Температура двигателя оптимальная: Какая рабочая температура двигателя автомобиля

Содержание

Рабочая температура дизельного двигателя

Поддержание температуры дизельного двигателя в строго заданных рамках является важным параметром для достижения оптимальных эксплуатационных показателей. От конструктивных особенностей и целевого назначения двигателя будет зависеть, какая рабочая температура дизеля будет нормальной для того или иного мотора.

Рабочий температурный режим одного ДВС может заметно отличаться от другого. Что касается дизельного двигателя, его рабочая температура (при условии полностью исправного агрегата, системы охлаждения и других узлов) зависит от ряда условий.

Содержание статьи

Показатель степени сжатия

Дизельный мотор работает по принципу самовоспламенения смеси от контакта распыленной солярки с разогретым от сжатия воздухом. Чем сильнее сжимается (разогревается) в цилиндре воздух, тем интенсивнее происходит вспышка после топливного впрыска, при этом количество подаваемого топлива остается одинаковым.

Зависимость эффективности вспышки от степени сжатия (повышения температуры воздуха) влияет на КПД дизельного двигателя. Получается, моторы с высокой степенью сжатия условно можно считать более «горячими».

Стоит также учитывать, что степень сжатия повышают только до определенных пределов. Топливно-воздушная смесь в цилиндре должна не взрываться от контакта с разогретым воздухом, а равномерно сгорать. Сильное увеличение степени сжатия может привести к бесконтрольному воспламенению топлива, что вызывает детонацию, локальные перегревы и ускоренный износ цилиндропоршневой группы.

Допустимые рабочие температуры дизельных ДВС

Температура дизельного двигателя будет напрямую зависеть от типа мотора. От поддержания рабочего температурного показателя дизельного агрегата зависит процесс смесеобразования и сгорания топливно-воздушной рабочей смеси, а также нормальное функционирование других систем ДВС.

После выхода на рабочую температуру время испарения солярки сокращается до оптимального показателя, уменьшается период задержки самовоспламенения.

Топливно-воздушная смесь сгорает равномерно и полноценно, что приводит к увеличению КПД дизеля, меньшему расходу топлива и снижению токсичности выхлопных газов.

По утверждениям специалистов, оптимальным показателем рабочей температуры дизельного мотора считается  температурный режим на отметке от 70 до 90 градусов Цельсия. Допустимым максимумом в процессе работы дизеля под нагрузкой является повышение температуры дизельного двигателя до 97 градусов, но не выше.

Дизель не прогревается до оптимальной температуры

В процессе прогрева исправного дизельного ДВС в режиме холостого хода желательно дождаться нагрева охлаждающей жидкости до температуры около 40-50°С. При сильном минусе за бортом дизель может и вовсе начать прогреваться только в движении.

Начинать езду необходимо на пониженной передаче, придерживаясь отметки около 2-2.5 тыс. об/мин.  Когда температура поднимется до 80°С, нагрузку на мотор можно увеличить.

Рекомендуем также прочитать статью о том, почему дизель дымит черным дымом. Из этой статьи вы сможете узнать о причинах дымления дизельного двигателя на различных режимах его работы.

Если дизель не выходит на рабочую температуру в движении, это говорит о том, что произошло снижение его КПД. Падает мощность, автомобиль хуже разгоняется, возрастает расход дизтоплива и т.д. Данные симптомы могут указывать на следующие неполадки:

Работа дизеля, который не прогрелся до рабочей температуры, под серьезной нагрузкой приводит к неполному сгоранию смеси, активному образованию нагара, засорению топливных форсунок, ускоренному износу узлов силового агрегата, выходу из строя сажевого фильтра и т.д.

В качестве примера можно рассмотреть засорение распылителя дизельной форсунки. Качество распыла топлива снижается, форсунка «льет» солярку. Топливо начинает сгорать неравномерно и несвоевременно, догорает на поршне и вызывает его прогар. Также прогорать может и выпускной клапан. Результатом становится падение компрессии, то есть воздух в неисправных цилиндрах не сможет сжиматься до такой температуры, при которой сгорание смеси будет оптимальным. Дизельный ДВС в подобных условиях не выйдет на рабочую температуру, будет испытывать затруднения с запуском «на холодную» и после прогрева.

Читайте также

  • Почему греется дизельный двигатель

    Причины и результаты перегрева дизельного двигателя. Что делать, если дизель греется: диагностика и устранение неисправностей. Важные рекомендации.

Сколько прогревать двигатель автомобиля, прежде чем можно ехать на больших оборотах? Отвечает эксперт

Сколько нужно проехать на холодном двигателе, чтобы иметь возможность нажать педаль газа в пол?

  

Мы недавно писали о том, как сложно довести современный двигатель до оптимальной рабочей температуры. В нашей предыдущей статье мы в качестве примера привели вам результаты теста Volkswagen Golf, которые показали, как долго прогревается двигатель даже в небольшой мороз. Но есть в этом сложном вопросе и другая сторона медали, потому что она не так плоха, как может показаться. 

 

Напомним, что оптимальная температура двигателя – это не показатель температуры охлаждающей жидкости. Более важное значение – это, конечно, температура моторного масла. К сожалению, значения, которые они показывают, очень разные. Например, недавние тесты показали, что когда антифриз достигает желаемой температуры в 90°C, в это время масло может иметь температуру около 50°C.

 

 

Но на практике ни один из этих индикаторов не говорит нам точно, какая на самом деле температура у двигателя. Кроме того у многих автомобилей вообще нет датчика температуры масла в двигателе, что затрудняет для водителя понимание истинного прогрева мотора. 

 

Мы знаем, что оптимальным значением температуры двигателя для эффективной работы является 80-90⁰C. Соответственно, если температурный датчик моторного масла показывает температуру около 80-85⁰C, можно предполагать, что температура двигателя достигла оптимального значения. Но есть тут один интересный момент. Обычно датчик масла находится в самом холодном месте, то есть в масляном поддоне. 

 

– Реальная температура масла в двигателе обычно выше, чем показывает датчик, выводя информацию на приборную панель, – справедливо замечает Андрей Мазуров, менеджер технического отдела компании Мотор Сервис, в ответ на нашу статью о проблемах прогрева современных двигателей. – Однако это не меняет того факта, что только хорошо прогретый двигатель, в том числе и прогрев масла, позволяет использовать всю мощь современных двигателей с очень сложной конструкцией. Не случайно, что большинство автомобилей не показывают водителю температуру масла и почти все, однако, показывают температуру антифриза. 

 

И датчик охлаждающей жидкости нужен в автомобиле не только потому, что перегрев двигателя приводит к очень серьезному отказу. Если температура охлаждающей жидкости достигла 90°C, можно предположить, что мотор готов к работе в полном диапазоне рабочих характеристик, но даже если температура масла не достигает рекомендованного значения 90°C, оно все равно защитит двигатель в критических местах. Тем более что использование не до конца прогретого двигателя разумным способом также быстрее повысит температуру масла.

 

Эксперт добавляет, что современные двигатели хорошо подготовлены к работе в холодных условиях, потому что это допускают производители автомобилей. Стоит отметить, что современные конструкции двигателей адаптированы к стандартам Евро 5 и Евро 6. В том числе за счет использования моторных масел соответствующего класса с низкой вязкостью. Это масло обеспечивает лучшую защиту при низких температурах, защищая движущиеся части масляной пленкой, а при более высоких температурах в игру добавляются масляные присадки. Вот почему очень важно использовать точно такое же масло по вязкости и составу, как рекомендуют автопроизводители для своих автомобилей. 

 

Андрей Мазуров подчеркивает, что современные двигатели с турбонаддувом не требуют вращения двигателя на высоких оборотах для достижения хорошего ускорения, потому что максимальный крутящий момент часто доступен даже ниже 2000 об/мин. Так в чем же реальная угроза «холодному» двигателю?

 

– Реальная угроза долговечности постоянно не нагреваемого двигателя, используемого в пробках, не возникает в результате разового сильного давления газа. Преждевременный износ мотора при постоянной эксплуатации автомобиля на холодном или недогретом двигателе происходит в течение длительного времени. И в первую очередь это происходит из-за деградации масла в этом двигателе, – объясняет эксперт. – 

Если двигатель не достиг температуры 85-100⁰C, масло быстрее теряет свои защитные свойства в первую очередь за счет топлива, которое оптимально сгорает только на прогретом моторе.

 

И чем больше топлива будет подаваться в холодный двигатель, тем быстрее моторное масло будет терять свои защитные свойства. Вот почему поездка в городе на непрогретом двигателе более вредна, чем при движении на скорости по трассе, где, как правило, потребление топлива падает. Поэтому поездка на расстояние 10-20 километров в городе на непрогретой машине более вредна, чем при том же километраже по шоссе. 

 

Вот мы и подошли к тому же выводу, который был сделан в предыдущей нашей статье. Частые ежедневные поездки на короткие расстояния в городе не позволяют хорошо прогреть моторное масло в двигателе, что может иметь негативные последствия. Кстати, эксперт из Мотор Сервис также подчеркивает, что городское вождение представляет гораздо большую опасность. Конечно, городское движение во всех населенных пунктах в России разное.

 

Где-то редко образуются пробки, тогда как в Москве представить автодороги без пробок невозможно. Также все зависит от количества светофоров. Логично, что в городе без пробок и без большого количества светофоров поездки на непрогретом моторе менее вредны, чем те же поездки в утренние часы в Москве, где поездка на работу, как правило, оборачивается толканием в пробке. 

 

Что обеспечит лучшую защиту двигателя?

 

– Если вы используете автомобиль только на маршруте «дом – работа – дом», убедитесь, что вы используете масло высшего качества в соответствии с инструкциями автопроизводителя, и убедитесь, что оно заменено своевременно, – рекомендует Армен Арутюнян, директор автосервиса. – Многие производители двигателей рассматривают городское использование автомобилей как эксплуатацию в тяжелых условиях и рекомендуют сократить интервалы замены масла примерно на 1/3 километров и примерно на 1/2 во времени.

 

Владельцы автомобилей, которые меняют моторное масло, следуя рекомендациям бортового компьютера, видят, как меняются интервалы замены масла в зависимости от условий эксплуатации машины. Примером могут служить множественные примеры в Сети, где люди делятся интервалами замены масла в своих современных машинах.

 

Так, у многих автомобилей сегодня масло в двигателе, в принципе, может не меняться каждые 15000 и даже 20000 км. Но это в теории и в планах автопроизводителей. На практике же бортовые компьютеры отправляют автовладельцев на ТО каждые 10000-12000 км. Особенно если автомобиль каждый день ездит по городским пробкам. Но если ваша машина действительно каждый день страдает в пробках на морозе, то в идеале же вообще менять масло каждые 8000-10000 км. 

 

Еще один тест подтверждает, что для прогрева двигателя требуется много времени

 

Получив некоторую интересную информацию на эту тему в комментариях на прошлую статью, мы решили поискать другие тесты по прогреву современных двигателей. В итоге мы нашли еще один интересный тест Seat Arona, оснащенного двигателем VW TSI 1.0.

 

Владелец этой машины решил также провести тест прогрева мотора, чтобы узнать, за сколько он прогреется до оптимальной температуры масла. 

