Ход поршня это: Поршневой двигатель внутреннего сгорания — Википедия – 403 — Доступ запрещён

Содержание

Длинноходные и короткоходные моторы – в чем разница, и какие лучше?

Средняя скорость, и какой она бывает

Для понимания вопроса придется вспомнить немного о конструкции ДВС и принципах его работы. Вы наверняка знаете, что в основе любой конструкции двигателя внутреннего сгорания лежит воздействие расширяющихся газов на поршень. Поршни могут быть любой формы и размеров, но у любого поршня есть такой параметр, как средняя скорость, и от нее зависит очень и очень многое.

Средняя скорость поршня – это величина, которую можно определить по формуле Vp = Sn/30, где S – ход поршня, м; n – частота вращения, мин-1. И именно она определяет степень возможного форсирования двигателя по оборотам, ускорения элементов шатунно-поршневой группы во время работы, а также его механический КПД.

От средней скорости поршня зависят нагрузки на стенку поршня, на поршневой палец, шатун и коленвал. Причем зависимость эта квадратичная: с увеличением скорости (Vp) в два раза нагрузки увеличиваются в четыре раза, а если в три – то в девять раз.

Эксперименты инженеров-мотористов уже очень давно доказали, что классическая конструкция шатунно-поршневой группы выдерживает максимальную скорость порядка 17-23 м/с. И чем выше эта величина, тем скорее изнашивается мотор. Увеличить скорость поршня практически невозможно – самые облегченные гоночные двигатели Формулы-1 имели скорость порядка 23-25 м/с, и это безумно много. Этого удалось достичь только потому, что «формульные» моторы рассчитаны на очень короткую эксплуатацию – от них не требуется «ходить» по 100 000 км.

От теории – к практике. Как известно, мощность мотора – это производная от крутящего момента, помноженного на обороты (об этом я писал большую статью с таблицами и графиками). То есть, если мы хотим получить больше мощности, то надо увеличивать обороты. А так как скорость поршня ограничена, то у нас не остается другого выбора, кроме как уменьшить его ход. Чем меньше расстояние нужно пройти поршню за один оборот, тем меньше может быть его скорость.

Короткоходные, длинноходные и «квадратные» моторы

Казалось бы, выше мы только что озвучили два прекрасных аргумента для максимального уменьшения хода поршня. К тому же, чем меньше ход поршня, тем больше диаметр цилиндра при том же объеме, и тем более крупные клапаны можно поставить. Улучшается газообмен, а значит, и работа мотора в целом… Но, как оказалось, безмерно уменьшать ход тоже нельзя.

Чем меньше ход, тем больше должен быть диаметр цилиндра, если мы хотим сохранить объем. А вот форма камеры сгорания с ростом диаметра цилиндра ухудшается, соотношение объема камеры и площади неизбежно растет, увеличивается коэффициент остаточных газов, возрастают тепловые потери, ухудшается сгорание топлива… КПД падает, склонность к детонации повышается, ухудшаются экономичность и экологичность.

При уменьшении хода поршня снижается, к тому же, и диаметр кривошипа коленчатого вала, а значит, уменьшается крутящий момент мотора. Ухудшаются и массогабаритные параметры двигателей – они становятся куда крупнее в горизонтальном сечении. К тому же для сохранения рабочего объема приходится увеличивать число цилиндров, а это уже ведет к резкому повышению сложности конструкции. В общем, нужен был компромисс.

Основные задачи проектирования моторов решили к 60-м годам прошлого века, тогда же нащупали пределы прочности конструкции по средней скорости поршня. Стало ясно, что оптимальные параметры мощности, общего КПД и габаритов у атмосферного мотора получаются в том случае, если диаметр цилиндра равен ходу поршня или чуть меньше.

На фото: двигатель Nissan Qashqai

Если они совпадают, то такие моторы еще называют «квадратными». Моторы, у которых диаметр цилиндра все-таки больше хода поршня, называют короткоходными, а те, у которых он меньше, – длинноходными.

Внимательный читатель скажет: стоп, а откуда вообще взялись короткоходные моторы, если эксперименты доказали, что эффективнее всего «квадратные» или чуть-чуть длинноходные?! Все просто: короткоходники получили распространение в автоспорте. Там расход топлива и приемистость на низких оборотах не сильно «делали погоду», и можно было пожертвовать КПД ради достижения большей мощности на высоких оборотах при сохранении малого рабочего объема.

Для получения лучшей топливной экономичности, тяги и чистоты выхлопа, наоборот, ход поршня увеличивали, жертвуя оборотами и максимальной мощностью. Длинноходные моторы применяли там, где были нужны тяга и экономичность.

Тем временем, к 80-м годам среднюю скорость поршня в серийных моторах довели до предела в 18 м/с, дальше ее увеличивать не получалось. Такая ситуация сохранилась до 90-х, когда требования к массогабаритным и экономическим характеристикам моторов резко возросли.

Длинноходный прогресс

90-е годы – это в первую очередь массовое внедрение новых экологических норм, резкое повышение массы кузова автомобилей из-за новых требований по пассивной безопасности, а заодно и возросшие требования к габаритам и экономичности силовых агрегатов. Машины становились просторнее изнутри и безопаснее во всех смыслах.

А двигателям приходилось поспевать за прогрессом. Массовый переход на многоклапанные головки блоков цилиндров повысил мощность и сделал моторы чище. Средний рабочий объем мотора постарались уменьшить и тем самым выиграть в расходе топлива и габаритах. Прогресс в области конструирования поршневой группы позволил уменьшить высоту поршня и увеличить длину шатуна, сделав больше механический КПД мотора.

Следовательно, стало возможно перейти к более длинноходным конструкциям, которые при том же рабочем объеме были компактнее, имели больший крутящий момент и к тому же стали экономичнее. Облегчение поршневой группы позволило снизить нагрузки на нее при высоких оборотах, а массовое внедрение турбонаддува и регулируемого впуска – еще и выиграть в максимальной мощности и тяге. Умеренно длинноходные моторы от этого только выиграли.

В 2000-е в стане двигателей объемом от 2 литров наметился перелом в переходе от «квадратов» к длинноходным конструкциям. И вот вам несколько примеров. При рабочем объеме 2 литра моторы VW серии ЕА888 (стоят на множестве моделей концерна от Skoda Octavia до Audi A5) имеют ход поршня 92,8 мм при диаметре цилиндра 82,5, а 2-литровые моторы Renault серии F4R (более всего известный по Duster) – 93 мм и 82,7 соответственно. Моторы Toyota объемом 1,8 л серии 1ZZ (Corolla, Avensis и др.) – еще более длинноходные, их размерность 91,5х79.

