Типы форсунок дизельных: Назначение и типы форсунок дизельных двигателей

что это, устройство и как работают :: Autonews

Фото: Shutterstock

adv.rbc.ru

Читайте также

Разбираемся, какие виды топливных форсунок существуют, в чем разница и какие поломки чаще всего встречаются.

  • Что это
  • Как работают
  • Устройство
  • Виды
  • Неисправности
  • Промывка
  • Почему льют или стучат
  • Когда нужно менять

adv.rbc.ru

Эксперт в этой статье: Александр Тихонов, продукт специалист по системам бензинового впрыска Bosch

Что такое форсунки

Топливные форсунки (или инжектор) — это элемент системы впрыска автомобиля с двигателем внутреннего сгорания, работающего на бензиновом и дизельном топливе. Они отвечают за равномерную подачу горючей смеси и ее последующее эффективное сгорание. Принцип работы всех форсунок примерно одинаков, но в зависимости от типа мотора их конструкции рабочие характеристики различаются.

Изобретение форсунки как механизма распыления под давлением жидкости или порошка принадлежит российскому инженеру Владимиру Шухову [1]. В автомобильной промышленности их внедрение неразрывно связано с именем Рудольфа Дизеля и Роберта Боша, предложившего несколько типов впрыскивающих устройств.

Сегодня существует несколько видов форсунок, которые предназначены для разного впрыска и типов моторов. Но все они обеспечивают:

  • дозировку топлива;
  • распыление горючей смеси;
  • экономичный расход топлива;
  • снижение вредных выбросов.

Как работает форсунка

В самом простом варианте форсунка чем-то напоминает насос. Попадающее в нее топливо под высоким давлением подается в камеру сгорания в мелкодисперсном виде. Поэтапно процесс работы форсунки с электронным управлением выглядит следующим образом:

  1. топливный насос подает бензин или дизель в канал форсунки;
  2. электронный блок управления (ЭБУ) с помощью датчиков определяет правильное время для запуска и объем топлива для распыления;
  3. когда ЭБУ активирует открытие запорного клапана, происходит впрыск.

Устройство форсунки

Все существующие сегодня форсунки различаются по конструкции и расположению. В уже устаревших моносистемах они размещаются возле дроссельной заслонки. При распределенном впрыске форсунки установлены на впускном коллекторе. Когда впрыск топлива осуществляется непосредственно в цилиндры, форсунки располагаются в головке блока по одной на каждый.

Фото: Shutterstock

В самом общем варианте топливная форсунка состоит из:

  • герметичного корпуса;
  • сетчатого фильтра;
  • запорного клапана или иглы;
  • распылителя с одним или более сопел.

Виды форсунок

Форсунки для дизельных и бензиновых моторов — разные. Это связано с механизмом сжигания топлива в каждом из агрегатов. Их главное отличие в давлении — у дизельных моторов этот показатель намного выше.

Механические

Одни из самых простых видов, которые все реже применяются в конструкции автомобилей, как правило, дизельных. Работа механической форсунки основана на давлении топливной системы. В дизельных моторах за него отвечает пара насосов низкого (ТННД) и высокого давления (ТНВД). В момент подачи топлива создаваемое давление поднимает иглу и сопло открывается. Так происходит впрыск, после чего под давлением пружины игла вновь запирает сопло.

Электромагнитные

Используются в инжекторных моторах бензиновых автомобилей и дизелях. Конструктивно такая форсунка также состоит из корпуса, запорного клапана и сопла. Но привод осуществляется за счет магнитного поля. Для этого форсунка имеет электромагнит (обмотка в верхней части элемента) и якорь, который соединен с иглой.

Движение начинается, когда на обмотку подается напряжение. Алгоритм частоты и продолжительности импульса определяется электроникой. Создаваемое магнитное поле притягивает якорь к магниту, оказывая тем самым давление на пружину. В этот момент происходит открытие сопла и впрыск. Как только напряжение прерывается, пружина срабатывает и клапан закрывается.