Во время теста машина вне часа пика в Варшаве эксплуатировалась на малых оборотах до прогрева охлаждающей жидкости (90 градусов). Далее, как только антифриз достигал рабочей температуры, владелец Seat начинал ускоряться более динамично, сильнее нажимая на педаль газа. 

 

Температуры масла в 70 градусов достаточно? Увы, нет. Такой температуры масло достигнет через несколько минут. И то только при динамичном вождении.

 

Жидкость в радиаторе прогрелась всего через 4 минуты после начала езды. К сожалению, чтобы прогреть масло до температуры 70 градусов, понадобилось несколько минут, после того как прогрелся антифриз. Причем это реально было сделать нелегко, так как масло прогревалось только при динамичной езде. 

 

В целом же для прогрева моторного масла до 70 градусов понадобилось 16 минут и 13 км пути. Во время теста средняя скорость составляла всего 50 км/ч. Во многих случаях (поездка на работу, повседневные нужды) машина не преодолеет такую ​​дистанцию ​​ни разу. 

Так, согласно исследованию по заказу компании Castrol в 2015 году, было установлено, что в мире около 46 процентов водителей преодолевают расстояние на автомобиле не более 10 км в рамках одного запуска двигателя. 

 

Подводя итог: двигателю требуется по крайней мере около дюжины минут и расстояние около 10 км или чуть больше, в зависимости от дорожных условий, для прогрева до температуры, которая защитит масло от преждевременного старения и механические детали от преждевременного износа. 

 

Поэтому если вы каждый день используете машину на короткие дистанции (например, ваша работа находится недалеко от дома), вам нужно менять моторное масло намного чаще. Однако если вы желаете прогреть двигатель быстрее (в том числе и моторное масло), старайтесь ездить более динамично, но только с того МОМЕНТА, когда температура охлаждающей жидкости достигнет 90⁰C.

Стандарты рабочей температуры дизельного мотора

У владельцев дизельных автомобилей нередко возникает вопрос, какая должна быть рабочая температура мотора? Дело в том, что на разных машинах рабочий температурный режим может весьма сильно отличаться, потому стоит разобраться в том, от чего это зависит, и как понимать, насколько температура вашего дизельного двигателя соответствует нормам. Конечно, можно обратиться с этим вопросом на СТО, но в таком случае не стоит выбирать первое попавшееся, поскольку нередко сотрудники сервиса, видя неопытного дизелиста, помимо исправления незначительной поломки могут сообщить о том, что расточка блока цилиндров или ремонт всех форсунок имеет здесь огромное значение, для чего реальных оснований вовсе не будет.

Разбежность температур дизельных моторов

Итак, продолжая тему температурного режима дизеля, отметим, что по словам некоторых владельцев дизелей, например, на «Мерседесах» стабильная температура зачастую бывает 90-100 градусов, Volkswagen Passat может отличаться 80 градусами, а модель Toyota Hayes и вовсе работать при 60 градусах. Естественно, факт такого разбега требует поиска истины, а именно – какая же температура является оптимальной для дизеля и зависит ли она от типа двигателя?

Интервал рабочей температуры дизельного мотора

По утверждению экспертов, нормальный температурный режим при работе дизельного силового агрегата отмечается интервалом 70-90 градусов. Максимальная температура может достигать показателя в 97 градусов, однако это предельная черта. Что касается примера с Тоyota Hayes, то такой температурный показатель подозрительно низок. Дело в том, что от температуры дизельного мотора зависит работа многих узлов, в том числе и процесс смесеобразования.

При оптимальной температуре при образовании горючей смеси будет сокращаться время испарения, уменьшаться период задержки самовоспламенения, в результате чего можно будет с радостью отметить увеличение коэффициента полезного действия в мощности мотора и, как следствие, уменьшение расхода топлива.

Последствия низкой температуры мотора

Если же температура в двигателе низкая, эффективность работы двигателя будет снижаться. Например, распространенной проблемой является осмоление носика распылителя, вследствие чего проявляется ухудшение распыливания топлива, потому что форсунка начинает просто лить. Также к этой проблеме может добавиться прогорание поршня, впрочем, это более вероятно для силовых установок с функцией объемного смесеобразования и неразделенной камерой сгорания.


Читать далее:

Стук в дизеле: варианты решения

 

Оптимальная температура масла для двигателя вашего Фольквагена — Volkswagen Club Россия

Главная задача смазочного материала – снизить трение металлических деталей двигателя. И для стабильной, ровной работы мотора необходима определенная температура масла.
Если говорить об оптимальной температуре масляного материала, то для наглядности можно провести параллель с температурой охлаждающего материала. Следует знать, что масло для мотора всегда «горячее» охлаждающей жидкости на 10-15 градусов, при этом максимальный предел его теплоты – 105° С. Но говоря о масле, помним, что у него должны быть соответствующие параметры вязкости и смазывания.
Вязкость.
Во время холодного пуска необходимо детали механизмов быстрой смазкой. Вязкость в определенной степени зависит от температуры окружающей среды. Поэтому так называемое «универсальное» масло вряд ли сможет обеспечить одинаково хорошую работу двигателя круглогодично.
Но следует принимать во внимание не только температуру воздуха на улице. Нагрузку на двигатель оказывает и общее количество пройденных машиной километров. Более жидкая оксоль во время пуска быстро обеспечивает смазывание деталей двигателя, но вот при долгой работе защитные свойства заметно снижаются. Но слишком вязкие масла могут угрожать механизму во время пуска. Оптимальное решение данной дилеммы – выбор масла, которое рекомендовано производителем, тут ошибки по определению быть не должно. Или же то масло, которое предназначено для использования в конкретных климатических условиях.
Аксиомой для каждого водителя должно стать правило:
Двигатель с водяным охлаждением работает на оптимальном уровне, если температура системы охлаждения составляет 90 градусов. Нагрев моторного масла должен находиться в температурном диапазоне 90-105° С. При этом верхний предел превышать нельзя. Иначе смазывающая субстанция не создать равномерной пленки для защиты деталей от трения.
Следует помнить, что составляющие автомобильного двигателя сконструированы с учетом того, что детали будут при нагревании расширяться. Поэтому важно не выходить за указанные границы температуры. Рассмотрим, что произойдет при нарушении температурных рекомендаций.
Низкая рабочая температура.
Нормальный нагрев картера должен чуть превышать 90°С. Если будет ниже, то система охлаждения еще больше уменьшит это значение. В результате агрегат станет работать неэффективно: детали двигателя будут расширяться недостаточно, между ними будет отсутствовать необходимый зазор. В недостаточно прогретом двигателе конденсируется влага, которая, попадая в масло, образует кислоты. А это вредно сказывается на металлических деталях. Также может возникнуть проблема загустения, когда смазывающая субстанция плохо проходит систему фильтрацию. В конечном итоге складываются неблагоприятные условия для работы всего двигателя.
Высокая рабочая температура.
Повышение температуры двигателя еще более опасно, чем его недостаточный нагрев. В таких случаях детали начинают работать в режиме гидродинамической смазки, что приводит к снижению вязкости масла. Оксоль не может достаточно эффективно смазывать трущиеся детали. Помимо этого, необходимые для оптимальной работы зазоры уменьшаются, что ведет к повреждению деталей.
Особую тревогу вызывает повышение температуры масла до 120-125° С. В таких случаях оно идет в обход поршневых колец, что приводит к возгоранию вместе с топливом. О такой проблеме может сигнализировать повышенный расход жидкости, которую водителю приходится заливать чаще, чем при нормальной температуре. Но вот нюанс – при добавлении масла оно обновляется, тем самым показатели могут выглядеть «нормально».
Вообще, проблемы с температурным режимом масла в двигателе часто возникают незаметно, пока, конечно, не случилась поломка. Иногда неверно диагностируют причину неполадок. Здесь следует обратить свое внимание на то, что при перегреве подшипники выходят из строя даже при исправном масляном насосе и отличном качестве смазочного материала в целом.

Метки к статье: температура масла

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ОТЛОЖЕНИЯ В ДВИГАТЕЛЕ

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ОТЛОЖЕНИЯ В ДВИГАТЕЛЕ

Исследование отложений в автомобильных двигателях.

Одним из резервов повышения показателей эксплуатационной надежности ДВС является снижение отложений нагаров, лаков и осадков на поверхностях их деталей, контактирующих с моторным маслом. В основе их образования лежат процессы старения масел (окисление углеводородов, входящих в состав масляной основы). Определяющее влияние на процессы окисления масла в двигателях, на образование отложений и эффективность работы ДВС в целом оказывает тепловой режим теплонагруженных деталей.

Ключевые слова: температура, поршень, цилиндр, моторное масло, отложения, нагар, лак, работоспособность, надежность.

Отложения на поверхностях деталей ДВС делятся на три основных вида – нагары, лаки и осадки (шламы).

Нагар – твердые углеродистые вещества, откладывающиеся во время работы двигателя на поверхностях камеры сгорания (КС). При этом отложения нагаров, главным образом, зависят от температурных условий даже при аналогичном составе смеси и одинаковой конструкции деталей двигателей. Нагар оказывает весьма существенное влияние на протекание процесса сгорания топливовоздушной смеси в двигателе и на долговечность его работы. Почти все виды ненормального сгорания (детонационное сгорание, калильное воспламенение и прочие) сопровождаются тем или иным влиянием нагара на поверхностях деталей, образующих КС.

Лак – продукт изменения (окисления) тонких масляных пленок, растекающихся и покрывающих детали цилиндропоршневой группы (ЦПГ) двигателя под действием высоких температур. Наибольший вред для ДВС наносит лакообразование в зоне поршневых колец, вызывая процессы их закоксовывания (залегания с потерей подвижности). Лаки, откладываясь на поверхностях поршня, контактирующих с маслом, нарушают должную теплопередачу через поршень, ухудшают теплоотвод от него.

На количество осадков (шламов), образующихся в ДВС, решающее влияние оказывает качество моторного масла, температурный режим деталей, конструкционные особенности двигателя и условия эксплуатации. Отложения этого типа наиболее характерны для условий зимней эксплуатации, интенсифицируются при частых пусках и остановках двигателя.

Тепловое состояние ДВС оказывает определяющее влияние на процессы образования различных видов отложений, прочностные показатели материалов деталей, выходные эффективные показатели двигателей, процессы изнашивания поверхностей деталей. В этой связи необходимо знать пороговые значения температур деталей ЦПГ, по крайней мере, в характерных точках, превышение которых приводит к указанным ранее негативным по следствиям.

Температурное состояние деталей ЦПГ ДВС целесообразно анализировать по значениям температур в характерных точках, расположение которых показано на рис. 1 . Значения температур в данных точках следует учитывать при производстве, испытаниях и доводке двигателей для оптимизации конструкций деталей, при выборе моторных масел, при сравнении тепловых состояний различных двигателей, при решении целого ряда других технических проблем конструирования и эксплуатации ДВС.