На фото: двигатель Volkswagen Golf GTI

Рабочие обороты таких двигателей заметно уменьшились, особенно у турбонаддувных, снизились и обороты максимальной мощности. А значит и снижение механического КПД уже не столь важно, зато преимущества налицо. По габаритам моторы лишь немного больше «классических» 1,6 из недавнего прошлого, а по тяге и расходу топлива намного превосходят однообъемных предшественников.

В современных моторах пытаются сочетать высокую эффективность работы длинноходных моторов и повышенный механический КПД короткоходных. Так, в ультрасовременном (но тем не менее уже снимаемом с производства) моторе BMW серии N20В20 (стоят на 1-й, 3-й, 5-й сериях, X1 и X3) применяется несимметричная поршневая группа, в которой ось коленчатого вала и ось поршневых пальцев смещены относительно оси цилиндров. Тут используются регулируемый маслонасос, плазменное напыление цилиндров, бездроссельный впуск и прочие технические «фокусы» для снижения механических потерь и сопротивления впуска. Размерность этого длинноходного мотора 90,1х84, и никто не скажет, что у него плохие характеристики хоть в чем-то, кроме надежности.

Дизели

Дизельные моторы, которые в силу особенностей рабочего цикла обычно являются длинноходными и низкооборотными, выиграли вдвойне. Внедрение турбонаддува резко подняло крутящий момент и позволило снизить степень сжатия, а прогресс топливной аппаратуры и поршневой группы – еще и увеличить рабочие обороты.

На фото: двигатель Volkswagen Golf TDI

В итоге дизели превзошли по литровой мощности атмосферные бензиновые моторы, а по крутящему моменту – бензиновые моторы с наддувом. Так, двигатели серии N57 (3-я, 5-я, 7-я серии, X3, X5 и др.) от BMW при диаметре цилиндра 84 мм и ходе поршня 90 мм имеют рабочий объем 2,993 литра, мощность до 381 л. с. и 740 Нм крутящего момента. Средняя скорость поршня при этом – 13,2 метра в секунду.

Оборотная сторона

Конечно же, беспроигрышных лотерей не бывает, и чудесной высокой отдачи добились ценой надежности – тут нет никакого секрета. Старый принцип актуален и поныне: у «сильно длинноходных» моторов высокая средняя скорость поршня увеличивает нагрузку на стенки цилиндра.

Конечно же, материалы становятся лучше, но при сравнении двигателей одной серии с разными параметрами хода поршня и диаметра цилиндра заметно, что длинноходные модели более склонны к износу поршневых колец и задирам цилиндров. И ресурс поршневой у них оказывается существенно ниже, чем у более «квадратных» собратьев.

А вот при сравнении разных моторов все далеко не так однозначно. На моторах с алюминиевым блоком и алюсиловым покрытием стараются снизить нагрузку на стенку цилиндра в том числе и снижением хода поршня, но, как правило, все равно ресурс получается меньше, чем у моторов с чугунными гильзами или блоком.

Мотор Renault-Nissan серии M4R (Qashqai, Fluence и др.), который пришел на смену уже упомянутому чугунному F4R, имеет ход поршня 90,1 мм при диаметре цилиндра 84 – он все еще длинноходный, но ход поршня значительно сократился. Габариты при этом не увеличиваются за счет более тонкостенной конструкции блока цилиндров.

На фото: двигатель Renault Latitude

Современные двигатели не нуждаются в высоких оборотах для достижения высокой мощности, а экономичность и экологичность становятся все важнее. Пусть даже в реальной эксплуатации заявленные характеристики и не подтверждаются… К тому же, можно путем усложнения конструкции обойти множество ограничений, которые десятки лет заставляли делать выбор между мощностью и экономичностью моторов.

Короткоходные «крутильные» моторы просто вымирают, им нет места в новом мире. Даже в Формуле-1 отказались от экстремальных конструкций с рабочими оборотами за 19 тысяч и соотношением диаметра цилиндра и хода поршня больше 2,4 к 1. Конечно, для фанатов и гоночных серий выпуск подобной техники сохранится, но в практическом плане смысла в ней уже нет. Победа длинноходных конструкций, за редким исключением, фактически состоялась.

Одним из немногих «оплотов короткоходности» до недавнего времени оставались атмосферные V6 и V8 от Mercedes-Benz. Так, моторы серии М272 (E-Klasse W211, M-Class W164 и др.) – откровенно короткоходные во всех вариантах исполнения. Например, у 3-литровой версии соотношение хода к диаметру будет 82,1 к 88. Как и их предки в лице М104, так и их наследники вплоть до М276, они были олицетворением успешных короткоходных моторов. Компания не стремилась к излишней компактности моторов, места было достаточно, а момента у двигателей объемом 3-3,5 литра и так хватало с запасом. Городить длинноходную конструкцию не было смысла.

Но новое поколение двигателей AMG серий М133/М176 с наддувом стали длинноходными – 83х92 мм, как и перспективная рядная шестерка 3,0 с наддувом серии М256 – 83х92,4 мм.

Mercedes-AMG CLA 45 Shooting Brake (X 117) 2014На фото: двигатель Mercedes-AMG CLA 45 4MATIC

Из «могикан» остаются разве что моторы GM, их блок V8 6,2 Vortec/L86/LT1 все еще не стремится к компактности, имея размерность 103,25х92 мм, и даже компрессорная версия LT4 сохраняет ту же размерность блока. Но это, скорее всего, тоже ненадолго.

Конец спорам

Даунсайз, наддув, непосредственный впрыск, гладкая моментная характеристика, высокий крутящий момент, регулируемый ГРМ и продвинутые трансмиссии сотворили маленькое чудо. Споры «длинноходный или короткоходный» уже более не актуальны.

Моторы вдруг прибавили в литровой мощности до границ, ранее считавшихся возможными только для специально подготовленных гоночных моторов. Увидев цифры в 120-150 л. с. с литра объема, мы уже не удивляемся, и даже 200 л. с. на литр кажутся вполне реальными, а «смешной» паспортный расход топлива для мощной и тяжелой машины кажется вполне реальным. Дизельные двигатели из «гадких утят» превратились в прекрасных лебедей с литровой мощностью даже большей, чем у бензиновых двигателей.

Во многом все это, плюс уменьшение габаритов и веса моторов, стало возможным благодаря длинноходной конструкции. Окончательно оформившийся тренд вряд ли переломится, особенно с учетом прогнозируемого вытеснения ДВС электромоторами и разнообразными «удлинителями дистанции».