Электрогидравлические

Конструкция электрогидравлических форсунок сложнее, в основе их работы лежит разница давления жидкостей. Топливо в таких форсунках подается сразу в две камеры — верхнюю и нижнюю. В исходном положении давление в них одинаковое и пружина удерживает иглу. При открытии электромагнитного клапана, давление в верхней камере падает, а топливо уходит «в обратку». Соответственно в нижней камере давление наоборот возрастает, благодаря чему игла поднимается и происходит впрыск.

Пьезоэлектрические

Конструкция такой форсунки повторяет электрогидравлическую, с тем различием, что за привод отвечает пьезоэлектрический элемент. По структуре это множество керамических пластин плотно спаянных между собой (их еще называют кристаллами). Под воздействием электрического напряжения они расширяются, воздействуя на запорный клапан в камере управления. В итоге давление над иглой падает и происходит впрыск.

Пьезоэлектрические форсунки отличаются исключительным быстродействием в сравнении с электромагнитными системами. В среднем открытие клапана в них происходит в четыре раза быстрее.

Насос-форсунка

Такие форсунки объединяют в себе сразу два устройства: распылитель и насос. Они предназначены для прямого впрыска и работают без ТНВД. Количество насос-форсунок всегда соответствует числу цилиндров — по одной на каждый. В них используется одноплунжерный насос, который приводит в действие распредвал. В зависимости от модели может использоваться электромагнитный или пьезоэлектрический клапан. Управляются насос-форсунки электронным блоком управления.

Как и любое механическое устройство, топливные форсунки подвержены износу и другим неисправностям. (Фото: Shutterstock)

Причины неисправности форсунок

Как и любое механическое устройство, топливные форсунки подвержены износу и другим неисправностям. Они могут засоряться, если заливается некачественное топливо, подтекать из-за старения уплотнителей или треснуть.

Некоторые элементы форсунок можно заменить или почистить, но в случае серьезных повреждений они требуют полной замены. Помимо самой форсунки выходить из строя могут электрические компоненты инжектора.

Если форсунка неисправна, это может вызвать:

  • проблемы с запуском;
  • повышенный расход топлива;
  • потерю мощности;
  • колебания холостого хода;
  • повреждение каталитического нейтрализатора и сажевого фильтра.

Основные причины неисправности:

  • засорение сетчатого фильтра из-за загрязненного топлива;
  • плохо закрывающийся игольчатый клапан из-за мельчайших частиц грязи изнутри или отложений присадок;
  • забитое выпускное отверстие;
  • короткое замыкание в катушке;
  • обрыв кабеля к блоку управления.

Когда промывать форсунки

Несмотря на то, что современные виды топлива содержат очищающие присадки, процесс сгорания по-прежнему грязный и приводит к накоплению побочных продуктов.

Мусор в форсунки также может попасть, если у автомобиля ржавый топливный бак или неисправный топливный фильтр. Отверстия в распылителе форсунок крошечные, поэтому для их закупорки не требуется много времени.

Засоренные топливные форсунки имеют несколько симптомов. Наиболее очевидные — это пропуски зажигания, неровный холостой ход и «подпрыгивающая» стрелка тахометра. Кроме того, могут возникнуть проблемы с ускорением или двигатель может вообще не запуститься.

Промывку форсунок можно выполнять с их снятием и без. Для этого существует несколько способов:

  • добавление в бензобак специальных чистящих средств;
  • ультразвуковая чистка, которая требует снятия элементов;
  • промывка на специальном стенде.

Промывку форсунок можно выполнять с их снятием и без. (Фото: Shutterstock)

По словам экспертов, такие работы лучше проводить в автосервисе. Не стоит промывать форсунки ради профилактики, так как это несет риски их повреждения. «Например, они могут выйти из строя из-за агрессивных присадок в моющей жидкости, может повредиться соленоид из-за некорректных параметров тока и др», — говорит Александр Тихонов, продукт специалист по системам бензинового впрыска Bosch.

Почему форсунки льют

Выражение «льет форсунка» означает, что она пропускает топливо в момент, когда это не нужно. К этому, например, приводит нарушение герметичности одного из элементов, загрязнение фильтров или выход из строя топливного насоса.

Признаки льющих форсунок:

  • запах бензина;
  • проблемы с запуском двигателя;
  • разбавленное масло.