Рис. 1. Характерные точки цилиндра и поршня ДВС при анализе их температурного состояния для дизельных (а) и бензиновых (б) двигателей

Эти значения имеют критические уровни:

1. Максимальное значение температур в точке 1 (в дизельных двигателях – на кромке КС, в бензиновых – в центре донышка поршня) не должно превышать 350С (кратковременно, 380С) для всех серийно применяемых в автомобильном двигателестроении алюминиевых сплавов, иначе происходит оплавление кромок КС в дизелях и, нередко, прогар поршней в бензиновых двигателях. Ко всему прочему высокие температуры огневой поверхности днища поршня вызывают образование нагаров высокой твердости на этой поверхности. В практике двигателестроения это критическое значение температуры удается повышать путем добавления в поршневой сплав кремния, бериллия, циркония, титана и других элементов.

Недопущение превышения критических значений температур в этой точке, равно как и в объемах деталей ДВС, обеспечивается также путем оптимизации их форм и правильной организацией охлаждения. Превышение температурами деталей ЦПГ двигателей допустимых значений обычно является основным сдерживающим фактором для форсирования их по мощности. По температурным уровням следует иметь определенный запас с учетом возможных экстремальных условий эксплуатации.

2. Критическое значение температур в точке 2 поршня – над верхним компрессионным кольцом (ВКК) – 250…260С (кратковременно, до 290С). При превышении этой величины все массовые моторные масла коксуются (происходит интенсивное лакообразование), что приводит к “залеганию” поршневых колец, то есть потере их подвижности, и в результате – к существенному уменьшению компрессии, увеличению расхода моторного масла и др.

3. Предельное максимальное значение температур в точке 3 поршня (точка расположена симметрично по сечению головки поршня на внутренней его стороне) – 220С. При более высоких температурах на внутренней поверхности поршня происходит интенсивное лакообразование. Лаковые отложения, в свою очередь, являются мощным тепловым барьером, препятствующим теплоотводу через масло. Это автоматически приводит к повышению температур во всем объеме поршня, а значит, и на поверхности зеркала цилиндра.

4. Максимально допустимое значение температур в точке 4 (расположена на поверхности цилиндра, напротив места остановки ВКК в ВМТ) – 200С. При его превышении моторное масло разжижается, что приводит к потере стабильности образования масляной пленки на зеркале цилиндра и «сухому» трению колец по зеркалу. Это вызывает интенсификацию молекулярно-механического изнашивания деталей ЦПГ. С другой стороны, известно, что пониженная температура стенок цилиндра (ниже точки росы отработавших газов) способствует ускорению их коррозионно-механического изнашивания [1,2]. Ухудшается также смесеобразование и уменьшается скорость сгорания топливовоздушной смеси, что снижает эффективность и экономичность работы двигателя, вызывая повышение токсичности отработавших газов. Также следует отметить, что при существенно заниженных температурах поршня и цилиндра сконденсированные водяные пары, проникающие в картерное масло, вызывают интенсивную коагуляцию примесей и гидролиз присадок с образованием осадков – «шламов». Эти осадки, загрязняя масляные каналы, сетки маслоотстойников, масляные фильтры, существенно нарушают нормальную работу смазочной системы.

На интенсивность протекания процессов образования отложений нагаров, лаков и осадков на поверхностях деталей ДВС существенно влияет старение моторных масел при их работе. Старение масел состоит в накоплении примесей (в том числе воды), изменении их физико-химических свойств и окислении углеводородов.

Изменение фракционного состава чистого залитого масла по мере работы двигателя вызывается в основном причинами, изменяющими состав его масляной основы и процентное соотношение присадок по отдельным составляющим (парафиновым, ароматическим, нафтеновым).

К ним относятся:

  • процессы термического разложения масла в зонах перегрева (например, в клапанных втулках, зонах верхних поршневых колец, на поверхностях верхних поясов зеркала цилиндров). Такие процессы приводят к окислению наиболее легких фракций масляной основы или даже их частичному выкипанию;

  • добавление к углеводородам основы неиспарившегося топлива, попадающего в начальные периоды пусков (или при резком увеличении подачи топлива в цилиндры для осуществления ускорения автомобиля) в маслосборник картера через зону поршневых уплотнений;

  • попадание в поддон картера или маслосборник двигателя воды, образующейся при сго-рании топлива в КС цилиндров.

Если система вентиляции картера действует достаточно эффективно, а стенки картера находятся в подогретом состоянии до 90-95°С, вода не конденсируется на них и удаляется в атмосферу системой вентиляции картера. Если температура стенок картера существенно понижена, то попавшая в масло вода будет принимать участие в процессах его окисления. Количество сконденсировавшейся воды при этом может быть весьма значительным [2]. Даже если считать, что только 2% газов могут прорваться через все компрессионные кольца цилиндра, то через картер двигателя с рабочим объемом 2-2,5 л за каждые 1000 км пробега будет прокачиваться по 2 кг воды. Допустим, что 95% воды удаляется системой вентиляции картера, то все равно после пробега в 5000 км на 4,0 л моторного масла будет приходиться около 0,5 л Н2О. Эта вода при работе двигателя преобразуется антиокислительной присадкой, содержащейся в моторном масле, в примеси – кокс и золу.

По указанным ранее причинам необходимо поддерживать при работе двигателя температуру стенок картера достаточно высокой, а в случае необходимости – применять системы смазки с сухим картером и отдельным масляным баком.

Следует отметить, что мероприятия, замедляющие процессы изменения состава масляной основы, существенно замедляют образование нагара, лака и осадков, а также снижают интенсивность изнашивания основных деталей автомобильных двигателей .

Фракционный и химический состав масел может изменяться в достаточно широких
пределах под влиянием различных факторов:

  • характера сырья, зависящего от месторождения, свойств нефтяной скважины;

Для предварительной оценки свойств нефтепродуктов применяют различные лабораторные методы: определение кривой разгонки, температур вспышки, помутнения и застывания, оценку окисляемости в средах с различной агрессивностью и т.п.

В основе старения автомобильного моторного масла лежат процессы окисления, разложения и полимеризации углеводородов, которые сопровождаются процессами загрязнения масла различными примесями (нагаром, пылью, металлическими частичками, водой, топливом и пр.). Процессы старения существенно изменяют физико-химические свойства масла, приводят к появлению в нѐм разнообразных продуктов окисления и износа, ухудшают его эксплуатационные качества. Различают следующие виды окисления масла в двигателях: в толстом слое – в поддоне картера или в масляном баке; в тонком слое -на поверхностях горячих металлических деталей; в туманообразном (капельном) состоянии – в картере, клапанной коробке и т.п. При этом окисление масла в толстом слое даѐт осадки в виде шлама, а в тонком слое – в виде лака.

Окисление углеводородов подчиняется теории перекисей А.Н. Баха и К.О. Энглера, дополненной П.Н. Черножуковым и С.Э. Крейном. Окисление углеводородов, в частности, в моторных маслах ДВС, может идти по двум основным направлениям, представленным на рис. 2, результаты окисления по которым различны. При этом результатом окисления по первому направлению являются кислые продукты (кислоты, оксикислоты, эстолиды и асфальтогенные кислоты), образующие осадки при пониженных температурах; результатом окисления по второму направлению являются нейтральные продукты (карбены, карбоиды, асфальтены и смолы), из которых образуются в различных пропорциях при повышенных температурах или лаки, или нагары.

Рис. 2. Пути окисления углеводородов в нефтяном продукте (например, в моторном масле для ДВС)

В процессах старения масла весьма значительна роль воды, попадающей в масло при конденсации ее паров из картерных газов или другими путями. В результате этого образуются эмульсии, которые впоследствии усиливают окислительную полимеризацию молекул масла. Взаимодействие оксикислот и других продуктов окисления масла с водомасляными эмульсиями вызывает усиленное образование осадков (шламов) в двигателе.

В свою очередь, образовавшиеся частички шлама, если они не будут нейтрализованы присадкой, служат центрами катализации и ускоряют разложение еще не окислившейся части масла. Если при этом не произвести своевременную замену моторного масла, процесс окисления будет происходить по типу цепной реакции с увеличивающейся скоростью, со всеми вытекающими отсюда последствиями.

Решающее влияние на образование нагаров, лаков и осадков на поверхностях деталей ДВС, контактирующих с моторным маслом, оказывает их тепловое состояние. В свою очередь, конструкционные особенности двигателей, условия их эксплуатации, режимы работы и т.д.  определяют тепловое состояние двигателей и влияют, таким образом, на процессы образования отложений. 

Не менее важное влияние на образование отложений в ДВС оказывают и характеристики применяемого моторного масла. Для каждого конкретного двигателя важно соответствие рекомендованного заводом-изготовителем масла температуре поверхностей деталей, контактирующих с ним.

В данной работе произведен анализ взаимосвязи температур поверхностей поршней двигателей ЗМЗ-402.10 и ЗМЗ-5234.10 и процессов образования на них отложений нагаров и лаков, а также произведена оценка осадкообразования на поверхностях картера и клапанной крышки двигателей при использовании рекомендованного заводом изготовителем моторного масла М 63/12Г1.

Для исследования зависимостей количественных характеристик отложений в двигателях от их теплового состояния и условий работы можно использовать различные методики, например, Л-4 (Англия), 344-Т (США), ПЗВ (СССР) и др. [2, 3]. В частности, по методике 344-Т, являющейся нормативным документом США, состояние «чистого» неизношенного двигателя оценивается в 0 баллов; состояние предельно изношенного и загрязненного двигателя в 10 баллов. Аналогичной методикой оценки лакообразования на поверхностях поршней является отечественная методика ПЗВ (авторы – К.К. Папок, А.П. Зарубин, А.В. Виппер), цветовая шкала которой имеет баллы от 0 (отсутствие лаковых отложений) до 6 (максимальные отложения лака). Для пересчета баллов шкалы ПЗВ в баллы методики 344-Т показания первой необходимо увеличить в полтора раза. Указанная методика аналогична отечественной методике отрицательной оценки отложений ВНИИ НП (10 балльная шкала).

Для экспериментальных исследований использовались по 10 двигателей ЗМЗ-402.10 и ЗМЗ-5234.10 [2]. Эксперименты по исследованию процессов образования отложений проводились совместно с лабораториями испытаний легковых и грузовых автомобилей УКЭР ГАЗ на моторных стендах. В процессе испытаний, кроме прочего, контролировались расходы воздуха и топлива, давление и температура отработавших газов, температура масла и охлаждающей жидкости. При этом на стендах выдерживались режимы: частота вращения коленчатого вала, соответствующая максимальной мощности (100% нагрузки), и, поочередно, в течение 3,5 часов – 70% нагрузки, 50% нагрузки, 40% нагрузки, 25% нагрузки и без нагрузки (при закрытых дроссельных заслонках), т.е. эксперименты проведены по нагрузочным характеристикам двигателей. При этом температура охлаждающей жидкости выдерживалась в интервале 90…92С, температура масла в главной масляной магистрали – 90…95С. После этого двигатели разбирались и производились необходимые замеры.