ХОД ПОРШНЯ — это… Что такое ХОД ПОРШНЯ?

  • ХОД ПОРШНЯ — путь, проходимый поршнем в цилиндре от одного своего крайнего (мертвого) положения до другого. При кривошипном механизме, если ось цилиндра проходит через ось приводного вала, X. п. равен двойной длине кривошипа. Технический железнодорожный… …   Технический железнодорожный словарь

  • ход (поршня) — такт — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы такт EN throwstroke …   Справочник технического переводчика

  • ход поршня — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN piston stroke …   Справочник технического переводчика

  • ход поршня — stūmoklio eiga statusas T sritis automatika atitikmenys: angl. piston stroke vok. Kolbenhub, m rus. ход поршня, m pranc. coup du piston, m; course du piston, f …   Automatikos terminų žodynas

  • ХОД ПОРШНЯ ТОРМОЗНОГО ЦИЛИНДРА — величина перемещения поршня, необходимая для приведения тормозных колодок в соприкосновение с бандажами колес. Технический железнодорожный словарь. М.: Государственное транспортное железнодорожное издательство. Н. Н. Васильев, О. Н. Исаакян, Н. О …   Технический железнодорожный словарь

  • РАБОЧИЙ ХОД ПОРШНЯ — ход поршня, при к ром в цилиндре теплового двигателя совершается полезная работа. Как правило, каждый цилиндр паровой машины имеет две рабочие полости переднюю и заднюю. Если при одном ходе поршня совершается полезная работа в передней полости,… …   Технический железнодорожный словарь

  • прямой ход (поршня) — передний ход (поршня) — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность Синонимы передний ход (поршня) EN forward stroke …   Справочник технического переводчика

  • РАБОЧИЙ ХОД ПОРШНЯ — (Working stroke) ход поршня во время расширения сгоревших газов в цилиндре двигателя внутреннею сгорания или во время наполнения цилиндра и расширения в нем пара в поршневых паровых машинах. Самойлов К. И. Морской словарь. М. Л.: Государственное… …   Морской словарь

  • полный ход поршня — 3.3 полный ход поршня: Наибольшее перемещение поршня демпфера в рабочем цилиндре от предельно сжатого до предельно растянутого положения демпфера. Источник: ГОСТ Р 52279 2004: Демпферы гидравлические рельсового подвижного состава. Общие… …   Словарь-справочник терминов нормативно-технической документации

  • нормальный ход поршня — нареч, кол во синонимов: 3 • все в порядке (21) • нормально (39) • нормальный ход поршн …   Словарь синонимов

  • Что такое рабочий ход поршня и режим холостого хода двигателя?

    Рабочий ход поршня

    Двигатель внутреннего сгорания и по сей день является самым популярным изобретением. Он предназначен для приведения в действие самые различные механизмы. Вокруг этого изобретения крутится довольно серьезная терминология, которая понятна не всем водителям. Сегодня вы узнаете, что такое рабочий ход двигателя (рабочий ход поршня) и режим холостого хода.

    Рабочий ход поршня ДВС

    Чтобы узнать, что это такое, необходимо понимать принцип действия двигателя внутреннего сгорания. Рабочим ходом называется такое движение поршня, при котором мотор совершает полезную, а именно – преобразует тепловую энергию во вращающий момент.

    Для начала разберем все такты работы двигателя и дойдет до того момента, когда поршень будет совершать эту самую полезную работу. Первым делом идет такт впуска. В это время поршень движется вниз, а клапан, обеспечивающий впуск топливовоздушной смеси, открывается. Она подается в определенном соотношении и полностью заполняет камеру сгорания. Это продолжается до тех пор, пока поршень не достигнет нижней мертвой точки.

    Как только поршень пойдет вверх, клапана будут закрыты, в этот момент смесь сжимается и давление внутри камеры повышается. Как только поршень достигнет верхней мертвой точки, наступает момент рабочего хода поршня. На электродах свечи зажигания появится искра, которая воспламенит смесь и станет причиной небольшого взрыва, который заставит поршень пойти вниз. Пока поршень направляется в самую нижнюю точку цилиндра – этот отрезок будет считаться его рабочим ходом. Далее весь цикл повторяется за счет инерции коленчатого вала.

    Стоит отметить, что именно рабочий ход является главным показателем эффективности работы двигателя, а значит, целиком определяем его коэффициент полезного действия.

    В этом время, вся остальная работа, затрачиваемая на инерцию: сжатие смеси и ее подача – это все создает лишнюю нагрузку на коленвал, тем не менее, без этого работа двигателя невозможна. Многие автомастера увеличивают рабочий ход поршня и увеличивают объем цилиндра, чтобы добиться наибольшей эффктивности за счет увеличения рабочего хода и объема смеси подлежащего сгоранию.

    Видео — Холостой ход и другие режимы двигателя

    Что такое работа двигателя на холостом ходу

    Холостым ходом любого двигателя внутреннего сгорания называют такой режим работы, при котором отсутствует передача вращающего момента на требуемый механизм. Данный режим характерен не только для ДВС, он также активно применяется и для многих других видов силовых установок, однако большее распространение получил именно в таких типах двигателей.

    Данный режим обеспечивается за счет сцепления, которое может «разрывать» передачу вращающего момент от маховика к первичному валу, а также нейтральное положение рукоятки коробки передач, при котором отсутвует передача момента на приводной или карданный вал.

    Работа двигателя на холостом ходу позволяет поддерживать его обороты на требуемом уровне без остановки. Дело в том, что при наличии нагрузки на коленчатом валу, ДВС всегда стремится остановиться, так кислород в этом случае потребляется в малом количестве. Такой режим также позволяет выполнить прогрев мотора, а на инжекторных двигателях создает работу, при которой содержание вредных веществ в выхлопном дыме сводится к минимуму.

    Вокруг холостого режима ходит большое количество «легенд». Так, например, многие водители считают режим работы на холостом ходу самым экономичным. Однако это не так, скорее наоборот, холостой ход становится причиной самого максимального потребления топлива. Дело в том, что при полностью закрытой дроссельной заслонке, чтобы двигатель не остановился, система подачи топлива обеспечивает увеличение содержание бензина в камере сгорания, а при открытии дросселя, уровень бензина в смеси снижается, так как потребление кислорода увеличивается. В этом режиме двигатель скорее работает за счет вознкающей инерции после полезного хода поршня. Принято считать, что самым экономичным режимом работы ДВС является тот момент, когда обороты находятся на отметке в 3000 об/мин. В этот момент дроссельная заслонка открывается полностью, а уровень топлива в камере сгорания составляет минимум.