Например, из-за протечки нижнего уплотнительного кольца на форсунке, топливо может попасть в цилиндр, где оно будет просачиваться через кольца и в конечном итоге смешиваться с моторным маслом. Разжижение масла чревато перегоранием стенок цилиндров, повреждением подшипников двигателя и даже его полным разрушением.

«Работа форсунок связана с горючими жидкостями (бензин), высоким напряжением и высоким давлением топлива. Также некоторые форсунки требуют специального инструмента для их правильной установки, особенно при монтаже непосредственно в блок цилиндров», — поясняет Александр Тихонов.

Почему стучат форсунки

Чаще всего форсунки стучат из-за излишней дозы топлива, которое подается в цилиндр. Лишний звук может возникать по причине износа распылителей или плохо отрегулированного топливного оборудования.

Несмотря на то, что дизельные моторы изначально шумные, стук форсунок выделяется из общего акустического потока. Он похож на стрекот или цокание, которое исходит из верхней части двигателя. Его интенсивность и сила могут указывать на степень проблемы, поэтому при любых подозрениях на неисправность лучше обратиться за диагностикой на СТО.

Когда нужно менять форсунки

У каждой форсунки свой срок службы, который определяется производителем. В среднем он составляет не менее 100 тыс километров пробега, хотя на практике зависит от условий эксплуатации. Чтобы продлить срок службы форсунок достаточно соблюдать два правила: заправляться топливом на проверенных АЗС, а также регулярно проводить обслуживание топливной системы.

Читайте также:

От бака до форсунок: как обслуживать топливную систему

Замена масла в АКП, вариаторе, «роботе». Почему это нужно делать

Форсунки и корпуса форсунок дизельных двигателей

Функции

Форсунки и их корпуса служат в качестве соединительного элемента между насосом подачи топлива и двигателем.

Их основными функциями являются: участие в дозировании топлива; распыливание топлива; обеспечение характеристик впрыскивания; герметизация камеры сгорания.

Дизельное топливо впрыскивается при максимальных величинах давления порядка 1200 бар, значения которых в будущем, вероятно, будут еще выше. В этих условиях дизельное топливо перестает вести себя как сплошная несжимаемая жидкость и становится сжимаемым. Во время короткого времени подачи (в пределах 1 мс) топливо в системе высокого давления как бы сжимается — поперечное сечение соплового отверстия форсунки определяет количество топлива и распределение его в камере сгорания двигателя.
В соответствии с длиной, диаметром отверстия и его направлением форсунка оказывает основное влияние на образование факела топлива с соответствующими изменениями показателей мощности, расхода топлива и токсичности отработавших газов двигателя.

В определенных пределах возможно обеспечить оптимальное управление,

определяемое ходом запорной иглы форсунки и регулированием ее характеристики.
Распылительное сопло должно обеспечивать герметичность системы впрыскивания топлива при чрезмерном нагреве до температур порядка 1000°С и при высоком давлении газов в камере сгорания двигателя. Для предупреждения противотока горящих газов, когда сопла форсунки все еще открыты, давление в камере

повышенного давления форсунки должно быть выше, чем давление в камере сгорания. Это требование становится особенно важным в конце впрыскивания (когда уменьшение давления впрыска сопровождается чрезмерным возрастанием давления продуктов сгорания). Оно может быть обеспечено только тщательным согласованием работы насоса впрыскивания топлива, распылительного сопла и запорной иглы.

Конструкции

Конструкции Дизели с разделенными камерами сгорания (предкамерами и вихревыми камерами) требуют разработки форсунок, отличающихся от используемых в неразделенных камерах сгорания. Для данных камер сгорания используются закрытые форсунки (с запорной иглой), имеющие распылитель с одним отверстием и обычно оснащенные иглами, открывающими одно отвер

стие. Двигатели с непосредственным впрыскиванием топлива с неразделенными камерами сгорания обычно требуют применения форсунок со многими распылительными отверстиями.

Дроссельно-игольчатые форсунки

Один распылитель (тип DN..SD..) и один корпус форсунки (тип КСА с резьбовым соединением) обычно используются в двигателях с предкамерой и вихревой камерой. Стандартный корпус форсунки имеет резьбу М 24х2 и отворачивается 27-миллиметровым гаечн

ым ключом.
Форсунки DN 0 SD в основном имеют диаметр иглы 6 мм с нулевым углом факела. Применяются и распылители с коническим углом факела (например, 12° для DN 12 SD.

