. Если поршень не охлаждается, до 60% этого тепла может проходить через область поршневого кольца в рубашку охлаждения. Дополнительное тепло передается через юбку в рубашку охлаждающей жидкости и от нижней части поршня через брызги / туман масла к маслу картера [371] . Если поршень охлаждается маслом, значительная часть этого тепла уносится маслом, уменьшая относительное количество, которое проходит через область кольца.На рисунке 1 показано влияние этой теплопередачи в поршне бензинового двигателя и поршне [3466] дизельного двигателя с масляным охлаждением.

Рисунок 1 . Максимальное распределение температуры в поршне дизельного двигателя с бензиновым и масляным охлаждением

(Источник: Mahle)

Температура поршня бензинового двигателя самая высокая в центре днища поршня и снижается к верхней поверхности. Для поршней дизельных двигателей и бензиновых двигателей прямого впрыска с поршнем в форме чаши максимальная температура возникает на краю чаши, а оттуда падает к центру чаши и к верхней площадке.В дизельных двигателях температурный профиль по окружности обода камеры в значительной степени определяется количеством и ориентацией отверстий для впрыска, давлением впрыска, временем и продолжительностью впрыска, а также геометрией камеры сгорания. Самые высокие температуры вокруг обода чаши возникают в местах, которые совпадают с центром горящих форсунок дизельного топлива. В результате неравномерного ввода тепла через эти «лепестки горения» характерен волнообразный температурный профиль. Разница между максимальной и минимальной температурой по окружности обода чаши в некоторых случаях может превышать 40 ° C.

Тепловая нагрузка на поршень и результирующий температурный профиль влияют на работу поршня и, если превышаются максимальные пределы температуры, могут привести к отказу компонентов и повреждению двигателя. Три критических эффекта: [3466] :

  • Усталостная прочность поршня. Повышенная температура поршня снижает сопротивление усталости поршня. В некоторых алюминиевых поршневых сплавах потеря сопротивления усталости может достигать 80% по сравнению со свойствами при комнатной температуре.Черные металлы менее чувствительны при температурах до 400 ° C.
  • Если температура в зоне поршневого кольца становится слишком высокой, это может привести к пластической деформации и повышенному износу, особенно в первой канавке поршневого кольца. Кроме того, закоксовывание смазки может привести к отложению нагара в кольцевой канавке, который может действовать как изолятор или вызывать прилипание кольца.
  • Радиальная деформация поршня. Это влияет на шум, потери на трение и зазоры между поршнем и другими компонентами.Если не соблюдаются достаточные зазоры во всех возможных условиях работы двигателя, это может привести к заклиниванию поршня или контакту с клапанами.

Некоторые типичные значения температуры для поршней легковых автомобилей: [3466] :

  • Центр днища поршня (бензиновый двигатель, левый впрыск) 270–310 ° C
  • Чаша днища поршня (бензиновый двигатель, прямой впрыск) 270–350 ° C
  • Обод чаши (дизельный двигатель, непосредственный впрыск) 350–400 ° C
  • Опорная поверхность 200–250 ° C
  • Отверстие под палец (зенит) 200–250 ° C
  • Верхняя кольцевая канавка (струйное охлаждение, канал охлаждения соляного керна) 200–280 ° C
  • Канавка верхнего кольца (охлаждаемая опора кольца) 180–230 ° C
  • Канал охлаждения (зенит) 250–300 ° C

Основная причина охлаждения поршня — это контроль температуры в нескольких из вышеперечисленных ключевых областей.Температуры поршней масштабируются в зависимости от выходной мощности двигателя, так что во избежание чрезмерных температур поршня выходная мощность двигателя может быть ограничена соображениями температуры поршня, рис. 2. На этом рисунке показана номинальная мощность на единицу площади поршня (π · отверстие 2 / 4) для двигателей, обследованных в 1990-е годы [371] .

Рисунок 2 . Мощность двигателя на единицу площади поршня для двигателей примерно 1990-х годов

Примечание: для диаметра отверстия / хода ~ 1, 1,0 МВт / м 2 ~ 10 кВт / л

В приложениях с более низкой удельной мощностью, оснащенных алюминиевыми поршнями, проводимость материала высока, а площадь поверхности, контактирующая с гильзой, достаточно велика, чтобы поршень можно было эксплуатировать без охлаждения или с масляной струей, направленной на дно поршня без превышения максимального размера поршня. температуры.В случае поршней из черных металлов это, как правило, невозможно из-за меньшей площади поверхности, контактирующей с гильзой, и низкой теплопроводности материала; масляное охлаждение необходимо [371] .

###

Pristine Pistons: как замена масла может обеспечить бесперебойную работу поршней двигателя вашего автомобиля

Даже самые сознательные автовладельцы не всегда уделяют должное внимание тому, что происходит под капотом их автомобиля. Под капотом работает двигатель автомобиля.Если не все эти движущиеся части содержать в чистоте и не содержать в хорошем состоянии, некоторые или все из них могут заблокироваться или выйти из строя. Одна из таких частей — поршень.

Что такое поршень и для чего он нужен?

Начнем с начала. На самом базовом уровне двигатель внутреннего сгорания требует топлива, давления и искры. Поршни работают вместе с цилиндрами, обеспечивая эти элементы. Когда поршни поднимаются, в цилиндре создается давление. Цилиндр содержит пар, состоящий из воздуха и топлива.Когда цилиндр находится в самой высокой точке, искра от свечи зажигания воспламеняет топливно-воздушную смесь. Эта реакция заставляет поршень опускаться с высокой скоростью. Затем другие компоненты передают эту энергию колесам.

Хорошо… Какое отношение это имеет к замене масла?

Масло смазывает движущиеся части двигателя автомобиля. Думайте о масле как о покрытии, которое защищает кожу от натирания. Кроме того, масло отводит тепло от рабочих частей автомобиля. Это важно, поскольку двигатель автомобиля может сильно нагреваться.Это также помогает предотвратить скопление лака и углерода. Что касается поршней, то масло предохраняет поршни от царапин во время их движения по цилиндрам. В конце концов, царапины могут привести к блокировке поршней, что может привести к тому, что двигатель не будет работать, а автомобиль не будет ездить. Даже если дело никогда не зайдет так далеко, шлам и остатки могут препятствовать движению поршня. Это может помешать двигателю автомобиля работать с максимальной эффективностью.

Что мне нужно сделать, чтобы позаботиться о поршнях двигателя моего автомобиля ?

Выполняйте регулярную замену масла с интервалами, рекомендованными вашим производителем.Кроме того, обязательно выбирайте синтетическое масло. Синтетическое масло имеет много преимуществ, которых нет у натурального масла. Во-первых, он создается в лаборатории. Это означает, что его можно настроить для различных целей (в отличие от использования натурального масла). Производители конструируют синтетическое масло таким образом, чтобы оно служило дольше и было более гладким, чем натуральное », что означает, что оно лучше снижает трение.

Краска и отделка вашего автомобиля важны, но также важно то, что происходит под капотом. побалуйте свою машину спа-днем в ресторане Mr.Очистите автомойку, спросите о замене масла с использованием синтетического масла.

Вернуться на главную страницу блога

Поршни, цилиндры, шатуны и коленчатый вал

Мы постоянно говорим о регулярном техническом обслуживании, но иногда трудно понять, почему так важно соблюдать этот график технического обслуживания. Может помочь небольшое представление об основных деталях внутри вашего двигателя.

Цилиндр в двигателе — это всего лишь трубка. Однако внутри этой трубки происходит вся магия.Все, что описано ниже, происходит в плотно закрытой трубке, называемой цилиндром. У большинства автомобилей их как минимум четыре.

Соединение стержнем

withgod / Getty Images

Шатун соединен с нижней частью поршня. Поршень имеет куполообразную форму и уплотнен вверху, но нижняя часть поршня полая. Внутри этой перевернутой чашки находится штифт для запястья, толстый стальной штифт, который соединяет поршень с шатуном и позволяет шатуну слегка поворачиваться вперед и назад, при этом он при этом прочно прикреплен к нижней части поршня.Это важно, потому что, поскольку шатуны вызывают вращение коленчатого вала, точка, в которой они прикреплены к коленчатому валу, немного смещается по отношению к центру поршня. Это означает, что он должен немного покачиваться вперед и назад, чтобы он не сломался при первом повороте ключа. Штифты для запястий очень прочные и почти никогда не ломаются. Я видел гораздо больше разрушенных поршней, чем штоков.

Коленчатый вал, центр силы

schlol / Getty Images

Взрыв, который происходит в цилиндре, заставляет поршень толкаться вниз по направлению к двигателю.Шатун соединяет нижнюю часть поршня с определенной точкой на коленчатом валу, передавая энергию сгорания (взрыва в цилиндре) от движения поршня и шатуна вверх и вниз к вращательному движению в коленчатом валу. Каждый раз, когда в цилиндре происходит горение, коленчатый вал поворачивается немного больше. Каждый поршень имеет свой собственный шатун, и каждый шатун прикреплен к коленчатому валу в разных точках. Они не только расположены вдоль длинного коленчатого вала, но и прикреплены в разных точках вращения коленчатого вала.Это означает, что при вращении всегда толкается другая часть коленчатого вала. Когда это происходит тысячи раз в минуту, вы получаете мощный двигатель, способный перемещать автомобиль по дороге.

Добавить комментарий

Ваш адрес email не будет опубликован.