    Устойчивость оборотов холостого хода поддерживает система подачи топлива. Именно от нее зависит то, как мотор будет работать себя, когда нагрузка на валу отсутствует, а дроссельная заслонка, при этом, закрыта.

    Вот и все, что нужно знать о самых запутанных терминах теории двигателя внутреннего сгорания. Все это относится не только в автомобильным двигателям, ведь такой мотор устанавливается и на мотоциклы, бензопилы, лодки и даже самолеты. 

    Что дает соотношение хода поршня к диаметру цилиндра

    Что касается двух и четырехтактных двигателей, выбор соотношения между ходом поршня и диаметром цилиндра действительно очень важен для определения характеристик отбора мощности. Если ход поршня меньше диаметра цилиндра, соотношение меньше 1, получаем двигатель с коротким ходом (тип «super-square»). Если ход поршня и диаметра цилиндра равны, соотношение равно 1 (тип «square»). Если ход поршня больше диаметра цилиндра, соотношение больше 1, получаем двигатель с длинным ходом (тип «under-square»). При одинаковом объеме двигателя и аналогичных значениях важных параметров наблюдается следующая тенденция: как правило, двигатели с длинным ходом поршня, по сравнению с двигателями с коротким ходом, имеют больший крутящий момент и лучшую тягу, но меньшие обороты и максимальную мощность. Кроме того, благодаря меньшей камере, они, похоже, имеют улучшенное сгорание и меньшее выделение не сгоревших газов. И все же сегодня среди двухтактных двигателей с наилучшими эксплуатационными характеристиками, и не только гоночных, все чаще встречаются те, у которых диаметр цилиндра и ход поршня равны.
    Рассмотрим причины, обусловившие этот выбор

    В двухтактном двигателе с отличными эксплуатационными характеристиками соотношение между ходом поршня и диаметром цилиндра очень важно для получения рациональной и эффективной с точки зрения гидроаэромеханики компоновки детали типа «link stud» {связывающая стойка).

    Преимущества длинного и короткого хода поршня.

    В мире специальных мощных гоночных двухтактных двигателей уже вряд ли есть место длинному ходу поршня. В картинге появление на треке двигателя Rotax, 100 смЗ, тип «square», определенно привело к закату эры славных двигателей с длинным ходом поршня (имевших, как правило, типовые размеры 48 мм х55мм), доминировавших до 1988 г.
    Вообще говоря, двигатель с длинным ходом поршня способен развивать более высокий момент вращения на меньших оборотах. У него тяжелее шатун, даже если поршень, по теории, может быть легче. При длинном ходе поршня, по сравнению с коротким ходом поршня, ведущий вал всегда имеет больше пространства между пальцем шатуна и шатунной шейкой, поэтому он не столь жесткий, и имеет маховик большего диаметра.
    Двигатели с соотношением ход поршня /диаметр цилиндра меньше или равным 1 имеют следующие особенности: наличие клапана на выхлопе, новейшей коробки скоростей с цифровым зажиганием, водяного охлаждения (позволяющих вам работать с большими коэффициентами сжатия, а также с опережением зажигания и бедной карбюрацией) и точной гидроаэромеханики в части перепускных окон. Эти факторы позволили им достичь хороших результатов на малых и средних оборотах, вращаясь с частотой, немыслимой для двигателей сдпинным ходом, развивать очень высокую мощность.
    Также двигатели с соотношением ход поршня /диаметр цилиндра меньше или равным 1, по сравнению с двигателями с длинным ходом, имеют следующее преимущество: они могут рассчитывать на меньшую среднюю скорость поршня при той же частоте вращения. Это означает меньшее температурное и механическое напряжение, не говоря об очевидных преимуществах при наполнении насоса с отводом. Что касается продувки, двигатель с коротким ходом поршня имеет преимущество, поскольку короче путь, который свежие газы должны совершать для полной замены выхлопных, а площадь контакта между границами свежих и выхлопных газов меньше. Однако у двигателя с коротким ходом больше проблем с охлаждением, и, как следствие, более высокая чувствительность, исходя из вариации соединения цилиндр/поршень.

    Одним из двигателей объемом 100 смЗ, на котором чаще других в истории картинга выигрывали гонки, несомненно, является DAP T75. Он несколько раз побеждал в 80-х годах; его характеристическое соотношение 48 мм х 55 мм, это двигатель с длинным ходом поршня, и отличным крутящим моментом на малых оборотах. Макс, частота вращения — 175000 об/мин.

    Двигатель с соотношением ход поршня/диаметр цилиндра, равным 1: идеальное решение…

    Соотношение ход поршня /диаметр цилиндра, равное 1, идеальное решение для изготовления специального высокомощного гоночного двигателя (а также для использования на дорогах). Кроме того, сочетание преимуществ, свойственных двигателям с длинным и коротким ходом, позволяет рассчитывать на лучшее соответствие между перепускными и выхлопными окнами. Вообще говоря, это решение позволяет окнам с идеальным соотношением высота/ширина обеспечивать лучшее «дыхание» двигателя при любых оборотах.
    Например, рассмотрим обычный двигатель 125 смЗ, с диаметром цилиндра 56 мм и ходом поршня 50,6 мм (типично для двигателей Yamaha). Оказывается, обычное выпускное окно (со штифтом и бустером) и единственное находящееся напротив него окно иногда связаны не 4 боковыми перепускными окнами (что свойственно двигателям типа «square»), a 6. Это решение часто использовалось в двигателях с коротким ходом, поскольку у двигателя с объемом 125 смЗ и соотношением 56 мм х 50,6 мм часто оказывалось, что боковые поперечные окна излишне расширялись: они требовали существенного внутреннего давления и скорости расхода для обеспечения хорошей продувки, хорошего повторного заполнения, а такие значения давлений можно было получить только на высоких оборотах. Эту проблему в некоторых моделях двигателей можно решить разделением первичного (а иногда и вторичного) перепускного окна на два, уменьшая секцию расхода и получая более чистую подачу на средних оборотах.

    Rotax стал первым производителем, вернувшимся к выпуску двигателей типа «square» (ход поршня равен диаметру цилиндра) с объемом 100 смЗ для картинга. Омологация прошла в 1988 г. Превосходство этого двигателя на быстрых треках ознаменовало историческую перемену: на некоторых треках самые последние двигатели типа «square» с объемом 100 смЗ превышают показатель 21000 об/чин.Более глубокие исследования в области гидроаэромеханики сделали возможным применение решения с 5 перепускными окнами и на двигателях с коротким ходом. Причина, по которой решили не отказываться от использования двигателей этого типа в гонках, в том, что двигатели типа «square» имеют лучше мощность на малых и высоких оборотах. В то же время, двигатель с соотношением 56 х 50.6 мм сохранял такое преимущество, как близкая к максимальной мощность на средних оборотах (в аналогичных двигателях это, понятно, является базовой концепцией!). Последним из производителей мотоциклетных двигателей, перешедшим от двигателя с соотношением 56×50.6 мм на чемпионате мира с объемом 125 смЗ, стала Yamaha, представители которой — инженер Бартол и гонщик — на личном опыте смогли почувствовать разницу между двумя решениями. Сразу после перехода с 56×50.6 мм на 54×54 мм показатели фирмы выросли, и вскоре она стала непримиримым соперником таких компаний, как Aprilia и Honda.

    Конфигурация link stud с 4 противолежащими боковыми перепускными окнами и корректирующим перепускным окном всегда гарантирует наилучшие результаты продувки и эффективности наполнения.

    Некоторые преимущества в гидроаэромеханике, которые можно получить за счет увеличения диаметра цилиндра в четырехтактных двигателях

    Не считая самого очевидного преимущества, получаемого при увеличении диаметра, т.е., гарантированного большего прироста объема, чем при увеличении хода поршня, такой подход дает ощутимые преимущества, касающиеся гидроаэромеханики четырехтактных двигателей. Увеличивая зону камеры сгорания, вы, фактически, получаете большее пространство вокруг седел клапанов, и очевидные преимущества, касающиеся заполнения цилиндра и снижения вредных воздействий на зоны между корпусом цилиндра и тарельчатым клапаном, что может иметь существенное значение при высоких оборотах. Затем, в некоторых случаях, вы можете перейти к установке больших клапанов, и это может стать неизбежным в точке, в которой цилиндр потребует более широких каналов для лучшего заполнения на повышенных оборотах.
    В отличие от двухтактного, четырехтактный двигатель много выигрывает от снижения хода поршня из-за моментов, не только жестко связанных с диаметром клапана, но и связанных со средней скоростью перемещения поршня, которая, при превышении порога в 25 м/с, начинает вызывать первые проблемы в части надежности.
    Четырехтактный двигатель имеет одну фазу (цикл выхлопа), когда поршень поднимается к головке без замедления (при открывании выпускного клапана поршень поднимается, не испытывая влияния противодействующей силы). Этого не происходит в двухтактных двигателях (компрессия начинается, фактически, сразу после выхлопа, и с нею приходит замедление).

    Двигатели классов KZ и KF: одной и той же дорогой.  На всех двигателях объемом 125 смЗ классов KZ и KF ход поршня равен диаметру цилиндра: на всех — 54 х 54 мм.

    Средняя скорость поршня

    Под средней скоростью поршня мы понимаем среднюю скорость, достигаемую поршнем при определенных оборотах. Средняя — ибо поршень за один оборот коленвала виртуально останавливается дважды, в ВМТ и НМТ, для смены направления движения снизу вверх и наоборот. Основная часть напряжения на поршень приходится на его штифт: разрыв поршня при чрезмерных оборотах происходит в этой критической точке, именно этим объясняется ее укрепление.
    Линейная скорость поршня представлена формулой:
    V = (C x g):30
    где V- средняя скорость поршня, м/с,
    С — ход поршня, м (ход в 40 мм равен 0,04 м)
    g — скорость вращения (обороты), при которой необходимо определить среднюю скорость поршня
    30 -фиксированное число
    Изучая некоторые двигатели, в том числе, гоночные, мы обнаружили интересные вещи.
    Двигатель 50 смЗ для скутера при 8000 об/мин имеет среднюю скорость поршня 10,6 м/с
    Двигатель 100 смЗ для карта ICA при 21000 об/мин имеет среднюю скорость поршня 35 м/с!

    Сравнение основных конструктивных особенностей.

    Сравниваем два двигателя объемом 125 смЗ, имеющие различные конструктивнее особенности. В первом ход поршня и диаметра цилиндра равны между собой, 54 х 54 мм, имеется разделенный выпуск с деталью типа «link stud» (связывающая стойка) (Honda), а во втором — короткий ход, 56 х 50,6 мм (Cagiva). Видно, что конструкции их перепускных окон отличаются.

    MBA VR1

    Чтобы использовать преимущества и двигателей с коротким ходом, и двигателей типа «square», MBA разработала одноцилиндровый двигатель 125 смЗ с диаметром цилиндра 55 мм и ходом поршня 52 мм Количество боковых перепускных окон — 6, из них основное разделено, для обеспечения достаточного давления в тракте и лучшей продувки также и при средней скорости; пятое перепускное окно также разделено.

    Двигатель с коротким ходом oт CRS

    В последней омологации от CRS был последний двигатель 125 смЗ KZ, использующий короткий ход с соотношением 56 мм х 50,6 мм; на мировых чемпионатах школа Yamaha постоянно выступала с такого рода двигателями, пока не был выпущен двигатель Харальса Бартола 125 см3 54 мм х 54 мм, а впоследствии — и reed derbi 125 см3, и tkm.

    Rotax

    Двигатель, который вошел в историю современных двухтактных двигателей: rotax 125 смЗ устанавливается на картах Aprilia, а теперь и на rotax max, с соотношением диаметра цилиндра и хода поршня 54 х 54 мм. Используется компоновка с 4 противоположно расположенными и одним корректирующим перепускными окнами.

    Линейная скорость поршня — очень важный параметр в жизни двигателя. Не случайно на двигателе 100 смЗ после расхода 20 литров на средне скоростной кольцевой гоночной трассе, и даже после каждого нагрева на скоростном треке, необходимо устанавливать новый поршень. Не сделав этого, вы рискуете угробить свой двигатель!

    По этой формуле вы можете вычислить среднюю скорость поршня любого двигателя. Только вдумайтесь, для двухтактного двигателя еще в середине 80-х порог в 30 м/с казался непреодолимым; затем, с внедрением новейших материалов, достигли 35 м/с, даже на двигателях, способных выдержать только один нагрев в картинге.
    В четырехтактных двигателях, где проблема серьезнее, идет расширение в цикле выхлопа (поршень не замедляется при подъеме к ВМТ), предел не должен превышать 25 м/с, хотя во время гонки, и на особенно быстрых двигателях, это предельное значение часто превышалось…

    Статья взята с vsescooter.ru

    РАБОЧИЙ ХОД ПОРШНЯ — это… Что такое РАБОЧИЙ ХОД ПОРШНЯ?

    
    РАБОЧИЙ ХОД ПОРШНЯ
    РАБОЧИЙ ХОД ПОРШНЯ

    ход поршня, при к-ром в цилиндре теплового двигателя совершается полезная работа. Как правило, каждый цилиндр паровой машины имеет две рабочие полости — переднюю и заднюю. Если при одном ходе поршня совершается полезная работа в передней полости, то при обратном ходе полезная работа производится в задней полости, так что в отношении ко всему цилиндру паровой машины каждый ход поршня является рабочим.

    Технический железнодорожный словарь. — М.: Государственное транспортное железнодорожное издательство. Н. Н. Васильев, О. Н. Исаакян, Н. О. Рогинский, Я. Б. Смолянский, В. А. Сокович, Т. С. Хачатуров. 1941.

    .

    • РАБОЧИЙ ПОЕЗД
    • РАВНИННЫЙ ХОД

    Смотреть что такое «РАБОЧИЙ ХОД ПОРШНЯ» в других словарях:

    • РАБОЧИЙ ХОД ПОРШНЯ — (Working stroke) ход поршня во время расширения сгоревших газов в цилиндре двигателя внутреннею сгорания или во время наполнения цилиндра и расширения в нем пара в поршневых паровых машинах. Самойлов К. И. Морской словарь. М. Л.: Государственное… …   Морской словарь

    • РАБОЧИЙ ХОД ПОРШНЯ — путь, проходимый поршнем двигателя внутреннего сгорания от верхней мёртвой точки до нижней при расширении рабочих газов в цилиндре двигателя …   Большая политехническая энциклопедия

    • РАБОЧИЙ — рабочего, м. В условиях капитализма то же, что пролетарий; в СССР человек, профессионально занимающийся физическим трудом и принадлежащий к господствующему классу, владеющему средствами производства совместно со всем народом. «Советское общество… …   Толковый словарь Ушакова

    • РАБОЧИЙ — рабочего, м. В условиях капитализма то же, что пролетарий; в СССР человек, профессионально занимающийся физическим трудом и принадлежащий к господствующему классу, владеющему средствами производства совместно со всем народом. «Советское общество… …   Толковый словарь Ушакова

    • РАБОЧИЙ ОБЪЁМ ЦИЛИНДРА — объём, освобождаемый поршнем при его движении от верхней мёртвой точки до нижней, равный произведению площади поршня на его рабочий (см.). Выражается в кубических метрах и литрах, а для мотоциклетных и лодочных подвесных двигателей в кубических… …   Большая политехническая энциклопедия

    • рабочий — 1. РАБОЧИЙ, его; м. Человек, занятый физическим трудом в сфере материального производства. Промышленные рабочие. Сельскохозяйственные рабочие. Железнодорожный р. ◁ Рабочая, ей; ж. Разг. Рабочие, их; мн. 2. РАБОЧИЙ, ая, ее. 1. Относящийся к… …   Энциклопедический словарь

    • ход — а ( у), предл. в ходе и в ходу, на ходе и на ходу, мн. ходы, ходы и (спец.) хода, м. 1. (в ходе, на ходу). Движение, перемещение в каком л. направлении. а) Передвижение человека или животного на собственных ногах. Роста он был небольшого, дряблый …   Малый академический словарь

    • рабочий — I его; м. см. тж. рабочая, рабочие Человек, занятый физическим трудом в сфере материального производства. Промышленные рабочие. Сельскохозяйственные рабочие. Железнодорожный рабо/чий. II ая, ее. 1) отно …   Словарь многих выражений

    • ХОД — (1) винта (винтовой линии) расстояние между двумя положениями точки, соответствующими её полному обороту вокруг продольной оси; (2) X. механизма перемещение движущейся рабочей части (инструмента, поршня и др.) станка, поршня в цилиндре и т. п. от …   Большая политехническая энциклопедия

    • Двигатель внутреннего сгорания — Схема: Двухтактный двигатель внутреннего сгорания с глушителем …   Википедия

    Укороченный ход и удлиненный ход поршня

    Двигатель, у которого ход поршня меньше внутреннего диаметра цилиндра, называется двигателем с укороченным ходом.

    Двигатель, у которого, наоборот, ход поршня превышает внутренний диаметр цилиндра, называется двигателем с удлиненным ходом.

    Если внутренний диаметр цилиндра равен ходу поршня, такой двигатель называется двигателем с уравновешенным ходом.

    Рабочие характеристики двигателя зависят от многих факторов, в том числе от соотношения между диаметром цилиндра и ходом поршня. Но существует определенная взаимосвязь между конструктивными и рабочими параметрами, характерная для всех двигателей.

    Двигатель с укороченным ходом (ход поршня меньше внутреннего диаметра цилиндра)

    • Как правило, быстро набирает обороты, достигает более высокой скорости вращения (измеряемой количеством оборотов в минуту — rpm).
    • На высоких оборотах отличается высокой приемистостью.
    • На низких оборотах характерно снижение крутящего момента (мощности).
    • Часто для использования преимущества высоких скоростных характеристик двигатель комплектуется коробкой передач,у которой последняя передача имеет более низкое передаточное число (т.е. более высокий номер).

    Двигатель с удлиненным ходом (ход поршня превышает внутренний диаметр цилиндра)

    • Как правило, низкоприемистый (медленно набирает обороты) из-за удлиненного хода поршня.
    • На низких оборотах обеспечивает высокий крутящий момент.
    • По существу, является низкооборотным двигателем.
    • Вследствие более низкой скорости работы обладает, как правило, высокой экономичностью и обычно комплектуется коробкой передач, у которой последняя передача имеет более высокое передаточное число.

    Двигатель с уравновешенным ходом (внутренний диаметр цилиндра равен ходу поршня)

    • Обеспечивает оптимальный баланс между крутящим моментом на низких оборотах и мощностью на высоких оборотах.
    • Обеспечивает высокий крутящий момент на низких оборотах и высокую мощность на высоких оборотах.
    • Способен работать на пониженной передаче, обеспечивающей экономию топлива, и при этом сохраняет высокую приемистость в городском цикле.

    Короткий ход поршня

    О дизельных двигателях слышали все, кто хоть когда-нибудь сталкивался с техникой на колесах: они используются в пассажирских и грузовых автомобилях, стоят на морских судах и поездах, на танках и ракетных тягачах. Но мало кто сегодня вспоминает об их создателе. Изобретатель двигателя внутреннего сгорания Рудольф Дизель — одна из самых известных фигур в истории инженерии новейшего времени, но в то же время одна из самых таинственных

    Рудольф Дизель родился 18 марта 1858 года в семье Теодора Дизеля и Элис Штробель — эмигрантов из Германии, осевших во Франции и владевших небольшой переплетной мастерской в Париже. С самого раннего детства у Рудольфа проявился интерес к разным машинам и механизмам: излюбленным времяпровождением умного, послушного, аккуратного и трудолюбивого мальчика было посещение парижского Музея искусств и ремесел.