Предварительно были проведены исследования по изменению физико-химических параметров моторных масел при испытаниях двигателей ЗМЗ-402.10 в составе автомобилей ГАЗ-3110 на автополигоне УКЭР ГАЗ. При этом выдержаны условия: средняя техническая скорость 30…32 км/ч, температура окружающего воздуха 18…26С, пробег до 5000 км. В результате испытаний получено – при увеличении пробегов автомобилей (времени работы двигателей) увеличивалось количество механических примесей и воды в моторных маслах, его коксовое число и зольность, происходили прочие изменения, что представлено в табл. 1

Нагарообразование на поверхностях днищ поршней двигателей ЗМЗ-5234.10 характеризовалось данными, представленными на рис. 3 (для двигателей ЗМЗ-402.10 результаты подобны). Из анализа рисунка следует, что при повышении температур днищ поршней от 100 до 300С толщина (зона существования) нагара уменьшалась с 0,45…0,50 до 0,10…0,15 мм, что объясняется выжиганием нагара при повышении температуры поверхностей двигателей. Твердость же нагара повышалась с 0,5 до 4,0…4,5 баллов по причине спекания нагара при высоких температурах.

Рис. 3. Зависимости нагарообразования на поверхностях днищ поршней двигателей ЗМЗ-5234.10 от их температур:
а – толщина нагара; б – твердость нагара;
символами нанесены усредненные экспериментальные значения

Оценка величин отложений лаков на боковых поверхностях поршней и их внутренних (нерабочих) поверхностях производилась также по десятибалльной шкале, согласно методике 344-Т, используемой во всех ведущих научно-исследовательских учреждениях страны.

Данные по лакообразованию на поверхностях поршней двигателей представлены на рис. 4 (результаты по исследуемым маркам двигателей совпадают). Режимы испытаний указаны ранее и соответствуют режимам при исследованиях нагарообразования на деталях.

Из анализа рисунка следует, что лакообразование на поверхностях поршней двигателей однозначно увеличивается с увеличением температур их поверхностей. На интенсивность лакообразования влияет не только повышение температур поверхностей деталей, но и длительность ее действия, т.е. продолжительность работы двигателей [3]. При этом, однако, процессы лакообразования на рабочих (трущихся) поверхностях поршней существенно замедляются по сравнению с внутренними (нерабочими) поверхностями, вследствие стирания слоя лака в результате трения.

Рис. 4. Зависимости отложений лака на поверхностях поршней двигателей ЗМЗ-5234.10 от их температур:
а – внутренние поверхности; б – боковые поверхности; символами нанесены усредненные экспериментальные значения

Нагаро- и лакообразование на поверхностях деталей существенно интенсифицируется при применении масел групп «Б» и «В», что подтверждено рядом исследований, проведенных авторами на подобных и других типах автомобильных двигателей.

Планомерное увеличение отложений лаков на внутренних (нерабочих) поверхностях поршней вызывает уменьшение теплоотвода в картерное масло при увеличении наработки двигателей. Это вызывает, например, постепенное увеличение уровня теплового состояния двигателей по мере приближения наработки к смене масла при очередном ТО-2 автомобиля.

Образование осадков (шламов) из моторных масел происходит в наибольшей степени на поверхностях картера и клапанной крышки. Результаты исследований осадкообразования в двигателях ЗМЗ-5234.10 представлены на рис. 5 (для двигателей ЗМЗ-402.10 результаты подобны). Осадкообразование на поверхностях указанных ранее деталей оценивалось в зависимости от их температур, для измерения которых были смонтированы термопары (приварены конденсаторной сваркой): на поверхностях картера по 5 штук у каждого двигателя, на поверхностях клапанных крышек – по 3 штуки.

Как следует из рис. 5, при повышении температур поверхностей деталей двигателей осадкообразование на них уменьшается вследствие уменьшения содержания воды в картерном масле, что не противоречит результатам ранее проведенных экспериментов другими исследователями. Во всех двигателях осадкообразование на поверхностях деталей картера оказались больше, чем на поверхностях клапанных крышек.

На моторных маслах групп форсирования «Б» и «В» осадкообразование на деталях ДВС, контактирующих с моторным маслом, происходит интенсивнее, чем на маслах групп форсирования «Г», что подтверждено рядом исследований [1, 2, 3 и др.].

По сравнению с поверхностями поршней, отложения на зеркалах цилиндров следует считать незначительными. Далее, на рис. 6 приводятся данные по лакообразованию на зеркале цилиндра двигателей ЗМЗ-5234.10 при работе на маслах М-8В («автол») и М6з/12Г1, полученные также по методике 344-Т (для двигателей ЗМЗ-402.10 результаты подобны).

В данной работе исследования отложений на зеркалах цилиндров при эксплуатации двигателей на самых современных маслах не проводилось, однако, можно уверенно предположить, что для исследуемых двигателей они будут не больше, чем при их работе на менее качественных маслах.

Полученные результаты по взаимосвязи изменения температур основных деталей двигателей ЗМЗ-402.10 и ЗМЗ-5234.10 (поршней, цилиндров, клапанных крышек и масляных картеров) и количества отложений позволили выявить закономерности процессов образования нагаров, лаков и осадков на поверхностях указанных деталей. Для этого результаты аппроксимированы функциональными зависимостями методом наименьших квадратов и представлены на рис. 3-5. Полученные закономерности процессов образования отложений на поверхностях деталей автомобильных карбюраторных двигателей должны учитываться и использоваться конструкторами и инженерно-техническими работниками, занимающимися доводкой и эксплуатацией ДВС.

Двигатель автомобиля работает с наибольшей эффективностью лишь при определенных условиях. Оптимальный температурный режим теплонагруженных деталей является одним из таких условий и обеспечивает высокие технические характеристики двигателя с одновременным снижением износов, отложений и, следовательно, повышением показателей его надежности.

Оптимальное тепловое состояние ДВС характеризуется оптимальными температурами поверхностей их теплонагруженных деталей. Анализируя проведенные исследования процессов образования отложений на деталях исследуемых карбюраторных двигателей ЗМЗ и подобные исследования по бензиновым двигателям [1, 2, 3 и др.], можно с достаточной степенью  точности определить интервалы оптимальных и опасных температур поверхностей деталей данного класса двигателей. Полученная информация представлена в табл. 2.

При температурах деталей двигателей в опасной высокотемпературной зоне существенно увеличивается твердость нагара на деталях КС цилиндра, что вызывает процессы калильного зажигания топливовоздушных смесей, количество лаковых отложений на поверхностях поршней и цилиндров, а значит, нарушается нормальный тепловой баланс. Рис. 7.

При температурах деталей двигателей в опасной низкотемпературной зоне увеличивается толщина нагара на поверхностях деталей, образующих КС, что приводит к возникновению детонационного сгорания топливовоздушных смесей, а также при низких температурах поверхностей деталей двигателей на них увеличивается количество осадков из моторных масел. Все это нарушает нормальную работу двигателей. В свою очередь отложения приводят к перераспределению тепловых потоков, проходящих через поршни, и повышению температур поршней в критических точках – в центре огневой поверхности днища поршня и в канавке ВКК. Температурное поле поршня двигателя ЗМЗ-5234.10 с учетом отложений нагаров и лаков на его поверхностях представлено на рис. 7.

Задача теплопроводности методом конечных элементов решалась с ГУ 1-рода, полученными при термометрировании поршня на режиме номинальной мощности при стендовых испытаниях двигателя. Термоэлектрические эксперименты проводились с тем же поршнем, для которого предварительно выполнены исследования температурного состояния без учета отложений. Эксперименты осуществлялись при идентичных условиях. Предварительно двигатель работал на стенде более 80 часов, после чего наступает стабилизация нагаров и лаков. В результате, температура в центре днища поршня повысилась на 24°С, в зоне канавки ВКК – на 26°С в сравнении с моделью поршня без учета отложений. Значение температуры поверхности поршня над ВКК 238°С входит в опасную высокотемпературную зону (табл. 2). Близко к опасной высокотемпературной зоне и значение температуры в центре днища поршня.

На этапе проектирования и доводки двигателей влияние отложений нагаров на тепловоспринимающих поверхностях поршней и лаков на их поверхностях, контактирующих с моторным маслом, учитывается крайне редко. Это обстоятельство в совокупности с эксплуатацией двигателей в составе АТС при повышенных тепловых нагрузках увеличивает вероятность отказов – прогары поршней, закоксовывание поршневых колец и т.д.

Н.А Кузьмин, В.В. Зеленцов, И.О. Донато

Нижегородский государственный технический университет им. Р.Е. Алексеева, Управление автомагистрали “Москва — Н.Новгород»

прогрев двигателя — РОССИЙСКАЯ АКАДЕМИЯ ТРАНСПОРТА

С похолоданием и приближением зимнего сезона вновь становится актуальным животрепещущий вопрос — прогревать или не прогревать двигатель перед началом движения. Интересно, что разные эксперты дают на этот вопрос диаметрально противоположные ответы. Ситуация, когда двигатель не нагревается до рабочей температуры, достаточно распространена на бензиновых и дизельных автомобилях. При этом многие автовладельцы не уделяют должного внимания или вовсе не замечают данную неисправность, особенно в теплое время года. Причина проста – водители больше боятся перегрева, а вот о последствиях езды на холодном или недостаточно прогретом двигателе знают не все. Получается, если бензиновый или дизельный двигатель не выходит на рабочую температуру, стрелка указателя температуры на приборной панели не доходит до нужного показателя на шкале, начать движение все равно можно. Однако следует учитывать, что износ двигателя увеличивается, растет топливный аппетит агрегата, а выхлоп становится токсичным. Добавим, многие специалисты сходятся в том, что различные типы моторных масел и их вязкость также может влиять на общий нагрев мотора, хотя и незначительно. Рабочая температура масла в обычном двигателе находится на отметке около 100-150 градусов, не превышая максимального порога около 200 градусов. Параллельно с этим максимальная температура масла в двигателе определяется температурой вспышки масла и его коксования. Холодный мотор и неработающая печка в большинстве случаев являются последствиями неисправностей термостата, а чтобы не допустить их, следуют знать несколько вещей:

Пресс-служба ГК «АвтоСпецЦентр» дала несколько советов о том, как следует прогревать двигатель автомобиля: «Оптимальным температурным режимом прогрева двигателя считается диапазон от 700 до 900 С, возможно также повышение температуры до 970, но не выше. Если бензиновый или дизельный двигатель не прогревается до минимальной отметки диапазона, увеличивается износ агрегата, растет расход топлива и выхлопные газы становятся токсичными. Причинами того, что двигатель перестал прогреваться, могут быть нарушения в работе термостата, несвоевременная смена антифриза или тосола, смешивание охлаждающих жидкостей между собой. Первым признаком недостаточного прогрева двигателя, который автомобилист может заметить самостоятельно, — плохая работа обогрева. Также о неисправности говорит недостаточный разгон автомобиля, неровная работа мотора и появление вибраций в салоне. В теории прогрев двигателя современных автомобилей должен не занимать более 5 минут. Даже в ПДД прописан пункт 17,2, запрещающий находиться в жилых зонах автомобилям с запущенным двигателем дольше указанного времени. На самом деле, пяти минут вполне достаточно, чтобы перед началом движения дать насосу возможность прогнать отстоявшееся масло по узким каналам системы смазки и еще пару минут подождать пока выровняются температуры металлов в камерах сгорания. При эксплуатации современных автомобилей возможен и быстрый старт: пуск и прогрев ДВС на холостых оборотах в течении 0,5 — 2 минут и начало медленного движения на средних оборотах (2000-2500 об/мин)».

Что касается менее современных двигателей, не секрет, что силовые агрегаты 70-х, 80-х и даже 90-х годов, особенно если речь идет об изделиях отечественного автопрома, гораздо требовательнее к прогреву, нежели современные двигатели. Из за более грубой обработки трущихся элементов старые моторы необходимо подолгу греть, дожидаясь, пока они не достигнут рабочих температур. Таким образом, в морозы владельцам менее современных автомобилей следует прогревать мотор  автомобиля до рабочей температуры в течение 15 — 20 минут.

Технический директор сервисного центра «Автоглобус» Андрей Конев уверен, что даже при умеренных морозах специальный прогрев двигателю не требуется: «До наступления морозов в минус 12–15 градусов прогревать вообще ничего не нужно. Современные масла позволяют любому двигателю работать бесперебойно и с сохранением ресурса даже в небольшой холод. Однако более сильные морозы накладывают определенные ограничения на запуск турбомоторов. Если мы говорим о сильных морозах, то бензиновый атмосферный мотор опять же можно не прогревать. Никаких проблем с этим нет. Если говорить о бензиновом двигателе с турбиной, то для того, чтобы турбина нагрелась, а система смазки полноценно заработала, можно прогреть мотор около одной минуты. Этого достаточно», — добавил эксперт.

 

 

Почему двигатель не прогревается до рабочей температуры: причины, что делать

Грамотная работа автомобильного двигателя внутреннего сгорания возможна только при рабочей температуре, которая находится на уровне около 90 градусов по Цельсию. После пуска двигателя и начала сгорания топливовоздушной смеси, мотор резко разогревается, и система охлаждения берет на себя задачу по его охлаждению. Если система охлаждения неисправна, возможен перегрев двигателя, что негативно сказывается на агрегатах и компонентах мотора: происходит излишний износ деталей, смазочный материал теряет свои свойства, элементы двигателя могут начать заедать и заклинивать, а также происходят другие проблемы. Не менее серьезная проблема, когда двигатель не прогревается до рабочей температуры.

Двигатель не прогревается до рабочей температуры: последствия

На приборной панели современных автомобилей для контроля температуры двигателя предусмотрена специальная шкала. Водитель может наблюдать, при какой температуре функционирует мотор, из чего делать соответствующие выводы. Если при продолжительной работе двигателя его температура не доходит до оптимальных 85-90 градусов, необходимо как можно скорее разобраться в причинах неисправности.

Эксплуатация автомобиля с переохлажденным мотором не приведет ни к чему хорошему. Можно выделить следующие проблемы, которые ожидают водителя, если мотор не прогревается до рабочей температуры и работает в подобном режиме продолжительное время:

  • Повышенный расход топлива. Дело в том, что за количество впрыскиваемого топлива в современных автомобилях отвечает электронный блок управления. Если мотор не достигает рабочей температуры, ЭБУ распознает его как холодный и отдает команду на впрыск обогащенной смеси;
  • Повышенный нагар на компонентах двигателя (в частности, на свечах зажигания) и увеличение риска закоксованности;
  • Снижение мощностных характеристик двигателя из-за работы мотора не в оптимальном режиме;
  • Низкая эффективность смазочных компонентов, что приводит к увеличению трения и повышенному износу.

Постоянная работа мотора в неоптимальном температурном состоянии способно быстро вывести его из строя и привести к необходимости проведения капитального ремонта.

Почему двигатель не прогревается до рабочей температуры

Если двигатель автомобиля в процессе работы не разогревается до 90 градусов, необходимо срочно проверить его систему охлаждения, чаще всего проблема связана именно с ней. Можно выделить следующие неисправности, способные привести к подобного рода проблемам:

  • Неправильная работа термостата. В двигателе автомобиля термостат отвечает за переключение направления движения охлаждающей жидкости. Когда мотор только стартует, охлаждающая жидкость в нем движется по малому кругу, прогревая двигатель до рабочей температуры. Когда температура двигателя доходит примерно до 90 градусов, термостат переключает направление потоков охлаждающей жидкости на большой круг. Если термостат заклинит и не будет выполнять свою прямую обязанность по переключению направления движения охлаждающей жидкости, это может привести как к перегреву, так и к переохлаждению двигателя. Соответственно, нужно проверить термостат, а если он неисправен, потребуется его заменить на новый;
  • Воздух подсасывается через патрубки. Если плохо затянуты патрубки, то дополнительный воздух из атмосферы может поступать в систему. Чаще всего, если имеется подобная проблема, на патрубках можно увидеть следы от охлаждающей жидкости, которая через них частично вытекает. В такой ситуации нужно получше затянуть  хомуты и проверить патрубки на наличие трещин и плотность прилегания;
  • Ошибка в работе датчика температуры охлаждающей жидкости. Если датчик передает неверные сведения, то водитель может быть введен в заблуждение информацией, демонстрируемой на панели приборов. На шкале будет указано, что двигатель недостаточно прогревается, хотя по факту это может быть и не так. Чтобы избежать вероятность подобного рода проблемы, нужно проверить датчик температуры охлаждающей жидкости и заменить его, если имеются отклонения от оптимальных результатов.

Выше приведены три наиболее распространенных причины, почему не прогревается двигатель до рабочей температуры (или водитель считает, что мотор недостаточно прогрет). В 95% случаев проблема связана с термостатом, который рекомендуется менять каждые 3 года или каждые 50 тысяч километров пробега.

Загрузка…

Дэвид Ботчер — профессиональный инженер

Дэвид Ботчер — профессиональный инженер

Eur Ing D B Boettcher BSc (Hons) CEng MIET

Предоставление инновационных решений для техники и бизнеса задач возможностей.

Термостат двигателя, такой как термостат двигателя обычного автомобиля или грузовика с водяным охлаждением, выполняет две отдельные, но взаимосвязанные функции:

1. Как можно быстрее довести двигатель до оптимальной рабочей температуры; и

2.После этого поддерживать двигатель при оптимальной рабочей температуре.

Введение

Двигатели внутреннего сгорания наиболее эффективно работают при относительно высоких температурах, обычно выше 80–85 ° C (176–185 ° F). Износ движущихся частей уменьшается, а термический КПД увеличивается за счет работы при этой температуре.

Более низкие температуры двигателя приводят к неэффективному сгоранию, что приводит к увеличению расхода топлива и повышенному износу с последующим сокращением срока службы двигателя.

Однако, если температура двигателя становится слишком высокой, кипение охлаждающей жидкости приводит к образованию локальных паровых карманов, которые серьезно снижают теплопередачу в пораженной области, обычно в головке блока цилиндров, что приводит к преждевременному сгоранию топливовоздушной смеси, также известному как детонация. или стук и, в конечном итоге, повреждение компонентов двигателя (головки блока цилиндров, клапанов и поршней).

Источник тепла и раковины

Когда двигатель сжигает топливо, выделяется тепло. Это тепло увеличивает давление образующейся газовой смеси, остатков всасываемого воздуха и сгоревших паров топлива, что заставляет поршень опускаться и вращает коленчатый вал.Но не все тепло, выделяемое при сжигании топлива, превращается в полезную работу; часть его остается в газе и спускается по выхлопной трубе, а часть проходит в стенки камеры сгорания и цилиндра и удаляется системой охлаждения двигателя.

Итак, сколько тепла задействовано? Двигатели внутреннего сгорания довольно эффективно превращают тепло в полезную работу коленчатого вала; в наиболее эффективных дизельных двигателях с высокой степенью сжатия «тепловой КПД» (количество энергии в топливе, которое превращается в полезную работу) в идеальных условиях может приближаться к 50%.Бензиновые двигатели не так эффективны, как дизельные, из-за более низкой степени сжатия, и большинство двигателей определенно не работают в идеальных условиях большую часть времени. Итак, давайте говорить круглыми числами: в типичном автомобильном двигателе примерно треть (33%) энергии топлива превращается в полезную работу, чтобы заставить автомобиль двигаться, треть тепла уходит в выхлопную трубу. горячий выхлопной газ, и последняя треть тепла уходит в систему охлаждения.

Используя эти пропорции, мы можем видеть, что автомобильный двигатель, скажем, достаточно мощный, в 200 л.с. (тормозная мощность) на самом деле выделяет 600 л.с. тепла, когда он развивает свою максимальную мощность.Одна лошадиная сила составляет примерно 750 ватт, то есть примерно 450 кВт (киловатт), или целых 150 электрических чайников, которые обычно имеют мощность около трех киловатт. Треть этих 450 кВт тепла должна отводиться системой охлаждения.

Конечно, двигатель не всегда развивает максимальную мощность. Когда он не работает, он вырабатывает очень мало тепла, и требования к системе охлаждения намного ниже. Это заметно, когда вы сидите в пробке даже в жаркий день.В типичном современном автомобиле с электрическим вентилятором радиатора температура двигателя будет постепенно повышаться, пока вентилятор не включится, чтобы охладить его. После того, как охлаждающая жидкость остынет на несколько градусов, вентилятор отключается, и охлаждающая жидкость может поглощать тепловую мощность двигателя в течение нескольких минут, пока он не нагреется, и вентилятор должен снова включиться, чтобы охладить его.

Таким образом, система охлаждения двигателя должна иметь возможность отводить часть тепла, производимого двигателем, много или мало, и что-то среднее, при этом поддерживая температуру двигателя стабильной на оптимальной рабочей температуре.

Роль термостата

Для отвода тепла от блока цилиндров и головки охлаждающая жидкость циркулирует в проходах, встроенных в эти компоненты. Часть охлаждающей жидкости рециркулирует вокруг двигателя, а часть отводится через радиатор для охлаждения. Доля охлаждающей жидкости, рециркулирующей вокруг двигателя, по сравнению с пропорцией, направляемой в радиатор и охлаждаемой, определяется степенью открытия термостата.

Чтобы двигатель всегда работал при оптимальной температуре, термостат регулирует его открытие для управления потоком охлаждающей жидкости и, следовательно, потоком тепла от двигателя к радиатору.Охлаждающая жидкость охлаждается в радиаторе и возвращается для смешивания с охлаждающей жидкостью, циркулирующей по двигателю, для поддержания постоянной температуры смешанной смеси.

Если двигатель вырабатывает мало тепла, например, если он работает на холостом ходу, то струйки охлаждающей жидкости через радиатор достаточно, чтобы отвести это тепло и поддерживать постоянную температуру двигателя. Если двигатель работает усиленно, то выделяется больше тепла и через радиатор должно циркулировать больше охлаждающей жидкости, чтобы предотвратить перегрев.

Внешняя температура и скорость автомобиля, которые изменяют способность радиатора отводить тепло, также влияют на скорость, с которой охлаждающая жидкость должна циркулировать через радиатор, поскольку они влияют на температуру охлаждающей жидкости, возвращаемой в двигатель из радиатора для смешивания с охлаждающая жидкость, циркулирующая вокруг двигателя.

Чтобы двигатель достиг оптимальной рабочей температуры как можно быстрее, термостат ограничивает поток воды от двигателя к радиатору практически до нуля (требуется небольшой поток, чтобы термостат ощущал изменения температуры воды по мере того, как двигатель прогревается), пока двигатель не достигнет оптимальной температуры.Затем термостат постепенно открывается, чтобы позволить достаточному количеству охлаждающей жидкости пройти через радиатор, чтобы отвести тепло, выделяемое двигателем, и предотвратить повышение температуры. Если двигатель нагревается на холостом ходу и, следовательно, выделяет лишь небольшое количество тепла, термостату потребуется лишь немного приоткрыться, чтобы отвести выделяемое тепло.

Когда двигатель работает при оптимальной температуре, термостат регулирует поток охлаждающей жидкости к радиатору таким образом, чтобы двигатель поддерживался при оптимальной рабочей температуре, даже когда выходная мощность и, следовательно, тепловая мощность двигателя изменяются в зависимости от нагрузки и условий окружающей среды. .

В условиях пиковой нагрузки, например, при медленном подъеме по крутому склону на полностью открытой дроссельной заслонке при большой нагрузке в жаркий день, термостат будет приближаться к полному открытию, поскольку двигатель вырабатывает максимальную мощность, скорость воздушного потока через радиатор мала. , и разница температур между радиатором и охлаждающим воздухом будет небольшой. (Скорость воздушного потока через радиатор и разница температур между радиатором и охлаждающим воздухом имеют большое влияние на его способность рассеивать тепло.) Обратите внимание, что даже при работе двигателя на полную мощность термостат не должен быть полностью открыт: всегда должен быть запас холодопроизводительности в соответствии с принципом предосторожности.

И наоборот, при быстром движении под гору по автостраде холодной ночью с небольшим дросселем термостат будет почти закрыт, потому что двигатель вырабатывает небольшую мощность, а радиатор может рассеивать гораздо больше тепла, чем производит двигатель. Допуск слишком большого потока охлаждающей жидкости к радиатору приведет к переохлаждению двигателя и его работе при температуре ниже оптимальной.Побочным эффектом этого может быть то, что обогреватель салона не сможет выдавать достаточно тепла, чтобы согреть пассажиров.

Таким образом, термостат постоянно регулируется, то есть он перемещается во всем своем диапазоне в зависимости от температуры охлаждающей жидкости, протекающей мимо него, увеличивая или уменьшая поток охлаждающей жидкости двигателя к радиатору в ответ на изменения температуры охлаждающей жидкости из-за для изменения выходной мощности в ответ на рабочую нагрузку транспортного средства, скорость транспортного средства и внешнюю температуру, всегда поддерживая двигатель при оптимальной рабочей температуре.

Как работает термостат?

Типичный термостат имеет цилиндр, содержащий термочувствительный воск, и поршень, который проходит через стенку цилиндра, к которому прикреплен рабочий диск клапана и возвратная пружина. Расширение воска при нагревании выталкивает поршень из цилиндра, перемещая диск дискового клапана. Сжатие парафина при охлаждении позволяет поршню возвращаться в цилиндр с помощью возвратной пружины. При температурах ниже диапазона рабочих температур двигателя воск остается твердым, и термостат не реагирует на изменения температуры.После запуска двигателя и нагрева охлаждающей жидкости воск становится жидким, когда температура достигает нижней границы диапазона рабочих температур. Когда воск разжижается, термостат находится в точке, в которой поршень начинает перемещать дисковый клапан и отклонять поток охлаждающей жидкости к радиатору. По мере дальнейшего прогрева двигателя постоянный поток охлаждающей жидкости к радиатору отводит излишки тепла от двигателя.

Когда двигатель находится в нормальном рабочем диапазоне температур, температура охлаждающей жидкости, проходящей мимо термостата, будет увеличиваться или уменьшаться с изменением выходной мощности.Парафин расширяется или сжимается пропорционально изменению температуры, выталкивая поршень из цилиндра или втягивая его с помощью возвратной пружины. Дисковый клапан действует как пропорциональный регулирующий клапан, регулируя пропорции охлаждающей жидкости, которая либо рециркулирует непосредственно в двигатель, либо направляется в радиатор для охлаждения и затем смешивается с рециркулирующей водой.

Термостат спроектирован так, что он может переходить из полностью закрытого состояния в полностью открытое в небольшом диапазоне температур.Номинальная температура термостата, например 82, 88, 92 и т. Д. — это номинальная температура в градусах Цельсия, при которой клапан термостата начнет открываться после прогрева двигателя. При дальнейшем повышении температуры охлаждающей жидкости клапан будет открываться до полного открытия. Температура полностью открытого состояния обычно на 12-15 градусов выше температуры открытия.

Для проверки термостата обычно помещают его в кастрюлю или чайник с водой и доводят до кипения, наблюдая, как дисковый клапан переключается из открытого в закрытое.Однако подобное тестирование может привести к неправильному пониманию того, как работает термостат. Термостат предназначен для поддержания температуры двигателя в узком диапазоне, и он делает это путем перехода от полностью закрытого к полностью открытому в диапазоне температур в несколько градусов.

Пока не будет достигнута начальная температура открытия где-то выше 80 градусов, ничего не происходит, но как только температура открытия будет достигнута, температура воды может так быстро подняться в пределах рабочего диапазона термостата, что пропорциональное открытие дискового клапана не наблюдается.Вот почему люди ошибочно думают, что термостаты переключаются из закрытого состояния в полностью открытое за один шаг. Чтобы действительно наблюдать пропорциональную работу термостата, температуру охлаждающей жидкости, в которой он испытывается, следует повышать очень медленно во всем рабочем диапазоне.

При тестировании термостатов с более высокими температурами следует отметить, что термостат на 88 градусов не будет полностью открыт до 100-103 градусов, аналогично термостат на 92 градуса не будет полностью открыт до 104-107 градусов.Клапан не откроется полностью при погружении в обычную кипящую воду, потому что температура кипения воды составляет 100 градусов по Цельсию на уровне моря. Чтобы проверить термостаты с более высокой температурой, их необходимо нагреть в смеси вода / незамерзающая смесь или кулинарном масле, что позволит поднять температуру охлаждающей жидкости выше 100 градусов.

NB: Тестирование термостата путем нагревания его в жидкости потенциально опасно и должно проводиться только компетентным лицом, полностью осведомленным о потенциальных опасностях и с соответствующими мерами безопасности.


Copyright © Дэвид Ботчер, 2006-2021 гг., Все права защищены. Не стесняйтесь обращаться ко мне через страницу «Свяжитесь со мной».

Эта страница обновлена ​​в апреле 2019 г. W3CMVS.

Поддержите двигатель в рабочем состоянии: важность температуры масла

Одна из вещей, которые вы обнаружите, если у вас есть датчик давления или температуры масла, заключается в том, что независимо от того, что масло проходит через ваш двигатель и охлаждает его так же, как охлаждающая жидкость, оно принимает и теряет тепло иначе, чем охлаждающая жидкость.

Температура масла, наверное, самая важная вещь, которую нужно знать, особенно для тех из нас, кто сильно толкает свои автомобили. Свободное движение (или, что еще хуже, гонка) на двигателе, который не полностью достиг рабочей температуры масла, чрезвычайно опасен. Но не думайте, что указатель охлаждающей жидкости покажет вам эту информацию — этого не произойдет.

Как правило, после прогрева автомобиля масло становится на несколько градусов теплее охлаждающей жидкости (обычно на 10-15 градусов по Фаренгейту).

Однако масло нагревается намного дольше, чем охлаждающая жидкость. Когда вы заводите машину утром, большинство из нас достаточно мудры, чтобы не возиться с машиной, пока датчик охлаждающей жидкости не достигнет рабочей температуры. Это, конечно, лучше, чем возиться на холоде, но все же не совсем идеально.

Видите ли, масло, особенно при более низких температурах окружающей среды, нагревается в несколько раз дольше.

Масло не сможет легко достичь полной рабочей температуры просто на холостом ходу, это требует езды и некоторой нагрузки на двигатель.Я вижу, как люди в боксах на гонках все время выкручивают свои моторы, чтобы «прогреть двигатель». Это не принесет никакой пользы и только приведет к преждевременному износу автомобиля.

Лучший способ нагреть масло в автомобиле — это просто проехать на нем несколько минут. В идеале у вас должен быть датчик температуры масла, который сообщал бы вам, когда оно достигло рабочей температуры, и датчик давления масла (более низкого давления) также сообщал бы вам эту информацию.

Чем опасен холодный двигатель?

Полный отказ двигателя.

Что ж, это может показаться немного экстремальным, поскольку, конечно, у всех нас был двигатель, который был холодным и тяжелым. Возможно, нам даже это сошло с рук из-за удивительно хорошего дизайна двигателя, который у нас есть сегодня. Однако это крайне рискованно и легко может привести к катастрофическому отказу двигателя. ОСОБЕННО в хорошо настроенных, собранных двигателях.

Если двигатель слишком холодный (то есть охлаждающая жидкость даже не нагрелась), он также не развивает свою идеальную мощность. Двигатели VTEC фактически не включают VTEC, если, например, охлаждающая жидкость не прогрета до температуры — это верно и для многих других технологий с изменяемой фазой газораспределения.Думайте об этом, как о том, что Honda пытается спасти вас от самого себя.

Во всех двигателях зазоры двигателя значительно меньше, что создает чрезмерную нагрузку на внутренние детали двигателя, а поршневые кольца не будут должным образом герметизированы при слишком низкой температуре масла.

Короче говоря, вашему двигателю очень плохо работать, пока МАСЛО полностью не прогреется. Температура охлаждающей жидкости — ложный показатель.

Практические советы

Итак, не выходя и не покупая указатель уровня масла и все такое, что можно сделать из этого обсуждения?

Когда вы впервые начинаете ездить на машине в течение дня, убедитесь, что частота вращения низкая, и не торопитесь, по крайней мере, первые 5 минут езды или дольше при экстремально низких температурах.Самое главное и наименее очевидное — не верьте, что датчик охлаждающей жидкости является хорошим индикатором того, что ваш двигатель полностью прогрет.

В автомобилях с маслоохладителями, в которых для охлаждения используется охлаждающая жидкость (используется во многих импортных автомобилях, зажата между масляным фильтром и блоком), температура масла фактически зависит от охлаждающей жидкости в качестве дополнительного бонуса к поддержанию более низкой температуры масла при высоких нагрузках. .

Если вы устанавливаете датчики в свой автомобиль, вы также можете рассмотреть возможность измерения температуры масла или манометра, поскольку они могут быть реальным инструментом для оценки нагрузки на ваш двигатель и держать вас в курсе ситуаций, которые могут нанести вред надежности вашего двигателя.Это особенно верно в двигателях с турбонаддувом или в высокоскоростных цепях, поскольку моторное масло может фактически свариться, если оно станет слишком горячим, что ухудшит его смазочные свойства и приведет — да, к отказу двигателя.

Помните, что двигатель, полностью прогретый, но не пропитанный теплом, создает оптимальную мощность. В реальном мире это означает, что когда вы едете по шоссе, двигатель достаточно теплый, а воздушный поток, проходящий через моторный отсек, забирает теплый воздух из моторного отсека через днище автомобиля.Никогда не пытайтесь улучшить время на драг-полосе, работая с холодным моторным маслом, и никогда не пытайтесь прогреть автомобиль, закручивая двигатель.

Если вы будете помнить об этом совете, ваш двигатель, несомненно, будет работать намного дольше и у вас не будет по-настоящему плохого дня.

Хотите узнать больше о моторном масле, в том числе о том, какое масло лучше всего подходит для вашего высокопроизводительного двигателя? Кто может лучше спросить, чем Райан Старк из Blackstone Labs, одной из крупнейших лабораторий по анализу масел в стране.В «Грязных секретах нефти» Райан поделился тем, что важно и не имеет значения в нефти, какое масло лучше всего, и развенчал ряд неприятных мифов, опираясь на свой многолетний опыт анализа различных масел. Эта гостевая лекция, включая полную аудиозапись и расшифровку стенограммы, теперь доступна с мгновенным доступом в ресурсном центре TU. Нажмите здесь, чтобы узнать больше


Чрезвычайно ограниченное по времени предложение — всего 3 дня

Получите СТЕПЕНЬ МАСТЕРА в настройке производительности от ЛУЧШИХ в своей области за ОДНУ низкую цену пакета


Только на 3 дня получите ВСЕ наши ПРЕМИУМ-курсы (нигде больше не доступны) Tuner University, посвященные некоторым из величайших умов автоспорта:

— 10 лучших мифов о выступлениях (MP3 и отредактированная стенограмма) — 29 долларов.95 значение
— Производительность на глотке топлива Класс (MP3 и руководство класса) — значение 69,95 долларов США
— Секреты дизайна заголовка с Джоном Грудински (MP3 и стенограмма) — стоимость 69,95 долларов США
— Грязные секреты нефти с Райаном Старком (MP3 и стенограмма) — 69,95 долларов США стоимостью
— Секреты настройки двигателя с Беном Стрейдером из Университета EFI (MP3 и стенограмма) — 69,95 долларов США стоимостью

Получите все вышеперечисленные курсы (многие из которых в настоящее время недоступны где-либо еще) по единой цене всего 309,75 долларов США 69 долларов США.95. ОГРОМНАЯ экономия пакета.

Вы также можете купить любой из них по отдельности через наш ресурсный центр, но я не знаю, зачем вам это нужно, поскольку это в основном целый магазин по цене всего 1 блюда. Вы получите MP3-записи каждого класса, а также расшифровку стенограммы или сопутствующее руководство по каждому курсу, и вы сможете загрузить их все МОМЕНТАЛЬНО.

Заявите о себе сейчас

Нажмите кнопку выше, чтобы получить свое! (69,95 $, мгновенная загрузка)

Что такое датчик температуры охлаждающей жидкости?

Каждый водитель знает, что охлаждающая жидкость / антифриз необходимы для поддержания оптимальной температуры двигателя.Но как системы охлаждения узнают, что двигатель работает при нужной температуре?

В этом руководстве мы более подробно рассмотрим датчики температуры охлаждающей жидкости, предоставив информацию о том, что они делают и как работают, а также пошаговые инструкции по самостоятельной диагностике и замене неисправного датчика.

Что такое датчик температуры охлаждающей жидкости и как он работает?

Датчик температуры охлаждающей жидкости (CTS) (также известный как датчик ECT или ECTS (датчик температуры охлаждающей жидкости двигателя)) используется для измерения температуры смеси охлаждающей жидкости и антифриза в системе охлаждения, показывая, насколько сильно нагревается двигатель. испускается.Датчик работает с ЭБУ автомобиля, постоянно отслеживая температуру охлаждающей жидкости, чтобы убедиться, что двигатель работает при оптимальной температуре.

Чтобы получить точное значение текущей температуры двигателя, ЭБУ отправляет стабилизированное напряжение на CTS. Сопротивление датчика зависит от температуры, поэтому ЭБУ может отслеживать изменения температуры. ЭБУ использует это показание для расчета температуры охлаждающей жидкости и, исходя из этого, регулирует впрыск топлива, топливную смесь и угол зажигания, а также управляет включением и выключением электрического вентилятора системы охлаждения.Эта информация также используется для отправки точных показаний температуры двигателя на датчик на приборной панели.

Как определить неисправный датчик температуры охлаждающей жидкости

Как и любой компонент под капотом, датчики температуры охлаждающей жидкости могут со временем выйти из строя. Неисправный датчик может привести к развитию ряда проблем, включая перегрев и плохую работу двигателя. Вот почему важно знать, как определить признаки неисправного или неисправного датчика температуры, прежде чем это может вызвать дальнейшие проблемы, устранение которых может оказаться более дорогостоящим.

Начните с осмотра самого устройства, чтобы проверить его состояние, поскольку датчики / прокладки / разъемы могут образовывать трещины при длительном использовании и постоянном изменении температуры. CTS обычно находится в передней части автомобиля, рядом с корпусом термостата или на радиаторе. Хотя визуальная проверка может помочь диагностировать некоторые неисправности, не все проблемы с CTS проявляют видимые симптомы.

Ниже мы перечисляем другие признаки и симптомы, которые могут указывать на проблему CTS:

  • Неравномерное считывание показаний прибора на приборной панели (должно быть 88-90 ° C при прогретом двигателе)
  • Перегрев двигателя (выделено приборной панелью)
  • Проверьте световой сигнал двигателя на приборной панели
  • Грубый звук двигателя на холостом ходу
  • Ограниченная производительность (вызванная ошибочным расчетом ECU богатой топливной смеси)
  • Низкая экономия топлива

Если есть какие-либо сомнения относительно того, какой компонент неисправен под капотом , отнесите машину к профессиональному механику для полной диагностики.

Как заменить датчик температуры охлаждающей жидкости

Замена датчика температуры охлаждающей жидкости — это простой процесс для любого, кто знаком с компонентами двигателя, и ее можно выполнить прямо на вашем диске. Следующие шаги демонстрируют, как заменить неисправный датчик температуры охлаждающей жидкости в вашем автомобиле.

Шаг 1. Найдите датчик

CTS обычно направлен к передней части двигателя, рядом с радиатором или корпусом термостата.Поскольку это небольшой компонент, который часто располагается ниже в моторном отсеке, вам может потребоваться фонарь или фонарик, чтобы найти его. Снятие крышки двигателя также может помочь вам найти ее, если она находится рядом с корпусом термостата.

Шаг 2: Отсоедините соединительный кабель от клеммы.

CTS подключается к ЭБУ с помощью разъема, который вам необходимо отсоединить и удалить. Делайте это осторожно, так как пластиковый разъем и проводка часто могут быть хрупкими, и в случае поломки их потребуется полностью заменить.Отсоедините разъем и отложите кабель в сторону, чтобы он не мешал.

Шаг 3: Ослабьте и снимите старый датчик

Датчики охлаждающей жидкости установлены как свеча зажигания, поэтому вам нужно открутить ее, чтобы снять. Используя глубокий патрон и трещотку, осторожно ослабьте датчик против часовой стрелки, не прилагая слишком большого усилия. Струя антиадгезионного спрея поможет освободить застрявшие датчики. Освободив датчик, отвинтите его вручную и выньте из гнезда. В этот момент, вероятно, вытечет охлаждающая жидкость, поэтому приготовьте новую, чтобы заменить ее, или рассмотрите возможность слива охлаждающей жидкости, если требуется.

Шаг 4: Установите новый датчик

Используя тряпку или ткань, очистите место от пыли и мусора, которые могут повлиять на работу нового CTS. Вставьте новый датчик в резьбу и поверните вручную по часовой стрелке, убедившись, что датчик плотно сидит в гнезде. Затем с помощью динамометрического ключа затяните датчик до величины, указанной в инструкциях производителя.

Шаг 5: Восстановите соединительный кабель

После того, как новый датчик установлен, остается только снова подсоединить кабель.Убедитесь, что разъем чистый и на нем нет мусора, затем осторожно вставьте его в новый датчик, осторожно затянув все зажимы, чтобы обеспечить хорошее соединение с клеммой. Чтобы убедиться, что новый датчик работает, запустите двигатель и, когда он нагреется, следите за указателем температуры на приборной панели, чтобы убедиться, что поддерживается правильная температура.

Продукты для ухода за автомобилями Prestone протестированы в экстремальных условиях, поэтому вы можете быть уверены, что они обеспечивают долговечность при повседневном вождении.Для получения дополнительной информации посетите домашнюю страницу Prestone .

Поделиться:

При какой температуре ваш двигатель начнет перегреваться?

При какой температуре ваш двигатель начнет перегреваться?

По эксперту по продукту | Опубликовано в Советы и хитрости во вторник, 5 июня 2018 г., в 13:04

Хотя вы, конечно, не можете избавиться от ощущения, что надежный подержанный автомобиль ведет вас по дороге, со временем становится важным следить за своим двигателем.При достаточном износе ваш двигатель может начать работать сильнее, чем обычно, что может привести к нескольким серьезным опасностям. Если у вас есть датчик температуры внутри вашего автомобиля, вы можете спросить: «При какой температуре ваш двигатель начнет перегреваться?» Сегодня мы покажем вам, чтобы вы знали, когда пора обращаться за помощью!

Нормальная рабочая температура новых и подержанных автомобилей

В большинстве автомобилей на дорогах сегодня есть аналоговый или цифровой датчик температуры, стрелка которого должна оставаться неподвижной примерно на полпути на протяжении всего пути.Конечно, на это повлияют такие факторы, как кондиционер, буксировка и холостой ход на остановке, но все должно быть в порядке, если ваша машина работает при температуре 190-220 градусов. При превышении этого предела риск возгорания радиатора и охлаждающей жидкости повышается.



Риск перегрева двигателя вашей бывшей в употреблении модели

Если вы заметили, что ваш двигатель работает слишком горячо, лучше всего остановиться и немедленно обратиться в сервисную службу. Продолжайте движение, и потенциальные результаты включают в себя снижение мощности и топливной экономичности, вплоть до взорванной прокладки головки блока цилиндров или выстрела блока двигателя.В любом случае, вы должны всегда следить за своей температурой, чтобы избежать риска чего-то плохого, когда вы находитесь на тротуаре.


Подробнее: как остановить перегрев подержанного автомобиля


Гарантийные обязательства в Carville’s Auto Mart в Гранд-Джанкшен, штат Колорадо,

Когда вы покупаете качественный подержанный автомобиль здесь, в Carville’s Auto Mart, вы сразу получаете три доступных плана гарантийной защиты, которые будут охватывать характеристики двигателя и трансмиссии вашей модели в случае любого повреждения.Не стесняйтесь обращаться к нам, если вы хотите просмотреть наш инвентарь или получить дополнительную информацию о предлагаемых нами покрытиях!

  • Facebook
  • Твиттер
  • Pinterest

Больше от Carville Auto Mart

Эта запись была опубликована во вторник, 5 июня 2018 г., в 13:04 и находится в разделе «Советы и рекомендации».Вы можете следить за любыми ответами на эту запись через канал RSS 2.0. И комментарии и запросы в настоящий момент закрыты.

HOTRODSRJs СОВЕТЫ ПО ОХЛАЖДЕНИЮ Рабочая температура против мощности и долговечности!

Некоторые из вас, хорошие люди, должно быть, заметили другие статьи, которые я написал на эту тему в печати или в Интернете. По просьбе нескольких человек здесь я помещаю это за то, что это стоит, а также дополнительные сведения об этом. Аргумент заключается в использовании термостатов на 160 градусов и хороших и / или плохих результатах.Теперь имейте в виду, что термостаты абсолютно НЕ действуют. от способности вашей системы к охлаждению, просто регулятор диапазона, в котором она работает. Итак, если вы думаете, что 160 вылечит двигатель, работающий на 220 с термостатом 180 … забудьте об этом! Дело вовсе не в охлаждающей способности.

На следующем графике показано важность того, насколько критична оптимальная температура охлаждающей жидкости для долговечности и производительности вашего двигателя. Более прохладная вода дает лошадиные силы и более теплая вода снижает износ цилиндров двигателя и подшипников…или так думали, но только до своих пределов и диапазонов. Есть диапазон, где как оптимальная производительность, так и минимальный износ обладают схожими характеристиками. Это число находится в диапазоне 175-180 градусов. диапазон, как показано перекрытием в таблице, что, соответственно, требует термостата на 180 градусов. FWIW, выше рабочие температуры современных двигателей предназначены для борьбы с побочными продуктами сгорания и загрязнением. Также моторные масла рассчитаны на работу в течение определенный температурный диапазон с оптимальной производительностью, начиная с температур, требующих очень высокой температуры охлаждающей жидкости. тот же 175иш ассортимент.И не забывайте о влажности. Вы когда-нибудь видели, как из выхлопных труб выходит водяной пар? Конечно .. и то же самое что-то происходит ВНУТРИ вашего двигателя. Ваш двигатель образует влагу внутри, когда охлаждается и конденсируется на стенках внутри. Эта влага смывается с маслом при запуске, а затем ожидает испарения при достаточном повышении внутренней температуры. довести влажность до соответствующей скорректированной точки парообразования (кипения). Если после него осталось достаточно влаги соединяется с побочными продуктами сгорания с образованием кислот, которые растворяются в самом масле.Масло становится более кислым с возрастом масла. прогрессирует и со временем выбирает определенные части. Также влага разъедает другие поверхности. Итак, это важно как можно скорее довести эти двигатели до удовлетворительной рабочей температуры. Обычно температура залегания нефти примерно на 30-40 градусов выше, чем температура охлаждающей жидкости. Это обобщенное утверждение, которое может варьироваться в зависимости от нагрузки и конструкции двигателя, но вы можете понять, почему. вы хотите, чтобы температура вашего масла превышала 212 градусов, чтобы немедленно выкипеть мякоть! Термостат 160 обычно НЕ достигает этой температуры.

Годы исследований показывают, что использование термостатов на 160 градусов слишком мало, чтобы их можно было рассматривать с точки зрения производительности или двигателя. долголетие. Как видно из приведенного выше графика, износ двигателя увеличился В ДВОЙНОЙ при 160 градусах, чем при 185 градусах. 160-е были изобретены и обычно используется в более старых системах охлаждения с открытым контуром, где использовались только 6-фунтовые крышки радиаторов и низкая температура кипения 212 градусов очки были пределом. Теперь мы знаем лучше.

Многие ранние хот-роддеры считали 160-е лучше, чем 190-е, однако между 180, кажется, удовлетворяет обоим концам спектра.Правильная температура воды и, как следствие, рабочая температура металла, необходимая для достижения в цилиндрах минимальной удельной температуры, чтобы обеспечить полностью перемешанный воздух / топливо для эффективного сгорания — минимум 180 градусов по совпадению. Если вы используете 160, имейте в виду, что это может иметь с течением времени ухудшает качество вашего двигателя. Я знаю, что многие роддеры все еще используют их в любых целях … и это нормально. Черт возьми, я знаю парней, у которых НЕТ термостата, и большинство из вас знают, что это еще одна книга, которую нужно осветить.Я просто сообщаю что я узнаю … и вы решаете, что лучше для вас. Я надеюсь, что это удовлетворит вас, наркоманов информации.

Стив Джек
[email protected] Шкивы
Concept One
Домкраты только для старых автомобилей

Почему так важна правильная температура?

Двигатели более 300 000 миль

Правильно обслуживаемые двигатели 911 могут проработать более 300 000 миль, если температура масла поддерживается в оптимальном диапазоне 180–210 ° F. С повышением температуры масла ресурс двигателя быстро сокращается.Если температура будет слишком высокой, двигатель быстро выйдет из строя. Но почему?

Зависимость срока службы двигателя от температуры масла

Чтобы объяснить это, нам нужно посмотреть, что происходит на поверхности движущихся частей. Под микроскопом обработанные поверхности не являются действительно гладкими, а вместо этого имеют мельчайшие пики и впадины. Когда две такие поверхности вынуждены скользить друг по другу, противоположные высокие точки соприкасаются, сопротивляясь любому скользящему действию. Контакт вызывает деформацию, задиры, микросварку и последующий разрыв.Такой двигатель не протянет!

Со всеми движущимися частями кажется невозможным, что двигатель может продержаться 300 000 миль, но это так. Причина в том, что при нормальной работе движущиеся металлические части практически не соприкасаются друг с другом!

Если детали движутся относительно быстро и присутствует достаточно вязкого масла, масло протягивается между поверхностями, заполняя пространство между ними. Поверхности «плавают» на масляной пленке и металлического контакта не происходит. Это состояние называется гидродинамической смазкой.

Правильная вязкость масла имеет решающее значение

Вязкость — это мера текучести масла. Вязкость контролирует толщину масляной пленки при гидродинамической смазке. Масла теряют вязкость с повышением температуры.

При повышении температуры и снижении вязкости слой масляной пленки становится все тоньше. В конце концов, металлические неровности начинают соприкасаться, и гидродинамическая смазка больше не используется. Состояние становится более выраженным по мере того, как температура продолжает расти, а вязкость и толщина пленки продолжают снижаться.Резко увеличивается износ двигателя.

Сохраняйте моторное масло прохладным

Вот и все. Когда масло имеет подходящую температуру, движущиеся части работают с гидродинамической смазкой, не контактируют и изнашиваются очень мало. С повышением температуры вязкость падает и начинается контакт металла с металлом. Износ двигателя значительно ускоряется.

Установка внешнего маслоохладителя в автомобиле поможет продлить срок его службы.

P0128 — Температура охлаждающей жидкости ниже температуры регулирования термостата

P0128 — это код OBDII, который указывает, что идеальная температура охлаждающей жидкости двигателя не достигается либо достаточно быстро, либо вообще.

Температура охлаждающей жидкости двигателя идеальна для работы двигателя и обычно составляет от 90 до 100 градусов Цельсия или 194–212 по Фаренгейту.

При температурах ниже этой необходимо изменить стратегию управления, чтобы обеспечить стабильное сгорание, как правило, за счет экономии топлива и выбросов углеводородов.

Если температура значительно превышает это значение, перегрев двигателя может вызвать серьезное повреждение двигателя.

Роль термостата заключается в блокировании или уменьшении потока охлаждающей жидкости через радиатор, когда температура охлаждающей жидкости низкая, чтобы обеспечить более быстрый нагрев охлаждающей жидкости, позволяя двигателю быстрее перейти в идеальный рабочий диапазон.

При приближении к рабочему диапазону термостат начинает пропускать охлаждающую жидкость через радиатор во избежание перегрева двигателя. Затем на протяжении всей работы используется термостат, чтобы контролировать температуру.

Если термостат обеспечивает полный поток охлаждающей жидкости через радиатор, а температура охлаждающей жидкости все еще растет, включается вентилятор, чтобы увеличить падение температуры охлаждающей жидкости через радиатор.

P0128 Симптомы

Признаками слишком низкой температуры охлаждающей жидкости в первую очередь является индикатор проверки двигателя.Еще один симптом — повышенный расход топлива.

Как упоминалось ранее, для наиболее эффективной работы двигателя требуется, чтобы охлаждающая жидкость находилась в определенном диапазоне. Если охлаждающая жидкость находится за пределами желаемого диапазона, тогда стратегия управления изменится, чтобы нагреть двигатель быстрее, сохраняя при этом нормальную работу двигателя.

Еще одним признаком транспортных средств, у которых есть датчик температуры воды, является то, что температура остается низкой. Это также может быть полезно при поиске и устранении неисправностей, чтобы увидеть, вызывают ли определенные условия падение температуры охлаждающей жидкости.

Причины низкой температуры двигателя

Наиболее частой причиной кода ошибки P0128 является неисправный термостат. Если термостат всегда открыт, охлаждающей жидкости будет трудно достичь нормальной температуры охлаждающей жидкости двигателя.

Термостаты

предназначены для открытия при отказе, так что двигатель по-прежнему защищен в случае отказа, но это приведет к тому, что двигатель будет медленно достигать температуры. Другой причиной может быть вентилятор, работающий на высокой мощности, когда в этом нет необходимости, исходя из температуры охлаждающей жидкости.В точном датчике температуры охлаждающей жидкости тоже есть потенциальная причина.

Как решить проблему

Чтобы исправить этот код ошибки P0128, я бы сначала рекомендовал запустить двигатель и дать ему поработать на холостом ходу в течение 15 минут, наблюдая за температурой охлаждающей жидкости. Убедитесь, что холостой ход происходит в хорошо вентилируемом помещении.

Обратите внимание, работает ли вентилятор во время этого теста, и если он периодически включается, как это влияет на температуру охлаждающей жидкости.

Если вентилятор включается, поищите соответствующие коды неисправностей, которые могли вызвать принудительное включение вентилятора.Если их нет, проверьте правильность проводки и подключения вентилятора.

Если проблема не в вентиляторе и температура охлаждающей жидкости не достигает нормальной температуры охлаждающей жидкости для этого двигателя, попробуйте «силовое торможение» не более чем на 2 минуты. Это приводит трансмиссию в движение и удерживает тормоз при нажатой педали акселератора.

Будьте предельно осторожны при этом, чтобы убедиться, что автомобиль не ударится ни о чем, если он прыгнет вперед, а также следите за температурой трансмиссии, так как это требует значительных затрат на работу с гидротрансформатором.

Если температура повышается во время этого действия, но быстро падает сразу после прекращения этого действия, то проблема, скорее всего, связана с термостатом, и его необходимо заменить.

Последней проверкой будет считывание показаний датчика температуры охлаждающей жидкости диагностическим прибором через 10–12 часов при выключенном автомобиле. В это время датчик должен показывать температуру, близкую к температуре окружающей среды.

Проблемы с температурой охлаждающей жидкости, не достигающей желаемой температуры за указанный промежуток времени, могут повлиять на производительность двигателя и привести к низкому расходу топлива.Основной причиной кода ошибки P0128 часто является термостат. Выполнение действий, описанных в этом разделе, должно помочь определить причину и избежать потери денег на замену неправильных деталей.

.

Добавить комментарий

Ваш адрес email не будет опубликован.