.). Когда пространство для установки форсунок ограничено, то используются корпуса меньших размеров (например, КСЕ).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Штифтовой распылитель: 1 — нажимной штифт; 2 — распылитель; 3 — игла; 4 — впускной канал; 5 — камера сжатия; 6 — распылительное отверстие; 7 — штифт распылителя

 

 

 

Отличительной характеристикой штифтовых форсунок является изменение отверстия распылителя (и, следовательно, скорости потока) в виде функции хода иглы.
Сопло в виде распылительного отверстия показывает немедленное возрастание проходного сечения во время открытия иглы. Штифтовые форсунки характеризуются очень плавным ростом сечения при средних величинах хода иглы. В пределах этого диапазона хода штифт иглы остается в распыливающем отверстии. Пропускное отверстие для потока состоит только из небольшого углового зазора между отверстием распыления большего размера и штифта иглы. При возрастании хода иглы она полностью открывает отверстие распылителя с последующим существенным

возрастанием размера отверстия.
Это изменение отверстия, чувствительного к длине хода, может использоваться для организации в определенной степени управления законом впрыскивания.
В начале впрыскивания из форсунки в камеру сгорания вводится только ограниченное количество топлива, а основная его часть подается в конце цикла. Такая последовательность впрыскивания снижает жесткость процесса сгорания.
При малом сечении отверстия и излишне малом ходе иглы ускоряется возвращение иглы из зоны дросселирования. Впрыскиваемое количество топлива, приходящееся в единицу времени, резко возрастает, и, соответственно, повышается ж

есткость процесса сгорания.
Подобное влияние оказывается при использовании чрезмерно малых отверстий в конце цикла впрыска топлива — объем, перемещаемый закрывающейся иглой форсунки, ограничивается более узким отверстием. Результат — увеличение продолжительности такта впуска топлива. Таким образом, конфигурация отверстия должна точ

но соответствовать закону подачи топлива насосом с учетом специфических условий процесса сгорания топлива.
Во время работы двигателя в дросселирующем зазоре происходит коксование (отложение нагара). Уровень формирования отложения определяется качеством топлива и условиями работы двигателя. В большинстве случаев для прохода топлива остается только 30-процентное сечение по отношению к исходному. Значительно меньшие и более ровные отложения обнаруживаются на плоских игольчатых

форсунках, в которых кольцевое отверстие между корпусом форсунки и штифтом почти равно нулю. Уменьшение площади пропускного сечения потока способствует повышению эффекта самоочищения.
Температуры свыше 220°С ускоряют образование нагара на форсунках. Для предотвращения этого явления применяются тепловые экраны, передающие тепло от камеры сгорания к головке блока цилиндров.
Для выполнения отверстий распыления, которые бы соответствовали точным геометрическим допускам,используются наиболее совершенные технологии.

Многоструйные распылители

Для форсунок этого типа имеются разнообразные комплекты распылителей (DHK). В противоположность штифтовым, многоструйные распылители обычно устанавливаются в заранее заданном положении для обеспечения правильного соотношения между угловым расположением сопловых отверстий и камерой сгорания двигателя. По этой причине для установки комплекта, включающего форсунку и корпус, в головке блока цилиндров обыч

но используются выступы или банджо-болты, а дополнительное винтовое удерживающее устройство обеспечивает необходимую ориентацию. Многодырчатые форсунки используют диаметры игл 6 и 5 мм (размерность S) и 4 мм (размерность Р). Пружины форсунок должны соответствовать различным диаметрам игл и предельным величинам давлений во время открытия (>180 бар).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Многоструйный распылитель: 1 — нажимной штифт;
2 — распылитель; 3 — игла распылителя: 4 — впускной канал; 5 — камера высокого давления; 6 — распыливающее отверстие; 7 — закрытый объем; 8 — угол между распыливающими отверстиями

 

В конце впрыскивания существует опасность засасывания в форсунку продуктов сгорания, поэтому необходимо предотвращать нестабильность гидравлических процессов. Диаметр запорной иглы и ее пружина должны тщательно подбираться с целью обеспечения надежной герметизации топливной форсунки. Существуют три различных варианта