    В 1870 году началась Франко-прусская война, и из-за роста антинемецких настроений Дизелям пришлось перебраться в Англию, где вскоре они оказались в нищете. На семейном совете было принято решение отправить Рудольфа в Германию, в семью брата, любезно согласившуюся принять племянника. Дядя Дизеля был профессором и преподавал математику в Королевском земском училище, куда в 1871 году пристроил и Рудольфа, заметив у того склонность к технике, а уже в 1873-м юноша его успешно закончил, опередив по успеваемости всех остальных учеников.

    РУДОЛЬФУ 12 ЛЕТ.jpg

    Уже в 12 лет Рудольф испытывал склонность к технике

    Иллюстрация: mandieselturbo.com

    Затем Рудольф отправляется в Аугсбург, в Техническую школу, а через два года досрочно поступает в престижный Королевский баварский политехнический институт в Мюнхене. Во время учебы произошла судьбоносная для Дизеля встреча — его заметил один из преподавателей, профессор Карл фон Линде, помимо научной работы занимавшийся коммерцией, а именно созданием холодильного оборудования. В 1880 году, когда Дизель окончил институт, Линде пригласил его на работу в свою компанию на должность директора парижского филиала. В наше время Linde — одна из крупнейших и авторитетнейших в мире химических компаний, инжиниринговое подразделение которой занимается строительством «под ключ» крупнотоннажных химических производств, в том числе заводов по сжижению природного газа.

    «Инженер все может»

    Так ответил студент Рудольф Дизель на вопрос директора Высшей технической школы в Мюнхене профессора Бауэрфайнда о возможности создать двигатель внутреннего сгорания, способный заменить паровой. Теперь амбициозному молодому человеку предстояло доказать это на практике.

    magnifier.png К концу XIX века в мире существовало множество поршневых двигателей, однако их КПД не превышал 10–12%, воспламенение горючей смеси в них производилось либо при помощи электричества, либо за счет тепла, идущего от стенок камеры сгорания

    К концу XIX века в мире существовало множество поршневых двигателей, однако их КПД не превышал 10–12%, поскольку воспламенение горючей смеси в них производилось либо при помощи электричества, либо за счет тепла, идущего от стенок камеры сгорания. Однако уже в 1824 году французский инженер Сати Карнопредложил более перспективную схему работы двигателя. По его мнению, следовало «сперва сжать воздух насосом, затем пропустить его через вполне замкнутую топку, вводя туда маленькими порциями топливо при помощи приспособления, легко осуществимого; затем заставить воздух выполнять работу в цилиндре с поршнем или в любом другом расширяющемся сосуде и, наконец, выбросить его в атмосферу…». Эта схема, получившая наименование «цикла Карно», стала эталоном цикла теплового двигателя. Ее и попытался на практике реализовать Рудольф Дизель.

    Забегая вперед, надо сказать, что у него это получилось не в полной мере: в дизелевском варианте в цилиндре сжималась не топливная смесь, а воздух, причем до запредельных для того времени значений.

    Двенадцать лет проб и ошибок

    А пока в течение десяти лет, с 1880-го по 1892-й, работая на фирме Линде, он постоянно занимался этим проектом, пытаясь найти такое рабочее тело, которое при соединении с топливом, создавало бы необходимую для воспламенения температуру. В его качестве последовательно использовались аммиак, уголь и бензин, но все было безрезультатно.

    magnifier.png В течение десяти лет, с 1880-го по 1892-й, работая на фирме Линде, постоянно занимался этим проектом, пытаясь найти такое рабочее тело, которое при соединении с топливом, создавало бы необходимую для воспламенения температуру

    Помогла случайность. Использование воздуха в пневматической зажигалке для прикуривания сигар натолкнуло Рудольфа на мысль, что таким рабочим телом может стать сжатый воздух. «Не могу сказать, — писал позже изобретатель, — когда именно возникла у меня эта мысль. В неустанной погоне за целью, в итоге бесконечных расчетов родилась наконец идея, наполнившая меня огромной радостью: нужно вместо аммиака взять сжатый горячий воздух, впрыснуть в него распыленное топливо и одновременно со сгоранием расширить его так, чтобы возможно больше тепла использовать для полезной работы».

    Основываясь на этом, Дизель разработал новую схему двигателя, в котором воздух должен был быть сжат с такой силой, чтобы при его соединении с топливом возникшая смесь воспламенилась до температуры 600–650 °С и в цилиндр начало поступать уже готовое для работы двигателя топливо.

    Есть прототип!

    В 1892 году Рудольф покидает компанию Линде и организовывает собственное предприятие, на котором в течение четырех лет изготавливает несколько опытных образцов. В том же году он получает свой первый патент № 67207 «Рабочий процесс и способ конструирования двигателя внутреннего сгорания для машин», которым закрепил за собой право собственности на «рациональный тепловой двигатель», и издает книгу, в которой дает теоретическое обоснование созданной им конструкции такого двигателя. «Моя идея, — писал он семье в Мюнхен, — настолько опережает все, что создано в данной области до сих пор, что можно смело сказать: я первый в этом новом и наиважнейшем разделе техники на нашем маленьком земном шарике! Я иду впереди лучших умов человечества по обе стороны океана!»

    magnifier.png «Моя идея настолько опережает все, что создано в данной области до сих пор, что можно смело сказать: я первый в этом новом и наиважнейшем разделе техники на нашем маленьком земном шарике! Я иду впереди лучших умов человечества по обе стороны океана!»

    В 1897 году с третьей попытки ему наконец удалось построить готовый к практическому использованию прототип. Современники вспоминали, что это «был двигатель высотой три метра, который развивал 172 об/мин имел диаметр единственного цилиндра 250 мм, ход поршня 400 мм и мощность от 17,8 до 19,8 л. с., расходуя при этом 258 г нефти на 1 л. с. в час. Термический КПД был у него 26,2%, намного выше, чем имели паровые машины». Кроме того, двигатель Дизеля работал на дешевых видах топлива вроде керосина и не имел системы зажигания.

    Как удалось достичь такого очень высокого для того времени КПД? Главным образом за счет многократного увеличения давления сжатия с помощью специального компрессора — в двигателе англичанина Герберта Акройда-Стюарта, наиболее похожего по конструкции на дизелевский, оно равнялось шести атмосферам, а в устройстве Рудольфа достигало 36 атмосфер.

    Фотография: Gettyimages // Первый двигатель Дизеля, июль 1893 года, Аугсбург

    Первый двигатель Дизеля, июль 1893 года, Аугсбург

    Фотография: Gettyimages

    В связи с этим неоднократно вставал вопрос: кто первый изобрел ДВС, Стюарт или Дизель? Известно, что основные признаки современного дизельного двигателя — непосредственный впрыск топлива (без применения сжатого воздуха) и компрессионное зажигание. В 1890 году Стюарт получил патент № 7146 «Усовершенствование в работе двигателей при помощи взрыва воспламеняемых паров или смеси газа с воздухом». Но этот патент был дан только на компрессионное зажигание, о применении сжатого воздуха для воспламенения смеси там речи не шло.

    magnifier.png В 1897 году попытки ему наконец удалось построить готовый к практическому использованию прототип. Современники вспоминали, что это «был двигатель высотой три метра, который развивал 172 об/мин имел диаметр единственного цилиндра 250 мм, ход поршня 400 мм и мощность от 17,8 до 19,8 л. с., расходуя при этом 258 г нефти на 1 л. с. в час. Термический КПД был у него 26,2%, намного выше, чем имели паровые машины»

    Спустя некоторое время Стюарт построил экспериментальный образец устройства, функционировавшего на бензине и проработавшего всего несколько часов. Дизель же патент на компрессионное зажигание получил только в 1892 году, но в отличие от Стюарта в его патент уже была включена идея о сжатом воздухе, которую позже, в 1897 году, он и воплотил. Так что если вести отсчет от идеи, то первенство в изобретении ДВС принадлежит, безусловно, Дизелю. А поскольку идею придумал он и он же построил реально работающий образец, то и сам двигатель стали называть по его фамилии. Топливо такого двигателя, состоит из керосиново-газойлевых фракций переработанной нефти и имеет высокую — 200–350 °С — температуру кипения, в дизельном двигателе оно самовоспламеняется при сильном сжатии. В бензиновом двигателе горючую смесь образуют бензин и воздух, она воспламеняется от искры зажигания.

    Развитие изделия

    Это был успех. На Всемирной выставке в Париже в 1900 году изделие Дизеля произвело фурор, началась массовая скупка лицензий на производство его двигателей. Однако в начале промышленного изготовления дизелевских двигателей возникли серьезные трудности: первые партии оказывались бракованными, часто ломались и выходили из строя, на многих заводах не было необходимого оборудования и рабочей силы нужной квалификации.

    Постепенно болезни роста были преодолены, и двигатель Дизеля стал постепенно использоваться во многих сферах жизнедеятельности, связанных с техникой. А его изобретатель стал миллионером. Дизеля стали приглашать повсюду — во Францию, Швейцарию, Австрию, Бельгию, Россию, Америку… Особый интерес к нему был проявлен в России. Уже в 1898 году Людвиг Нобель, купив у Дизеля лицензию на двигатель, организовал его производство на своем заводе в Санкт-Петербурге (сейчас это известное на всю страну предприятие «Русский дизель»).

    Устройство быстро завоевало популярность и стало использоваться всюду — на электростанциях, водонапорном оборудовании, с его помощью освещались крупные магазины и центральные улицы Санкт-Петербурга и других известных городов Российской империи.

    Велись работы по его модификации. Известный русский инженер Вадим Аршаулов создал так называемый русский дизель, который, в отличие от своего прототипа, работал на нефти, а не на керосине, и имел топливный насос высокого давления, работавший от сжатого в цилиндре воздуха. На Путиловском заводе инженер Густав Тринклер построил «Тринклер-мотор», который отличался от дизелевского варианта тем, что не имел воздушного компрессора для накачки воздуха, его роль играла гидравлическая система для нагнетания и впрыска топлива.

    Дизеля наконец-таки признали и на родине: сам кайзер Вильгельм II вручил ему диплом о присвоении почетного звания доктора-инженера и пригласил в оборонные проекты. Занялся Дизель и совершенствованием конструкции реверсивного судового четырехтактного мотора и созданием двигателя для грузовых автомобилей.

    Закат

    Дизель жил на широкую ногу. Построил в Мюнхене дворец стоимостью 900 тысяч марок, покупал нефтяные участки в Баварии, где, как выяснялось потом, не было нефти, широко и необдуманно спекулировал акциями, вкладывал деньги в католические лотереи. В итоге финансовые дела стали настолько плохи, что, как пишут его биографы, «пришлось рассчитать почти всю прислугу и заложить дом».

    Нервы Дизеля были издерганы постоянными нападками недоброжелателей и конкурентов, среди которых были как малоизвестные инженеры, так и могущественные люди вроде угольных и нефтяных магнатов, постоянно таскавшие его по судам по обвинениям в плагиате и других неблаговидных поступках.

    Характерный пример — намерение его ярого противника профессора Людерса издать книгу под названием «Миф Дизеля», пытаясь доказать, что ничего нового в его изобретении нет, поскольку основа работы его двигателя была известна и раньше, а сам Дизель присвоил себе чужие заслуги.

    magnifier.png К лету 1913 года Дизель стал полным банкротом и, по всей видимости, не видя другого выхода, решился на самоубийство. На это указывает его странное поведение: сначала он вместе с женой объехал всю Европу, как будто прощаясь с ней

    Третьи вспоминали «нобелевскую» историю: незадолго до своей смерти, изобретатель обратился с письмом к председателю Нобелевского комитета Эммануилу Нобелю, в котором намекал на возможность получения Нобелевской премии за свое изобретение, рассчитывая, таким образом, поправить свои финансовые дела и заодно напомнив всем о себе. Но тот отказал. И это ввергло Дизеля в пучину черной депрессии.

    К лету 1913 года Дизель стал полным банкротом и, по всей видимости, не видя другого выхода, решился на самоубийство. На это указывает его странное поведение: сначала он вместе с женой объехал всю Европу, как будто прощаясь с ней. Когда он погиб, его жена вспомнила странную фразу, которую он как-то обронил: «Мы можем попрощаться с этими местами. Больше мы их никогда не увидим». Затем он поехал в Баварские Альпы, где участвовал в опасных горных путешествиях и рискованных мероприятиях.

    29 сентября 1913 года, в Антверпене 55-летний Рудольф Дизель и еще двое его друзей сели на паром «Дрезден», идущий в Англию, где он собирался работать инженером-консультантом на одном из двигателестроительных заводов. И ночью пропал. А через десять дней в Северном море рыбаки выловили труп. В одежде были найдены некоторые личные вещи, и сын Дизеля подтвердил, что они принадлежали его отцу.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *