контактная система зажигания, схема контактной системы зажигания
Зажигание Схемы
Контактная система зажигания служит для воспламенения рабочей смеси в цилиндрах бензинового двигателя внутреннего сгорания. Она должна обеспечивать полное сгорание топливовоздушной смеси в цилиндрах.
Контактная система зажигания устройство.
Контактная система зажигания состоит из катушки зажигания, трамблёра, свечей зажигания и высоковольтных проводов.
Контактная система зажигания принцип работы.
Генератором высоковольтных импульсов является катушка зажигания, которая работает по принципу повышающего трансформатора. Она соединена с контактами прерывателя. При замкнутом состоянии его контактов, по первичной катушке протекает ток, создавая магнитное поле, силовые линии которого пронизывают вторичную обмотку.
После размыкания контактов магнитное поле пропадает, что приводит к появлению тока индукции во вторичной обмотке, равному 16 -18 кВ. В первичной катушке в этот момент образуется ток самоиндукции, равный примерно 300В, направленный в противоположную сторону от прерываемого тока.
Контактная система зажигания отчего зависит вторичное напряжение
Наличие и сила вторичного напряжения зависит от силы и скорости уменьшения тока самоиндукции в первичной обмотке. Именно ток, возникающий в первичной цепи катушки вызывает, искрение и подгорание контактов прерывателя. Для уменьшения этого эффекта, параллельно контакта подключается конденсатор, который заряжается в момент разрыва контактов и разряжается при появлении тока самоиндукции, ускоряя процесс его угасания.
Конденсатор подбирается для системы зажигания индивидуально для каждого типа двигателя. Его ёмкость обычно находятся в диапазоне 0,17 – 0,35мкФ и любое отклонение приводит к снижению вторичного напряжения.
Для воспламенения рабочей смеси достаточно вторичное напряжения равного 8 – 12 к В. Так как при распределении высокого напряжения и при протекании его по проводам и свечам существуют потери, то для надёжной работы системы вторичное напряжение должно быть 16 – 25 к В. Кроме того повышенное напряжение необходимо для воспламенения бедной смеси при неисправности топливной системы.
Ещё на вторичное напряжение влияет время замкнутого и разомкнутого состояния контактов. Эти величины зависят от профиля кулачка прерывателя и величины зазора и подбираются, как и конденсаторы индивидуально для каждого типа двигателя.
Во время эксплуатации при изменении зазора или износе кулачка происходит снижение вторичного напряжения. При уменьшении зазора и как следствие увеличении угла замкнутого состояния контактов, увеличивается искрение и подгорание контактов прерывателя, а так же медленно исчезает ток самоиндукции.
При увеличенном зазоре уменьшается угол замкнутого состояния, что приводит к снижению силы тока первичной обмотке, хотя и уменьшает искрение на контактах.
Вторичное напряжение по высоковольтному проводу передаётся на центральный вывод распределителя зажигания. Ротор (бегунок) распределителя соединён с валом прерывателя через центробежный регулятор опережения зажигания и при вращении соединяет центральный вывод с боковыми электродами, которые соединены со свечами. Центральный вывод распределителя соединён с бегунком через угольный электрод, ток с которого стекает с его бокового контакта на боковые электроды крышки, а с них по высоковольтным проводам к свечам зажигания.
Для снижения потерь тока между бегунком и боковыми электродами зазор между ними всего несколько микрон, поэтому в процессе эксплуатации не стоит скоблить и зачищать боковые контакты, что значительно увеличит зазор и снижение вторичного напряжения.
Контактная система зажигания недостатки.
Контактная система зажигания имеет ряд недостатков. Самый большой из них подгорание контактов, для предотвращение которого необходимо снижение тока первичной обмотки катушки. По этой причине при контактной системе зажигания имеется ограничение вторичного напряжения. Кроме этого при повышении числа оборотов происходит снижение вторичного напряжения, так как снижается время замкнутого состояния контактов. По этой же причине снижается вторичное напряжение при увеличении числа цилиндров. В процессе развития эти недостатки устранялись в других системах, контактно-транзисторной и бесконтактной.
Контактные системы зажигания, работа, схемы
Контактная система зажигания выделяется наличием в составе распределителя, от которого производится подача напряжения к свечам зажигания двигателя.
В чем особенности этой системы? Где она применяется, и как работает? Из каких элементов состоит, и с какими поломками может столкнуться автовладелец в процессе пользования транспортным средством? Рассмотрим эти моменты подробнее.
Где используется?
Прошлые и настоящие владельцы ВАЗ «классики», разбирающиеся в конструкции таких автомобилей, прекрасно знают слабые места и принципы функционирования схемы зажигания контактного типа.
Ее особенность заключается в распределении напряжения к камерам сгорания двигателя через контактные соединения (отсюда и название).
Современные автомобили оборудуются более современным (электронным) зажиганием, которое управляется микропроцессором.
К основным системам, работающим на контактном принципе, стоит отнести:
- КС3 (KSZ) — наиболее распространенный тип схемы, в структуре которой имеется распределитель, катушка и прерыватель.
- КТС3 (HKZ-2, JFU4, HKZk) — система зажигания с контактным датчиком и предварительным накоплением энергии.
- KTC3 (TSZi) — еще один тип системы, работающей на контактном принципе. В ее составе присутствуют транзистор и контакты, а также индукционный накопитель энергии.
Общий принцип работы
Наличие контактной системы зажигания в автомобиле подразумевает, что зажигание горючего в цилиндрах осуществляется по факту появления искры от свечи зажигания.
При этом сама искра возникает при поступлении импульса высокого напряжения от катушки зажигания.
Ключевую функцию выполняет катушка зажигания, которая по принципу работы напоминает трансформатор.
Она состоит из двух обмоток (первичной и вторичной), намотанных на сердечник из металла.
Сначала напряжение подводится к первичной обмотке, после чего в катушке создается ток.
Как только происходит кратковременный разрыв первичной цепи, магнитное поле нивелируется, но во вторичной обмотке возникает высокое напряжение (около 25000 Вольт).
В этот момент на первичной обмотке также присутствует напряжение, равное 300 Вольтам.
Причина его появления — токи самоиндукции. Именно из-за появления этого тока возникает обгорание и искрение контактов прерывателя.
Из сказанного выше можно сделать вывод, что вторичное напряжение напрямую зависит от следующих аспектов:
- Магнитного поля;
- Уровня интенсивности падения тока в первичной обмотке.
Для роста вторичного напряжения и снижения риска обгорания контактной группы, в цепочку включается конденсатор (устанавливается параллельно). Даже при незначительном размыкании конденсатор заряжается.
Принципиальная схема контактной системы зажигания показана ниже.
Разряд емкости происходит через первичную обмотку, посредством формирования импульсного тока обратного напряжения. Благодаря этой особенности, магнитное поле исчезает, а вторичное напряжение растет.
Оптимальная емкость конденсатора для контактной системы зажигания составляет 0,17-0,35 мкФ. Для примера, в «Жигулях» отечественного производства установлен конденсатор, имеющий емкость в 0,2-0,25 мкФ (при частоте от 50 до 1000 Гц).
Если система зажигания автомобиля работает без сбоев, вторичное напряжение должно постоянно расти. Оно зависит от двух основных параметров — размера зазора между свечными электродами, а также давления в цилиндрах машины.
Для контактной системы зажигания этот параметр (вторичное напряжение) должен находиться на уровне 8-12 Вольт.
Чтобы система работала без сбоев, в момент прерывания упомянутый показатель вырастает до 16-25 кВ. Наличие подобного запаса позволяет избежать неблагоприятных последствий от тех или иных колебаний в системе зажигания.
К упомянутым выше проблемам можно отнести корректировки состава горючей смеси или изменение расстояния между электродами свечи.
К примеру, снижение уровня кислорода в топливно-горючей смеси приводит к росту напряжения до 20 кВ.
Несмотря на ряд проведенных мероприятий, полностью избежать подгорания контактной группы создателям контактной системы зажигания не удалось. Оптимальным способом снижения этого эффекта является четкое выдерживание зазора на минимальном уровне (0,3-0,4 мм).
В качестве примера можно привести отечественные машины ВАЗ, в которых величина зазора в прерывателе равна 0,35-0,45 мм, что соответствует углу в 52-58 градусов (при условии, что контактная группа находится в замкнутом состоянии).
В случае изменения этого угла корректируется и напряжение во вторичной обмотке. В итоге искры появляются не только на контактах, но и на бегунках. По этой причине уменьшается качество искры, и мотор теряет мощность.
Отдельного внимания заслуживает надежность контактной системы зажигания, которая зависит от целого ряда факторов:
- Формы, энергии и времени появления искры;
- Количества искр на определенной площади;
- Вторичного напряжения (одна из наиболее важных характеристик). Чем больше этот параметр, тем меньше зависимость системы от состава горючей смеси и уровня чистоты электродов.
Устройство
Не секрет, что контактная система зажигания состоит из множества различных элементов:
- АКБ;
- Механический прерыватель и распределитель. Первый дает ток низкого, а второй — высокого напряжения;
- Замок, катушка и свечи зажигания;
- Регуляторы опережения зажигания представлены двумя видами — центробежным и вакуумным;
- Высоковольтные провода.
Рассмотрим основные элементы подробно:
- Прерыватель — узел, который обеспечивает кратковременное разделение цепочки тока в обмотке низкого напряжения. В момент разрыва во вторичной цепи формируется высокое напряжение.
- Конденсатор — деталь, целью которой является предотвращение подгорания контактов в цепи прерывателя. Монтаж емкости производится параллельно контактной группе, что позволяет поглощать изделию больший объем энергии. К дополнительной функции конденсатора стоит отнести повышение напряжения на вторичной обмотке.
- Распределитель — элемент контактной системы зажигания, который обеспечивает раздачу потенциала напряжения на каждую из свечей цилиндров. Конструктивно устройство состоит из крышки и ротора. В верхней части расположены контакты, а потенциал от катушки направляется на центральный контакт, а через боковые контакты к свечам.
- Катушка зажигания — устройство, которое преобразует напряжение (из низкого в высокое). Находится деталь в моторном отсеке, как и большая часть элементов контактной системы зажигания. Конструктивно в изделии предусмотрено две обмотки. Одна — низкого, а другая — высокого напряжения.
- Трамблер — представляет собой устройство, в котором вместе находятся прерыватель и распределитель, функционирующие от коленчатого вала мотора.
- Центробежный регулятор — узел, который обеспечивает изменение угла опережения зажигания. Этот параметр представляет собой угол поворота коленвала, в момент достижения которого на свечи подается напряжение. Чтобы гарантировать полное сгорание горючей смеси, рассматриваемый угол устанавливается с опережением.
Конструктивно регулятор — пара грузиков, которые действуют на пластинку с размещенными на ней кулачками прерывателя. Здесь стоит отметить, что пластинка свободно перемещается, но угол опережения ставится за счет позиции трамблера мотора.
- Регулятор вакуумного типа — устройство, которое обеспечивает изменение угла опережения на фоне корректировки уровня нагрузки на мотор (меняется при нажатии на педаль газа). Регулятор объединяется с полостью дроссельного узла и корректирует угол с учетом уровня разрежения.
- Свечи зажигания — стандартные элементы запала, которые преобразуют энергию в искру, необходимую для поджигания топливной смеси в цилиндрах мотора. В момент передачи импульса на свечи формируется искра, зажигающая горючую смесь.
- Высоковольтные провода (бронепровода) — неизменный элемент контактной системы зажигания, с помощью которых высокое напряжение передается по пути «катушка — распределитель — свечи зажигания». Конструктивно изделие представляет собой гибкий проводник большого сечения с одной жилой из меди и многослойной изоляцией.
Принцип действия
Для полноценного обслуживания контактной системы зажигания важно понимать ее принцип действия, а также особенности взаимодействия различных элементов.
Пока контур прерывателя замкнут, ток проходит только по первичной обмотке.
Как только происходит разъединение цепи с помощью прерывающего устройства, во второй обмотке формируется высокое напряжение.
В этот же момент созданный импульс направляется по проводам к крышке распределительного устройства, а дальше — к свечам зажигания. При этом распределение производится под определенным углом опережения.
Обороты коленчатого и распределительного валов находятся в полном взаимодействии. Это значит, что при росте оборотов первого, частота вращения второго также возрастает.
Здесь в работу вступает регулятор центробежного типа, грузики которого расходятся и передвигают передвижную пластинку с кулачками.
Немногим раньше производится разъединение цепочки прерывателя, а угол опережения растет.
В случае снижения оборотов коленвала происходит обратный процесс — снижение угла опережения.
Схема работы показана ниже.
Контактно-транзисторная система зажигания
С целью оптимизации схемы разработчики добавили в конструкцию транзисторный коммутатор, который устанавливается в первичной обмотке. Его управление производится с помощью контактов прерывателя.
Принципиальная схема показана ниже.
Особенность системы в том, что применение дополнительного устройства позволило снизить ток в цепи и продлить ресурс контактной группы прерывателя (она стала меньше подгорать).
Контактно-транзисторная схема, благодаря незначительным изменениям, получила лучшие характеристики, если сравнивать ее с классическим вариантом зажигания. Из-за применения транзистора в системе был добавлен новый узел — коммутатор.
Преимущество транзистора в этой схеме в том, что даже небольшого тока, направленного на управление (в базу), достаточно для контроля тока большей величины.
Как уже отмечалось, новая система контактно-транзисторного типа имеет небольшие отличия от прежней версии системы. Ее особенность заключается в особых характеристиках, которыми не может похвастаться стандартная контактная схема.
Главное отличие заключается в том, что прерыватель взаимодействует напрямую с транзистором, а не с «бобиной». В остальном работа контактно-транзитной системы аналогична.
Как только происходит прерывание тока в первичной обмотке, во второй цепи возникает импульс высокого напряжения.
Если не обращать внимания на конструктивные особенности и принципы подключения коммутатора, можно выделить одно главное преимущество — возможность повышения первичного тока, благодаря применению транзистора.
При этом удается решить ряд задач:
- Увеличить зазор между свечными электродами;
- Поднять вторичное напряжение;
- Устранить проблемы с пуском при низкой температуре;
- Оптимизировать процесс образования искры;
- Поднять число оборотов и мощность мотора.
Еще одна особенность контактно-транзисторной схемы заключается в необходимости использования катушки с отдельной первичной и вторичной обмоткой.
Рассмотренные изменения схемы позволили снизить нагрузку на контактную группу прерывателя и уменьшить проходящий через нее ток. В итоге контакты служат дольше, а надежность системы возрастает.
Несмотря на рассмотренные плюсы, нельзя не отметить и ряд минусов контактно-транзисторной системы, которые связаны с работой прерывателя.
Так, в схеме формируется искра в момент, когда происходит разрывание тока в «бобине». Ток, который поступает в транзистор, имеет достаточную величину для влияния на работу детали.
Кроме того, уменьшение тока на контактной группе прерывателя негативно сказывается на определенных характеристиках системы.
Неисправности и их причины
От эффективности работы контактной системы зажигания зависит стабильность пуска автомобиля. Вот почему автовладелец должен знать, какие бывают неисправности, и чем они вызваны.
К основным поломкам можно отнести:
Мощность мотора падает или возникают перебои в его работе.
Причин может быть несколько:
- Нарушение целостности крышки распределителя;
- Повреждение ротора;
- Выход из строя свечи зажигания или нарушение зазора между электродами;
- Ошибочно выставленный угол зажигания.
Для устранения поломки можно сделать следующее — отрегулировать угол опережения, поменять вышедшие из строя элементы или выставить необходимые зазоры в прерывателе и электродах свечей.
На свечах отсутствует искра.
Подобная неисправность может быть вызвана:
- Обгоранием контактов прерывателя и отсутствием необходимого зазора;
- Плохим контактом или обрывом проводов во вторичной цепи;
- Выходом из строя конденсатора, ротора, катушки зажигания, бронепроводов или свечей.
Для устранения неисправности требуется отрегулировать зазор контактов прерывателя, поменять неисправные элементы и (или) проверить исправность цепей обеих обмоток (высшей и низшей).
Рассмотренные выше поломки могут возникать по нескольким причинам — естественный износ деталей, несоблюдение правил эксплуатации, применения неоригинальных элементов схемы, а также негативное воздействие на узлы.
На современном этапе контактная система зажигания уходит в прошлое и напоминает о себе только при обслуживании старых автомобилей.
На ее смену пришли современные, точные и более надежные схемы, построенные на микропроцессорном принципе.
Понимание систем зажигания с точкой прерывания
Системы зажигания с точкой прерывания до появления электронных систем зажигания использовались на миллионах двигателей. От двигателей, приводивших в действие ромовые гонщики 1930-х годов, до всех тех джипов во время Второй мировой войны, все они имели системы зажигания с точкой прерывания. Простые в устранении неполадок и ремонте, они, как и все остальное, бесконечно сложны, если вы не понимаете основ их работы.
Основы точки прерывания
Цепь системы зажигания точки прерывателя начинается и заканчивается аккумуляторной батареей. Когда двигатель работает, аккумулятор постоянно подзаряжается от генератора переменного тока или, в более старых системах, от генератора. Ток течет от положительной клеммы аккумулятора к замку зажигания и катушке зажигания. Катушка зажигания на самом деле представляет собой трансформатор, который повышает 12-вольтовый ток батареи примерно до 25 000 вольт. В двигателях средней и высокой степени сжатия такое напряжение необходимо для надежной дуги в зазоре на свече зажигания и образования достаточного пламени для воспламенения топливно-воздушной смеси в цилиндре.
Катушка имеет два контура; первичная обмотка, которая проходит от положительной клеммы катушки к отрицательной клемме катушки; и вторичная цепь, которая идет от плюсовой клеммы катушки к проводу зажигания в центре крышки распределителя. Отрицательный провод в первичной цепи проходит от катушки к основанию распределителя, а прерыватель указывает внутрь. Это может показаться немного запутанным, но это имеет смысл, если вы понимаете, что точки размыкают и замыкают цепь заземления.
Точки прерывателя размыкаются и замыкаются при вращении вала распределителя. Одна половина набора точек зафиксирована, другая половина вращается, а на подвижной половине набора точек имеется трущийся блок. Вал распределителя имеет кулачки, которые контактируют с трущимся блоком. Эти лепестки действуют как кулачки, открывая точки, тем самым разрывая электрическое соединение между точками. Наконечники имеют пружинный зажим, который удерживает наконечники закрытыми, и эта пружина заставляет подвижный наконечник возвращаться в контакт с неподвижным наконечником, установленным на распределительной пластине, когда кулачок выходит из контакта. Если это неясно, снимите крышку распределителя с двигателя, оборудованного точкой прерывания, и проверните двигатель вручную, наблюдая за движением деталей. Взаимодействие станет очевидным.
Пружинный зажим электрически изолирован от корпуса распределителя, поэтому первичная цепь заземляется только при замыкании контактов. Когда точки соприкасаются друг с другом, электричество проходит от аккумулятора через катушку к блоку двигателя, который заземлен на отрицательную клемму аккумулятора. Ток, протекающий через обмотки катушки зажигания, создает мощное электрическое поле, которое высвобождается при разъединении точек. Больше не имея возможности уйти на землю через точки, электричество, которое ищет самый легкий путь на землю, устремляется по вторичной цепи к проводу катушки к верхней части крышки распределителя, где передается на ротор распределителя.
Ротор прикреплен к верхней части вала распределителя и вращается вокруг внутренней части распределителя, его контакт дает каждому штырю по окружности крышки распределителя разряд электричества, когда он проходит мимо. К стойкам прикреплены провода, которые ведут к свечам зажигания, которые воспламеняют топливно-воздушную смесь в цилиндре.
Искра должна быть рассчитана так, чтобы она выбрасывала газ в правильной части поршневого цикла, обычно когда поршень находится в верхней части цилиндра. На большинстве двигателей момент зажигания устанавливается путем ослабления прижимного болта распределителя и поворота распределителя для опережения или замедления момента зажигания. Старые гаражные жокеи устанавливали время на слух, поворачивая распределитель до тех пор, пока двигатель не зазвучал «правильно». Большинство механиков используют индикатор времени, который принимает сигнал от провода свечи зажигания и испускает световой импульс каждый раз, когда по проводу свечи зажигания проходит электричество. Свет направлен на один из шкивов в передней части двигателя, и распределитель поворачивается до тех пор, пока выемка на шкиве не совпадет с меткой на защитном кожухе шкива.
Устранение неполадок
Знание того, как работает система точек останова, поможет вам отремонтировать ее, когда она выйдет из строя. Если ваш двигатель не работает и вы подозреваете систему зажигания, первое, что нужно сделать, это проверить ее на наличие чего-либо явно неисправного, например, ослабленных или оборванных проводов.
Сильно нажмите на чехлы на концах проводов свечей зажигания, чтобы убедиться, что они надежно закреплены. Взгляните на точки; если они выглядят корродированными, замените их. Проверьте зазор между точками (промежуток, образованный, когда точки находятся в максимально открытом положении) с помощью щупа, взяв надлежащие характеристики зазора из руководства по ремонту. Типичная настройка составляет от 0,015 до 0,020 дюйма. Используйте гнездо и ломаную планку, чтобы повернуть двигатель так, чтобы точки находились в самом широком зазоре. Датчик, проволочный или щуповый, должен просто скользить между точками, не раздвигая их.
Если это не решит проблему, попробуйте проследить всю цепь, начиная с аккумулятора. Проверьте аккумулятор с помощью вольтметра и ареометра. Вы хотите, чтобы батарея показывала не менее 12,6 вольт, если у вас 12-вольтовая система. Если аккумулятор необходимо перезарядить, обязательно используйте зарядное устройство, которое работает не более чем на 2 ампера. Зарядные устройства с высоким усилием могут испортить аккумулятор, если их часто использовать, и я должен был узнать это на собственном горьком опыте.
Дважды проверьте аккумулятор с помощью ареометра.
Обязательно надевайте брызгозащитные очки. Каждая ячейка должна читаться почти так же, как и другие. Если вы получаете резко разные показания в одной ячейке, у вас может быть плохой аккумулятор.
С помощью вольтметра снимите показания на концах кабелей аккумуляторной батареи. Напряжение должно быть таким же, как и на самом аккумуляторе. Если нет, очистите концы кабелей и повторите попытку. Если вы по-прежнему получаете падение напряжения на концах кабелей, выбросьте их и приобретите новые кабели. Пока вы это делаете, попробуйте пошевелить кабели с надежно прикрепленными щупами вольтметра. Если вы видите низкое или отсутствующее значение, у вас есть коррозия внутри кабеля.
Предполагая, что у вас есть исправная, полностью заряженная батарея, исправные кабели батареи и чистые, плотные соединения, вы можете начать тестирование других частей схемы. Поместите положительный щуп тестера на положительную клемму аккумуляторной батареи, а отрицательный щуп на чистую часть блока цилиндров. Это проверяет заземление между отрицательной клеммой аккумулятора и блоком. Если показания вольтметра ниже, чем у батареи, вам необходимо очистить и/или подтянуть заземление.
Вы можете пройти всю схему, проверив напряжение на каждом проводе и компоненте. Если вы обнаружите значительное падение напряжения, остановитесь, чтобы проверить плохой контакт или провод. Некоторые двигатели имеют внешний резистор рядом с катушкой зажигания. Это повлияет на показания напряжения, которые вы получите в зависимости от силы резистора.
Вы можете проверить резистор с помощью омметра. Получите сопротивление резистора из руководства для вашего двигателя (на некоторых резисторах может быть указан их номинал в омах). Катушку можно проверить так же.
С помощью вольтметра проверьте наличие короткого замыкания на массу между аккумулятором и контактами. Заблокируйте открытые точки небольшим куском дерева и поместите один щуп на соответствующую клемму аккумулятора, а другой — на саму точку. Просто убедитесь, что ваши полярности ясны. При открытых заблокированных точках одна будет положительной, а другая — отрицательной. Если счетчик не показывает напряжения, когда щуп находится на «пружинном зажиме», возможно, у вас плохая изолирующая шайба на распределителе, которая пропускает электричество на землю через блок, прежде чем идти к точкам. Проверьте целостность цепи между блоком и отрицательным выводом катушки, чтобы подтвердить эту теорию. Проверьте целостность цепи между блоком и неподвижной точкой, прикрепленной к распределительной пластине.
Вращайте двигатель, пока точки не сомкнутся. Используйте мультиметр, чтобы проверить хорошее соединение между точками. Небольшой зазор, когда точки должны быть закрыты, не позволит вашей машине работать.
Если у вас нет тестового прибора, вы можете использовать тестовый фонарь с автономным питанием, чтобы сделать то же самое. Всегда используйте тестовую лампу с отключенным аккумулятором. Когда цепь замкнута, свет будет светиться. Если у вас есть неисправность в цепи, например, обрыв провода, свет не загорится.
Начиная с кабелей батареи, они проходят по цепи, проверяя каждый провод и соединение. Заблокируйте открытые точки и поместите каждый зонд в одну из точек. Если индикатор загорается, значит, проблема найдена. Внимательно осмотрите провод распределителя, чтобы найти оголенный участок изоляции или отсутствующую резиновую шайбу.
При соприкосновении точек и щупах в каждой точке свет должен сиять для вас. Если свет не горит, они на самом деле не соприкасаются или настолько проржавели, что не проводят электричество. Вы можете подпилить их, а еще лучше заменить. Рекомендуется одновременно заменить точечный конденсатор. Конденсатор обычно находится внутри распределителя, но иногда крепится к наружному корпусу. Он имеет один провод, который подключается к точкам, где подключается отрицательный провод от катушки зажигания.
Если вам все еще не повезло, попробуйте проверить сопротивление проводов свечи зажигания. Я знаю, что многие из нас ненавидят руководства, но хорошо иметь спецификации для вашего железяка, чтобы вы могли протестировать эти вещи. Все провода свечей зажигания с треснутой изоляцией подлежат замене.
Используйте мультиметр для проверки свечей зажигания. Между верхней частью вилки и электродом должна быть непрерывность. Между резьбой и электродом не должно быть непрерывности. Поместите конец вилки в чехол на конец провода зажигания и проверьте целостность цепи между электродом и концом провода вилки. Это исключит плохой провод вилки или плохое соединение между вилкой и проводом.
Если вы прошли через все это и все еще не можете получить искру, взгляните на крышку и ротор. Обычно это первые детали, которые заменяются при ремонте системы зажигания. Если они выглядят старыми или поврежденными, я бы заменил их.
После прохождения всего этого вы должны иметь хорошее представление о том, как работает ваша система зажигания точки прерывания, и как действовать, когда у вас возникают проблемы, связанные с зажиганием. Понимание того, как работает система, является ключевым, и если вы потратите время и проследите за системой, вы всегда найдете способ заставить ее работать.
Свяжитесь с энтузиастом двигателей Гэри Гриннеллом по адресу: 9 Laurel Park, Northampton, MA 01060-1196.
Магнитная система зажигания авиационного двигателя Принципы работы
На рис. 2 показано, что по мере того, как магнит перемещается из положения полного регистра 0°, магнитный поток уменьшается и достигает нулевого значения при перемещении в нейтральное положение 45°. Пока магнит движется через нейтральное положение, магнитный поток меняет направление и начинает увеличиваться, как показано кривой под горизонтальной линией. В 90° достигается другое положение максимального потока. Таким образом, для одного оборота на 360° четырехполюсного магнита имеется четыре положения максимального потока, четыре положения нулевого потока и четыре реверсирования потока.
Это обсуждение магнитной цепи демонстрирует, как вращающийся магнит влияет на сердечник катушки. Он подвергается воздействию увеличивающегося и уменьшающегося магнитного поля и смены полярности каждые 90° перемещения магнита.
Когда катушка провода как часть первичной электрической цепи магнето намотана вокруг сердечника катушки, на нее также влияет переменное магнитное поле.
Первичная электрическая цепь
Первичная электрическая цепь состоит из набора точек контакта прерывателя, конденсатора и изолированной катушки. [Рисунок 3] Катушка состоит из нескольких витков толстого медного провода, один конец которого заземлен на сердечник катушки, а другой конец — на незаземленную сторону точек прерывателя. [Рисунок 3] Первичная цепь замыкается только тогда, когда незаземленная точка прерывателя соприкасается с заземленной точкой прерывателя. Третий блок в цепи, конденсатор (конденсатор), подключается параллельно точкам прерывателя. Конденсатор предотвращает возникновение дуги в точках размыкания цепи и ускоряет разрушение магнитного поля вокруг первичной катушки.
Рисунок 3. Первичная электрическая цепь магнитного магнита высокого уровня |
Первичный разрыв закрывается в приблизительно полном положении регистра. Когда точки прерывателя замыкаются, первичная электрическая цепь замыкается, и вращающийся магнит индуцирует ток в первичной цепи. Этот поток тока создает собственное магнитное поле, направленное таким образом, что препятствует любому изменению магнитного потока в цепи постоянного магнита.
Пока в первичной цепи протекает индуцированный ток, он препятствует уменьшению магнитного потока в сердечнике. Это соответствует закону Ленца, который гласит: «Индуцированный ток всегда течет в таком направлении, что его магнетизм противодействует движению или изменению, которое его вызвало». Таким образом, ток, протекающий в первичной цепи, удерживает магнитный поток в сердечнике на высоком уровне в одном направлении до тех пор, пока вращающийся магнит не успеет повернуться от нейтрального положения до точки, на несколько градусов выше нейтральной. Это положение называется положением E-gap (E означает эффективность).
Если магнитный ротор находится в положении Е-зазора, а первичная катушка удерживает магнитное поле магнитной цепи с противоположной полярностью, можно получить очень высокую скорость изменения потока путем размыкания точек первичного прерывателя. Размыкание точек прерывателя останавливает ток в первичной цепи и позволяет магнитному ротору быстро изменить направление поля через сердечник катушки. Эта внезапная инверсия потока вызывает высокую скорость изменения потока в сердечнике, который пересекает вторичную катушку магнето (намотанную и изолированную от первичной катушки), индуцируя во вторичной обмотке импульс высоковольтного электричества, необходимый для зажигания свеча зажигания. По мере того, как ротор продолжает вращаться примерно до полного положения регистра, точки первичного прерывателя снова замыкаются, и цикл повторяется для зажигания следующей свечи зажигания в порядке зажигания. Последовательность событий теперь можно рассмотреть более подробно, чтобы объяснить, как возникает состояние экстремального магнитного напряжения.
С точками прерывателя, кулачком и конденсатором, соединенными в цепь, как показано на рис. 4, действие, происходящее при вращении магнитного ротора, изображено кривой графика на рис. 5. В верхней части (А) рис. 5 , показана исходная кривая статического потока магнитов. Под кривой статического потока показана последовательность открытия и закрытия точек прерывателя магнето. Обратите внимание, что время открытия и закрытия точек прерывателя определяется кулачком прерывателя. Точки закрываются, когда через сердечник катушки проходит максимальное количество потока, и размыкаются в положении после нейтрали. Поскольку на кулачке четыре выступа, точки прерывателя замыкаются и размыкаются в одном и том же отношении к каждому из четырех нейтральных положений магнита ротора. Также интервалы открытия и закрытия точек примерно равны.
4 Рис. 5. Кривые магнитного потока | |
Начиная с положение максимального потока, отмеченное 0° в верхней части рисунка 5, имеет место последовательность событий, описанная в следующих абзацах.
Когда магнитный ротор поворачивается в нейтральное положение, величина магнитного потока через сердечник начинает уменьшаться. [Рисунок 5D] Это изменение потокосцепления индуцирует ток в первичной обмотке. [Рисунок 5C] Этот индуцированный ток создает собственное магнитное поле, которое препятствует изменению потокосцеплений, индуцирующих ток. Без тока, протекающего в первичной катушке, поток в сердечнике катушки уменьшается до нуля, когда магнитный ротор поворачивается в нейтральное положение, и начинает увеличиваться в противоположном направлении (пунктирная кривая статического потока на рисунке 5D). Но электромагнитное действие первичного тока предотвращает изменение потока и временно удерживает поле вместо того, чтобы позволить ему измениться (результирующая линия потока на рисунке 5D).
В результате процесса удерживания в магнитной цепи возникает очень высокое напряжение к тому моменту, когда ротор магнита достигает положения, при котором точки прерывателя вот-вот разомкнутся. Точки прерывателя в разомкнутом состоянии работают вместе с конденсатором, прерывая протекание тока в первичной обмотке, вызывая чрезвычайно быстрое изменение потокосцепления. Высокое напряжение во вторичной обмотке разряжается через зазор в свече зажигания, воспламеняя топливно-воздушную смесь в цилиндре двигателя. Каждая искра фактически состоит из одного пикового разряда, после которого происходит серия малых колебаний.
Они продолжают происходить до тех пор, пока напряжение не станет слишком низким для поддержания разряда. Ток протекает во вторичной обмотке в течение времени, необходимого для полного разряда искры. Энергия или напряжение в магнитной цепи полностью рассеивается к моменту замыкания контактов для образования следующей искры. Узлы прерывателя, используемые в высоковольтных магнитных системах зажигания, автоматически размыкают и замыкают первичную цепь в нужное время в зависимости от положения поршня в цилиндре, на который подается искра зажигания. Прерывание первичного тока осуществляется через пару контактных точек прерывателя, изготовленных из сплава, устойчивого к точечной коррозии и прогоранию.
Большинство точек прерывателя, используемых в системах зажигания самолетов, относятся к бесшарнирному типу, в котором одна из точек прерывателя подвижна, а другая неподвижна. [Рис. 6] Подвижная точка прерывателя, прикрепленная к листовой пружине, изолирована от корпуса магнето и соединена с первичной катушкой. [Рисунок 6] Точка стационарного выключателя заземлена на корпус магнето для замыкания первичной цепи, когда точки замкнуты, и может быть отрегулирована таким образом, чтобы точки могли размыкаться в нужное время.
Рис. 6. Бесшарнирный гидромолот в сборе и кулачок er, который подпружинен против кулачка металлической пластинчатой пружиной. Толкатель кулачка представляет собой блок из микарты или аналогичного материала, который перемещается по кулачку и перемещается вверх, отталкивая подвижный контакт прерывателя от неподвижного контакта каждый раз, когда выступ кулачка проходит под толкателем. Войлочная масленка расположена на нижней стороне металлического пружинного листа для смазки и предотвращения коррозии кулачка. Кулачок привода прерывателя может приводиться в движение напрямую от вала ротора магнето или через зубчатую передачу от вала ротора. В большинстве больших радиальных двигателей используется компенсированный кулачок, который предназначен для работы с конкретным двигателем и имеет по одному кулачку для каждого цилиндра, приводимого в действие магнето. Кулачки кулачка зашлифованы на станке с неравными интервалами, чтобы компенсировать эллиптическую траекторию шарнирных шатунов. Этот путь вызывает изменение положения верхней мертвой точки поршня от цилиндра к цилиндру в зависимости от вращения коленчатого вала. Компенсированный кулачок с 14 лепестками вместе с некомпенсированным кулачком с двумя, четырьмя и восемью лепестками показан на рисунке 7.
|