закрытого объема в концевом конусе форсунок многодырчатого типа: конический закрытый объем, цилиндрический закрытый объем и запираемые отверстия. В зависимости от типа распыливающего отверстия, в конце
впрыскивания топлива в форсунке остается некоторый заданный объем топлива, который затем испаряется и в камеру сгорания попадают пары топлива. Этот объем уменьшается в следующем порядке в зависимости от выбираемых вариантов форсунок: штифтовая форсунка, форсунка с запираемыми отверстиями и плоско-игольчатая форсунка. Выпуск углеводородов в составе отработавших газов двигателя уменьшается в том же порядке в зависимости от уровня испарения топлива.
Длина распылительного отверстия ограничивается механической прочностью конуса форсунки. В настоящее время минимальная длина соплового отверстия впрыска топлива составляет 0,6. ..0,8 мм для цилиндрических и конических закрытых объемов. Для форсунок с запираемыми объемами допустима длина соплового отверстия 1 мм, но только в том случае, когда для производства распылительных отверстий используются специальные методы обработки.
Тенденцией является уменьшение длины отверстия, так как это позволяет в основном обеспечивать лучший контроль над снижением дымности отработавших газов. Для обеспечения допусков по пропускной способности в пределах ±3,5% для форсунок многодырчатого типа может быть использован процесс сверления. Дополнительные прецизионные процедуры (например, гидро

эрозионная обработка) могут применяться в пределах допусков ±2% для конкретных случаев применения. Однако термостойкость материалов ограничивает максимальные температуры для однодырчатых форсунок приблизительно до 270°С. Во время работы в особо трудных условиях следует иметь в распоряжении термозащитные втулки, а также охлаждаемые топливные форсунки для двигателей с большим рабочим объем

ом.

 

 

 

Формы распылителей: 1 — штифтовой распылитель;
2 — штифтовой распылитель с плоскоусеченной иглой: 2а — вид сбоку; 2b — вид спереди; 3 — многоструйный распылитель с коническим закрытым объемом; ; 4 — многоструйный распылитель с цилиндрическим закрытым объемом; 5 — распылитель с перекрываемыми отверстиями

Описание типов дизельных систем впрыска

Дизельные двигатели являются одними из самых эффективных двигателей на рынке. Ну, несколько факторов заставляют их лидировать в диаграммах эффективности использования топлива. Наоборот, дизельные двигатели тяжелые, но надежные, они менее мощные, но имеют отличные показатели крутящего момента. Кроме того, у этих дизельных пожирателей есть отдельный вентилятор. Имея это в виду, для тех, кто задается вопросом, как дизельный двигатель делает то, что он делает лучше всего, давайте посмотрим. В сегодняшней статье мы подробно рассмотрим, что стоит за впрыском дизельного топлива в этих длинноходных двигателях.

1,5 л дизель CRDi

Прежде чем начать, давайте кратко рассмотрим, что такое дизельный впрыск.

Система впрыска дизельного топлива Дизельный двигатель Ford Figo

Прежде всего, будь то дизельный или бензиновый двигатель, большинство двигателей производят мощность за 4 такта. Такт впуска, такт сжатия, рабочий такт и, наконец, такт выпуска.

  • В случае дизельного двигателя это время между тактом сжатия и рабочим тактом, когда топливо впрыскивается в камеру сгорания.
  • Говоря далее, в этих двигателях с высокой степенью сжатия в камеру сгорания впрыскивается только топливо.
  • В отличие от бензинового двигателя, форсунки распыляют топливо под очень высоким давлением внутри дизельного двигателя. В зависимости от двигателя оно может варьироваться от 10 000 фунтов на квадратный дюйм до 30 000 фунтов на квадратный дюйм.

Забавный факт: В дизельных двигателях педаль газа регулирует количество дизельного топлива, распыляемого в камеру сгорания. Это означает, что нажатие на педаль газа увеличивает количество распыляемого топлива. И вот как мы можем разогнать автомобиль с дизельным двигателем.

Теперь основная цель системы впрыска — стехиометрическая подача топлива внутрь двигателя. Но то, как он подается, сильно влияет на эффективность и производительность двигателя.

Типы дизельного впрыска

Таким образом, автомобильная промышленность постоянно набирает обороты, делая двигатели более совершенными, мощными и эффективными. Часть заслуг также принадлежит топливу, здесь система впрыска дизельного топлива. Теперь, углубившись в мельчайшие детали, систему впрыска дизельного топлива можно разделить на 2 типа: прямой впрыск и непрямой впрыск.

Система непрямого впрыска Система непрямого впрыска

В отличие от бензинового двигателя, дизельному двигателю не требуется свеча зажигания для воспламенения топливно-воздушной смеси. Поскольку дизельное топливо имеет более низкую температуру самовоспламенения, оно воспламеняется при повышении давления, что, в свою очередь, накаляет обстановку. Это означает, что температура внутри камеры сгорания повышается, воспламеняя топливо.

  • В основном в системе непрямого впрыска форсунка распыляет топливо в отдельном отсеке, называемом форкамерой. А еще в этой форкамере смонтирована свеча накаливания, нагревающая участок при холодных пусках.
  • Теперь дизельный инжектор внутри форкамеры впрыскивает топливо. Далее, из-за вихревого движения, вызванного движением поршня, нагретое дизельное топливо смешивается с воздухом, образуя заряд.
  • Позже, когда поршень еще больше сжимает заряд, он воспламеняется из-за повышения давления и температуры.
Непосредственный впрыск (DI)
Непосредственный дизельный впрыск

Переходя к современным технологиям, именно непосредственный впрыск используется во многих автомобилях в наше время.

  • Хорошо, почему это используется, спросите вы? Ну а форсунки распыляют дизельное топливо прямо внутри камеры сгорания.
  • И нет, специальная свеча накаливания не требуется, так как охлаждающая поверхность цилиндра довольно мала.
  • Позволяет лучше контролировать подачу топлива в двигатель. Из-за этого только воздух поступает в камеру через впускной клапан и обеспечивает лучшую воздушно-топливную смесь.
  • И, наконец, эта хорошо перемешанная загрузка обеспечивает лучшее и более эффективное сгорание. Преимущество прямого впрыска заключается в лучшем тепловом КПД и улучшенных характеристиках холодного пуска.
  • Говоря о давлении впрыска дизельного топлива, это топливный насос, который регулирует давление впрыска.

Связанный: 6 самых экономичных дизельных двигателей в Индии

Система прямого впрыска топлива Common Rail (CRDI) Система впрыска дизельного топлива

Теперь типом прямого впрыска является система прямого впрыска Common Rail. Как и в DI, форсунки CRDI также распыляют дизельное топливо прямо в камеру сгорания. Кроме того, работа и время впрыска аналогичны системе DI.

  • Отличие заключается в топливопроводах форсунок. В DI форсунки напрямую соединены с топливным насосом, который регулирует давление и количество дизельного топлива, впрыскиваемого в камеру.
  • Наоборот, в CRDI все форсунки соединены общей рампой, которая получает поток топлива от топливного насоса.
  • Это Common Rail, который регулирует давление и количество впрыскиваемого дизельного топлива. Преимущество CRDI в том, что здесь мы лучше контролируем закачку, чем в DI. Это означает, что двигатель работает более эффективно.

Hyundai входит в число компаний, использующих технологию CRDi в своих дизельных двигателях.

Читайте также: Производители автомобилей и их самые мощные дизельные двигатели служит для подачи топлива из бака в двигатель. Эта система специально разработана для максимальной производительности двигателя.

Что касается дизельных двигателей, вы, возможно, уже понимаете, что дизельный двигатель является двигателем с самовоспламенением. Это означает, что горение произойдет само по себе. Самовозгорание может возникнуть из-за нескольких факторов.

Самый доминирующий, т.к. топливо распыляется в камере с высоким давлением воздуха.

Давление воздуха в камере выше температуры вспышки дизельного топлива. Вот что заставляет топливо самовозгораться при распылении.

В предыдущей статье мы подробно говорили о системе впрыска дизельного топлива. Но есть еще меньше.

Сколько топливных систем в дизельном двигателе?

Мы обсудим это подробно.

В целом существует только два типа дизельных топливных систем: обычная и Common Rail. Но если мы посмотрим дальше, мы найдем несколько типов.

A. Вид со стороны инъекционного метода

Метод впрыска означает, как топливо впрыскивается в камеру сгорания. Существует два типа: прямой впрыск и непрямой впрыск

1. Система прямого впрыска

Система прямого впрыска – это метод впрыска топлива из топливопровода дизельного топлива непосредственно в камеру сгорания (камера сгорания расположена над поршнем).

Главной особенностью этой системы является то, что форсунка ведет непосредственно в камеру сгорания. Так что, как только топливо впрыскивается, топливо попадает прямо в камеру сгорания.

Еще одной особенностью является форма поверхности поршня, на поверхности поршня имеются углубления. Резервуар служит для распределения впрыскиваемого топлива, чтобы сгорание происходило более равномерно.

Преимущества

  • Более простая конструкция
  • Более высокая выходная мощность
  • Более высокая тепловая эффективность
  • Снижение выбросов
  • Свеча накаливания не требуется

Недостатки

  • Требуется высокое давление сжатия
  • Нужен специальный инжектор (многоточечный инжектор)

Этот тип широко применяется для тяжелых транспортных средств, таких как 8-колесные (или более) грузовики, большегрузные машины.

2. Система непрямого впрыска

Непрямой впрыск (IDI) — это метод воспламенения путем распыления топлива, который осуществляется в специальном помещении, называемом камерой предварительного сгорания.

Основное отличие заключается в способе впрыска топлива системы прямого впрыска, которое распыляется непосредственно в камере сгорания. Но в IDI топливо распыляется в камеру предварительного сгорания, затем, после его сгорания, мощность расширения выходит в основную камеру сгорания для сжигания оставшегося воздуха в основной камере сгорания.

Но сегодня система IDI не применяется большинством производителей, так как процесс более длительный, этот тип имеет много недостатков по сравнению с системой DI.

Поэтому в последнее время автомобили IDI редко применяются к коммерческим автомобилям, будь то легкие или тяжелые автомобили.

B. Вид со стороны механизма впрыска

Механизм впрыска заключается в том, как подавать топливо из бака в форсунку. Существует три типа: роторная топливная система, индивидуальная топливная система и система Common Rail.

Разница заключается в используемом насосе высокого давления.

1. Роторная топливная система

img by Dieselnet.com

В роторных топливных системах используется распределительный или пластинчато-роторный насос.

Этот тип имеет один вал с одним плунжером. Хотя форсунок четыре, количество плунжеров остается одинарным.

Как это работает? этот плунжер расположен на валу насоса, который вращается. И каждый угол поворота имеет топливную бочку, которая, когда плунжер проходит через топливную бочку, впрыскивает топливо в одну форсунку.

Итак, если есть четыре форсунки, четыре топливных бака окружают вал насоса.

Преимущества
Не занимает много места, что делает его пригодным для автомобилей с ограниченным пространством.
Маленькие движущиеся части, чтобы вырабатываемая энергия была более эффективной.

Недостатки
Давление топлива слабое, что делает его менее подходящим для дизельных двигателей большой мощности.

2. Индивидуальная топливная система

Отдельные типы топливных систем имеют насос с индивидуальным рядным типом. Это означает, что количество плунжеров регулируется количеством форсунок.

Это связано с тем, что каждый плунжер будет обслуживать одну форсунку, так что если имеется четыре форсунки, четыре плунжера будут расположены в линию.

Как это работает? есть распределительный вал, где каждый кулачок будет нажимать на один поршень в нужное время. Когда поршень прижимается к кулачку, топливо распыляется.

Можно сказать, что количество кулачков равно количеству форсунок, а угол кулачка также регулируется в соответствии с опережением зажигания.

Основными преимуществами являются давление впрыска, которое может достигать 18 000 фунтов на квадратный дюйм. При таком давлении этот насос подходит для использования в обычных дизельных двигателях большой мощности.

3. Система Common Rail

Common Rail — это электронная схема управления дизельным топливом. Это означает, что в системе Common Rail вы найдете серию датчиков ECU-исполнительного устройства.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *