Что за датчик стоит на впускном коллекторе: Разбираемся в датчиках: Датчик абсолютного давления

Содержание

Датчик абсолютного давления воздуха: количество воздуха

Контроль количества поступающего в цилиндры воздуха — одна из основ нормальной работы современного двигателя. Для измерения количества воздуха используются датчики абсолютного давления — все об этих устройствах, их типах, конструкции и работе, а также о верном выборе и замене читайте в данной статье.


Датчик абсолютного давления воздуха — назначение и его место в двигателе

Датчик абсолютного давления воздуха (ДАД, MAP — Manifold absolute pressure sensor) — один из основных датчиков системы управления инжекторным и дизельным двигателем внутреннего сгорания; датчик для измерения текущего давления воздуха, поступающего во впускной коллектор мотора.

ДАД является составной частью системы контроля и управления силовым агрегатом, обеспечивая его нормальное функционирование в зависимости от текущего режима и нагрузок. Посредством данного прибора измеряется давление воздуха во впускном коллекторе двигателя — на основе этой информации электронный блок управления (ЭБУ) выполняет расчет количества воздуха, поступающего в цилиндры во время такта впуска, и в соответствии с алгоритмами изменяет работу силового агрегата (меняет пропорции воздуха и топлива в горючей смеси, момент впрыска и т.д.).

Следует отметить, что датчики абсолютного давления — это альтернатива датчикам массового расхода воздуха, на одном двигателе эти датчики и не устанавливаются.

От функционирования ДАД зависит функционирование мотора и возможность нормальной эксплуатации всего транспортного средства, поэтому в случае поломки или некорректной работы датчик должен быть как можно скорее заменен. Но прежде, чем покупать новый датчик, следует разобраться в типах и принципе работы этих устройств.

  • Датчик абсолютного давления воздуха SSANGYONG Kyron,Actyon,Actyon Sport,Rexton OE

    3 132 ₽
  • Датчик абсолютного давления воздуха DAEWOO Nexia,Lanos ERA

    1 152 ₽
  • Датчик абсолютного давления воздуха ВАЗ-1118,2170,2190 DELPHI

    2 225 ₽
  • Датчик абсолютного давления воздуха ГАЗ,УАЗ УМЗ-4216 ЕВРО-3 DAEWOO Lanos АВТОТРЕЙД

    920 ₽
  • Датчик абсолютного давления воздуха ГАЗ,УАЗ ЗМЗ-406 ПЕКАР

    1 130 ₽
  • Датчик абсолютного давления воздуха ГАЗ,УАЗ ЗМЗ-406 АВТОТРЕЙД

    1 030 ₽
  • Датчик абсолютного давления воздуха ЯМЗ ЕВРО-3 АЭНК-К

    1 780 ₽
  • Датчик абсолютного давления воздуха ГАЗ,УАЗ УМЗ-4216 ЕВРО-3 DAEWOO Lanos ЭЛКАР

    1 070 ₽
  • Датчик абсолютного давления воздуха MERCEDES Actros,Atego,Axor,Vario BOSCH

    7 031 ₽
  • Датчик абсолютного давления воздуха ГАЗ,УАЗ УМЗ-4216 ЕВРО-3 DAEWOO Lanos

    430 ₽

Конструкция и принцип работы датчиков абсолютного давления воздуха

Датчик абсолютного давления воздуха, как можно понять по названию, измеряет абсолютное давление воздуха во впускном коллекторе относительно вакуума (точнее — некоторого низкого давления, которое можно условно считать вакуумом). Также существуют датчики относительного и дифференциального давлений (измеряют и сравнивают давление воздуха относительно атмосферного), однако они в данной статье не рассматриваются.

В настоящее время наиболее широкое распространение получили ДАД на основе микромеханических пьезорезистивных чувствительных устройствах (MEMS-сенсорах, от англ. Microelectromechanical systems — микроэлектромеханические системы, МЭМС). В данных датчиках используется чувствительный элемент, в котором сочетается микроэлектронная чувствительная часть, помещенная на подвижную мембрану (она выступает в роли механической части) — за счет их взаимодействия осуществляется измерение давления.

Существует несколько разновидностей микромеханических ДАД, но все они основаны на едином физическом принципе. В датчике присутствует герметичный объем воздуха, в котором поддерживается так называемое опорное давление — низкое давление (раз в 5-10 ниже нормального атмосферного), на основе которого осуществляется отсчет давления воздуха во впускном коллекторе. Данный объем воздуха закрыт диафрагмой (мембраной), на которой тем или иным способом выполнены полупроводниковые пьезорезисторы (тензорезисторы) — элементы, электрическое сопротивление которых зависит от деформации (растягивания или сжатия). Обычно на мембране располагается четыре пьезорезистора, включенных по мостовой схеме.

Работа такого датчика сводится к измерению электрического сопротивления пьезорезисторов при деформации диафрагмы, возникающей вследствие разности давлений между замкнутым объемом с опорным давлением и объемом с измеряемым давлением. Чем значительнее разница давлений, тем сильнее деформируются мембрана и расположенные на ней пьезорезисторы — в результате изменяется протекающий по пьезорезисторам ток, что и измеряется интегрированной в датчик оценочной схемой или электронным блоком. Зависимость тока и давления заранее устанавливается для каждого конкретного устройства, она входит в алгоритмы управления двигателем, записанные в электронном блоке (контроллере).

Конструктивно ДАД на основе MEMS-сенсоров могут отличаться. В частности, чувствительный элемент может выполняться на толстопленочной кремниевой подложке, в которой формируется замкнутый пузырек воздуха и тензорезисторы. Также существуют конструкции с большой по площади мембраной с пьезорезисторами, за которой располагается закрытый объем с опорным давлением.

Независимо от используемого чувствительного элемента, ДАД помещается в пластиковый корпус, с одной стороны которого выполнен патрубок с уплотнительным кольцом для подключения к впускному коллектору (напрямую или через трубопровод небольшой длины), а с другой — электрический разъем для подключения к ЭБУ.


Типы современных ДАД

ДАД отличаются типом выходного сигнала и назначением (применимостью).

По типу выходного сигнала приборы делятся на две группы:

  • Аналоговые;
  • Цифровые.

В первом случае датчик формирует аналоговый сигнал (он берется непосредственно от тензорезисторов), который поступает на электронный блок, где и подвергается обработке. Это наиболее простые по конструкции датчики, которые в новых автомобилях практически не используются, так как для работы с ними подходят только определенные электронные блоки управления двигателем.


Конструкция датчика абсолютного давления воздуха с интегрированной схемой оценки

Во втором случае в сам датчик интегрирована оценочная схема, которая измеряет и преобразует аналоговый сигнал от пьезорезисторов в цифровую форму — этот сигнал и поступает на электронный блок. Основу ДАД данного типа составляют специальные микросхемы, которые содержат в себе как сенсорный элемент, так и оценочную схему. На новые автомобили наиболее часто ставится именно этот тип датчика, так как он подходит для большинства контроллеров с соответствующим входом.

Отдельную группу составляют так называемые T-MAP-датчики — интегрированные датчики температуры и ДАД. В них помимо MEMS-сенсора помещен датчик температуры на основе обычного терморезистора, такой прибор измеряет давление и температуру, что позволяет точнее определять количество поступающего в цилиндры воздуха и вносить коррективы в работу многих вспомогательных систем (в том числе интеркулера для двигателей, оборудованных турбокомпрессором, и других).

По применимости ДАД делятся на две больших группы:

  • Для атмосферных двигателей — измеряют давление в пределах 0-1 атмосферы;
  • Для двигателей с турбонаддувом — измеряют давление в пределах 0-2 атмосферы и более.

Существуют и датчики для измерения давлений вплоть до 5-6 атмосфер, они чаще всего используются не во впускном коллекторе (так как в моторах такое давление встречается нечасто), а в пневматической системе автомобилей.

Также датчики имеют исполнение на напряжение питания 12 и 24 В, а для их подключения могут использоваться электрические разъемы различных типов (обычно — с ножевыми контактами под отдельные разъемы или групповые колодки, но существуют варианты и под штыревые колодки).


Как выбрать и заменить датчик абсолютного давления воздуха

ДАД играет одну из ключевых ролей в нормальной работе двигателя, при его неисправности нарушается работа мотора на всех режимах (повышенные обороты на холостых, «плавающие» обороты — все это в целом ухудшает динамику автомобиля), повышается дымность выхлопа, увеличивается шум и уровень вибраций, появляется запах бензина в выхлопе, а также наблюдается перерасход топлива. При появлении этих признаков следует провести диагностику устройства, и при его неисправности — произвести замену.

На замену следует выбирать ДАД только того типа и модели, что был установлен ранее, лучше всего это делать по каталожному номеру. Использование датчиков других типов в большинстве случаев просто невозможно вследствие разницы в установочных размерах и электрических характеристиках. Также можно выбирать и универсальные модели, используемые на определенных линейках двигателей, однако следует учитывать, что один и тот же датчик для разных двигателей может иметь разные каталожные номера и на гарантийных автомобилях их менять нельзя.

Особое внимание выбору нового датчика следует уделять в случае турбированного двигателя. Для таких моторов следует использовать специальные ДАД, рассчитанные на более высокие давления. Установка обычного датчика в этом случае нарушит работу силового агрегата.

Замена датчика абсолютного давления, как правило, довольно проста и не требует специального инструмента. Эта работа в общем случае выполняется в несколько шагов:

  1. Снять электрический разъем с датчика;
  2. Демонтировать датчик, выкрутив удерживающие его винты или болты;
  3. Отсоединить датчик от коллектора или патрубка;
  4. Установить новый датчик в обратном порядке (при этом не забыв установить новое уплотнительное кольцо или хомут).

Ремонт должен выполняться на остановленном двигателе и только после снятия клеммы с аккумулятора. После установки новый ДАД не требует калибровки или каких-либо настроек (хотя в определенных случаях это придется выполнить) и вся система сразу начинает работать.

Верный выбор и правильная замена датчика абсолютного давления воздуха — гарантия надежной работы силового агрегата на всех режимах.

Устройство, принцип действия, диагностика датчика абсолютного давления во впускном коллекторе Manifold Absolute Pressure sensor (MAP-sensor)

Почти все системы управления двигателем, в которых не применяется датчик расхода воздуха, оборудованы датчиком абсолютного давления во впускном коллекторе (датчик разрежения).

В таких системах, на основании данных о давлении и температуре воздуха во впускном коллекторе, блок управления двигателем рассчитывает массу воздуха, содержащуюся в каждом сантиметре кубическом внутреннего объёма впускного коллектора. При каждом такте впуска, цилиндр «всасывает» разрежённый воздух из впускного коллектора, объём которого приблизительно равен внутреннему объёму цилиндра двигателя. Зная внутренний объём цилиндра двигателя (в cm3) и предварительно рассчитав плотность всасываемого цилиндром воздуха (в g/cm3), блок управления двигателем рассчитывает массу воздуха (в граммах), попадающего в цилиндр во время такта впуска. В соответствии с рассчитанной массой потребляемого двигателем воздуха, блок управления двигателем формирует импульсы управления топливными форсунками соответствующей длительности, достигая приготовления топливовоздушной смеси с составом, близким к заданному.

Точность расчёта массы потребляемого двигателем воздуха по его давлению и температуре невысока, так как объём потребляемого воздуха в значительной мере зависит от состояния цилиндропоршневой группы и газораспределительного механизма. Поэтому, в подобных системах управления двигателем для обеспечения приготовления топливовоздушной смеси с точно заданным составом, очень важным фактором является исправность функционирования датчика кислорода.

На многих автомобилях, датчик разрежения крепится к кузову автомобиля в моторном отсеке, а его входной штуцер соединяется с внутренним объёмом впускного коллектора посредством гибкого трубопровода.

Независимо от наличия в системе управления двигателем датчика расхода воздуха, на двигателях оборудованных турбонаддувом и / или компрессором датчик абсолютного давления во впускном коллекторе (датчик давления / разрежения) применяется всегда. Здесь, кроме прочего, показания датчика используются для измерения и регулирования величины избыточного давления, нагнетаемого турбокомпрессором и / или механическим компрессором. Такой датчик обычно крепится непосредственно к впускному коллектору. В корпус датчика часто бывает встроен датчик температуры воздуха во впускном коллекторе.Датчики давления могут быть штатно установлены на автомобиле для измерения давления в топливном баке, давлений в системе EGR, давления в системе кондиционирования воздуха в салоне, в тормозной системе, в шинах автомобиля…

Принцип действия датчика даления.

Большинство автомобильных датчиков давления преобразовывают значение давления на входном штуцере датчика в соответствующую ему величину выходного напряжения. Встречаются датчики, где в зависимости от входного давления изменяется частота выходного переменного напряжения (например, датчик абсолютного давления во впускном коллекторе производства FORD). В качестве датчиков давления во впускном коллекторе применяются датчики абсолютного давления. Внутри датчика абсолютного давления имеется вакуумная камера, из которой на этапе изготовления датчика был откачан воздух. Такой датчик «сравнивает» давление на входном штуцере с давлением в вакуумной камере — от этой разницы давлений и зависит выходной сигнал датчика.

  1. Точка подключения зажима типа «крокодил» осциллографического щупа.
  2. Точка подключения пробника осциллографического щупа для получения осциллограммы выходного напряжения датчика.
  3. Датчик абсолютного давления.
  4. Выключатель зажигания.
  5. Аккумуляторная батарея.

Обычно, с уменьшением величины абсолютного давления во впускном коллекторе (или, другими словами, с увеличением величины разрежения во впускном коллекторе) выходное напряжение датчика уменьшается. Но встречаются датчики, где зависимость выходного напряжения от входного давления обратно-пропорциональна. В качестве датчиков атмосферного давления применяются датчики абсолютного давления. Датчик атмосферного давления может быть выполнен как отдельный элемент системы управления двигателем, или может быть размещён непосредственно внутри корпуса блока управления двигателем. На некоторых автомобилях применяется датчик давления топлива в топливной рейке.

Типовые неисправности датчика абсолютного давления во впускном коллекторе.

В зависимости от устройства системы управления двигателем (наличие или отсутствие датчика расхода воздуха), неполадки в работе датчика могут привести как к переключению блока управления на аварийный режим работы, так и вовсе к невозможности запуска и работы двигателя. Применяемые в современных системах управления двигателем датчики давления обладают очень высокой надёжностью. В большинстве случаев, причиной неправильной работы датчика абсолютного давления во впускном коллекторе является неисправность соединения входного штуцера датчика с внутренним объёмом впускного коллектора. Часто соединяющий гибкий трубопровод разрывается, реже «закоксовывается» (либо сам трубопровод, либо штуцер во впускном коллекторе). Поэтому, при проведении проверки датчика абсолютного давления во впускном коллекторе, необходимо обязательно проверить исправность трубопровода. Необходимость замены датчика иногда возникает по причине неисправности датчика температуры воздуха, который может быть конструктивно объединён с датчиком абсолютного давления во впускном коллекторе. Тем не менее, встречаются и случаи выхода из строя самого датчика абсолютного давления. При необходимости, можно провести проверку датчика. Для этого необходимо обеспечить подвод к штуцеру датчика различных значений давления / разрежения в допустимых для данного датчика пределах (путём запуска двигателя, если это возможно, или другими вспомогательными средствами), контролируя при этом выходной сигнал датчика.  

Осциллограмма выходного напряжения исправного датчика абсолютного давления впускном коллекторе. Пуск двигателя и работа на холостом ходу без нагрузки.

Выходное напряжение датчика изменяется пропорционально величине давления во впускном коллекторе. В данном случае, с увеличением разрежения во впускном коллекторе, выходное напряжение датчика уменьшается. <> Характеристика датчика абсолютного давления во впускном коллекторе производства FORD имеет следующую зависимость: —   при включенном зажигании и остановленном двигателе (разрежение во впускном коллекторе при этом отсутствует) частота выходного напряжения датчика составляет около 160 Hz; —   при работе прогретого до рабочей температуры двигателя на холостом ходу без нагрузки (величина разрежения во впускном коллекторе составляет ~0,65 Bar), частота выходного напряжения датчика составляет около 105 Hz; —   при увеличенной до 3-х тысяч оборотов в минуту частоте вращения коленчатого вала двигателя на холостом ходу (величина разрежения во впускном коллекторе составляет ~0,7 Bar), частота выходного напряжения датчика составляет около 100 Hz.  

Осциллограмма выходного напряжения исправного датчика абсолютного давления во впускном коллекторе производства FORD. Зажигание включено, двигатель остановлен.

Дифференциальный датчик давления.

В некоторых системах управления двигателем, для измерения величины расходуемых системой EGR (Exhaust Gas Recirculation) отработавших газов, применяется дифференциальный датчик давления. Дифференциальный датчик давления отличается от датчика абсолютного давления наличием двух штуцеров — внутренняя камера датчика не загерметизирована, а соединена с дополнительным, вторым штуцером. За счёт этого, дифференциальный датчик давления сравнивает между собой давления на входных штуцерах; выходной сигнал датчика пропорционален этой разнице давлений. Система EGR служит для уменьшения количества выбрасываемых двигателем в атмосферу вредных окислов азота. Система EGR подводит часть отработавших газов к впускному коллектору, размешивая топливовоздушную смесь отработавшими газами. За счёт этого уменьшается температура сгорания топливовоздушной смеси и как следствие, уменьшается количество выбрасываемых двигателем в атмосферу окислов азота. Измерение величины потока отработавших газов от клапана EGR к впускному коллектору при помощи дифференциального датчика давления осуществляется следующим образом. В патрубке, соединяющем выход клапана EGR с впускным коллектором, имеется калиброванное сужение. Это сужение создаёт незначительное препятствие протекающим по патрубку отработавшим газам, вследствие чего, давление газов перед сужением оказывается несколько выше давления газов за сужением. Чем больше величина потока отработавших газов, протекающих через сужение, тем большая возникает разница давлений газов перед сужением и за ним. Входные штуцеры дифференциального датчика давления соединены с патрубком клапана EGR — один штуцер соединён с полостью до калиброванного сужения, а второй штуцер соединён с полостью за калиброванным сужением. С увеличением потока отработавших газов от клапана EGR к впускному коллектору, увеличивается разница давлений подводимых к входным штуцерам дифференциального датчика давления, датчик преобразовывает эту разницу давлений в напряжение. Таким образом, выходное напряжение дифференциального датчика давления оказывается пропорциональным величине потока отработавших газов от клапана EGR к впускному коллектору двигателя.

Приложение 1

Характеристики некоторых датчиков абсолютного давления

Разрежение GM, V FORD, Hz
мм рт.ст. Bar  
004,80156…159
25,70,0344,52 
51,40,0674,46 
77,10,1034,26 
102,80,1374,06 
128,50,1713,88141…143
154,20,2063,66 
179,90,2403,50 
205,60,2743,30 
231,30,3083,10 
2570,3432,94127…130
282,70,3772,76 
308,40,4112,54 
334,10,4452,36 
359,80,4802,20 
385,50,5142,00114…117
411,20,5481,80 
436,90,5821,62 
462,60,6171,42108…109
488,30,6511,20 
5140,6851,10102…104
539,70,7200,88 
565,40,7540,66 

Приложение 2

Таблица переводов из одной системы в другую

  кПа мм рт.ст миллибар PSI
1 атм. 101,3257601013,2514,6960
1 kPa17,50062100,145038
1 мм рт.ст.0,13332211,333220,0145038
1 миллибар0,10,4506210,0145038
1 PSI6,8947351,714868,94731
1 мм вод.ст.0,0098060,073559,8*18-80,0014223

   

Замена датчика давления во впускном коллекторе

Услуга по замене датчика давления во впускном коллекторе в компании KOLOBOX.

МАР-сенсор, как также называется этот прибор, контролирует давление во впускном коллекторе. Информацию, как и другие датчики, этот элемент передает электронному блоку управления, который в свою очередь передает сигнал микроконтроллеру. При помощи этих данных производится контроль поступления воздуха и топливной смеси в рампу.

Корректная работа ДДВК обеспечивает стабильную работу двигателя автомобиля, поэтому важно своевременно обратиться в сервисный центр, при обнаружении признаков его неисправности. К негативным последствиям выхода из строя МАР-сенсора относится неустойчивая работоспособность двигателя его “троение”, неожиданное прекращение работы.

Какие случае требует незамедлительной замены датчика давления во впускном коллекторе?

Исход поломки МАР-сенсора зависит от программного обеспечения, установленном в электронном блоке управления двигателем автомобиля. Программное обеспечение — это комплекс программ, установленных производителем этого устройства.

Переключения блока управления в экстренный режим — более выгодный результат неисправности датчика абсолютного давления коллектора. Усредненные характеристики, на которых будет работать автомобильный двигатель, приведет к повышению потребления топлива, возрастанию вероятности детонации (возгорания).

Негативный результат выхода из строя датчика — полное прекращение функционирования мотора, отказ в запуске.

Стоит отметить надежность этого элемента по сравнению со шлангом — соединительным элементом впускного коллектора и штуцера. Неисправность его заключается в разрыве или загрязнении, которые можно решить заменой или очисткой.

Главная причина, вынуждающая произвести замену МАР-сенсора — поломка его внутренней составляющей. Вскрытие и ремонт в большинстве случаев приводит датчик в непригодность, поэтому рекомендуется только замена на новый. Особенно, если учитывать, что современные автомобили не оснащены разборными ДДВК.

Опытные профессионалы сервисного центра KOLOBOX произведут замену датчика давления во впускном коллекторе с заботой о вашем автомобиле и времени!

Перейти к прайс-листу

Записаться на шиномонтаж (услуги)

Адреса торговых точек

Датчик абсолютного давления

⏰Время чтения: 6 мин.

Некоторые автолюбители не совсем до конца понимают, что такое датчик абсолютного давления в системе управления двигателем. Поэтому решил изложить сей пост, дабы высказать своё мнение по данной теме и развенчать некоторые мифы и заблуждения, с которыми постоянно приходится сталкиваться в той или иной степени.

Я уже писал пост и снимал видео про проверку датчика абсолютного давления в коллекторе при помощи обычного мультиметра. Но не все до конца поняли суть работы этого датчика. Поэтому в комментариях постоянно приходится отвечать на одни и те же вопросы, что отнимает очень много времени.

К тому же в выдаче поисковых систем про датчик абсолютного давления выдается одна “вода”, которую все копипастят друг у друга, что ещё больше вводит в заблуждение начинающих водителей автомобилей с системой управления двигателем, построенной на МАР сенсоре.


Датчик абсолютного давления во впускном коллекторе

Для начала стоит отметить, что в большинстве случаев, обзывать этот датчик датчиком абсолютного давления не совсем корректно, так как его задача не только измерить абсолютное давление в коллекторе, но а также и атмосферное (барометрическое) давление вне коллектора. Поэтому его с таким же успехом можно назвать и датчиком барометрического давления.

Для чего это необходимо?

Дело в том, что в разных местах нашей планеты атмосферное давление не одинаково. Да и в одном и том же месте давление с течением времени изменяется.

А при разном давлении изменяется и плотность воздуха, что приводит и к изменению массы воздуха на один и тот же объем. А это уже совершенно различные условия работы двигателя, и эту ситуацию блок управления двигателем должен учитывать, чтобы корректно управлять всё тем же двигателем.

При включении зажигания ЭБУ первым делом оценивает барометрическое давление. Так как пока двигатель не запущен, то давление в коллекторе равняется атмосферному. Именно этот момент позволяет избежать установки дополнительного датчика давления, который бы измерял барометрическое давление.

Ещё раз повторюсь – величина барометрического давления является очень важным измерением для нормальной работы системы управления двигателем!

Именно поэтому в мануалах по эксплуатации автомобиля указывается требование – при движении в горной местности или, наоборот, когда Вы едите с возвышенности, допустим, к морю, то необходимо периодически останавливать двигатель, чтобы ЭБУ определил новые значения барометрического давления.

Но кто из водителей будет останавливать двигатель, только из-за того, что так написано в книжке по эксплуатации? Да и кто, вообще, их читает?

Поэтому в ЭБУ закладывают алгоритмы перепроверки барометрического давления, которые работают и без остановки двигателя. Обычно это происходит при большой нагрузке на двигатель и при почти максимально открытой дроссельной заслонке.

Вот давайте посмотрим на приведенные графики. До резкого и полного нажатия педали газа, барометрическое давление составляет 98 кПа

Далее мы резко нажимаем педаль газа до упора и блок управления делает перезамеры барометрического давления. Оно теперь составляет 97 кПа

К чему это всё я описывал?

А чтобы подвести к первому заблуждению об этом датчике.

Большинство при проверке датчика абсолютного давления обращает внимание только на давление в коллекторе! Оно и понятно – датчик же абсолютного давления, значит и проверять необходимо абсолютное давление. Логика, в принципе, понятна, но имея уже какой-никакой опыт, я могу утверждать на основании своей личной статистики, что в подавляющем числе случаев неисправностей датчика абсолютного давления, проблемы вылезают как раз в некорректном измерении барометрического давления. Хотя абсолютное давление в этот момент не вызывает вопросов.

У меня таких проблемных графиков много и все я их выкладывать не буду, конечно. Но для примера парочку покажу. Вот барометрическое давление 112 кПа. Встречал показания и 115 кПа. Хотя максимальное давление на планете было официально зарегистрировано, по-моему, 108 кПа.

Поэтому датчик явно и нагло врет

Вот другой пример. Автомобиль едет по обычной дороге и показания барометрического давления составляют 98 кПа.

Но спустя пару секунд, давление падает до 84 кПа

Давление упало на 14 кПа! Такое может быть в реальности?

Конечно же нет. Датчик явно дает неверные показания. Хотя к абсолютному давлению в коллекторе претензий нет.

В общем, вывод первый – датчик абсолютного давления служит не только для измерения абсолютного давления, но и для измерения барометрического давления. Причём довольно часто проблемы проявляются именно в замерах барометрического давления, что приводит к проблемам в работе и пуске двигателя.

Второй вывод – датчик абсолютного давления измеряет давление в коллекторе! Если на последнем графике абсолютное давление составляет 28 кПа, то это и есть давление 28 кПа, но никак ни разрежение и, уж тем более, не вакуум, как часто можно встретить это описание в интернете. Это давление!

Ну теперь плавно перейдём к третьему и самому главному выводу. Для чего нужен датчик абсолютного давления и от чего зависят его показания.

Показания датчика абсолютного давления

Показания датчика абсолютного давления применяются для расчета расхода воздуха и для определения нагрузки на двигатель.

Но если расчет расхода воздуха осуществляется косвенно по данным датчика абсолютного давления, то нагрузка на двигатель является прямой зависимостью давления в коллекторе.

Чем ниже давление в коллекторе, тем меньше нагрузка на двигатель. И наоборот – чем выше давление в коллекторе, тем больше нагрузка на двигатель. Именно так это понимает блок управления двигателем.

Поэтому давление в коллекторе является наиважнейшим сигналом для ЭБУ. Даже положение ДЗ не такой важный сигнал для ЭБУ, как давление в коллекторе.

И вот тут начинаются заблуждения и непонятки для многих.

От чего зависит давление во впускном коллекторе

Большинство убеждены, что давление в коллекторе зависит от открытия дроссельной заслонки. Пока заслонка прикрыта – давление маленькое, а когда заслонку открыли – то давление выросло. Как писали мне на Ютуб канале – это простая физика и никак иначе.

Я согласен, что с физикой не поспоришь, поэтому сама физика и поможет нам разобраться в этом вопросе.

Начнем с того, что посмотреть показания датчика абсолютного давления можно при помощи диагностического сканера или при помощи вольтметра.

Мы знаем, что атмосферное давление обычно составляет 101 кПа. А на холостом ходу прогретого двигателя значения во впускном коллекторе составляют 30-33 кПа или, примерно, 0.9 -1 В.

Это получается из-за того, что двигатель внутреннего сгорания работает на воздухе с небольшим добавлением массы топлива. И этот воздух он сам в себя всасывает. Как пылесос.

Потребность в воздухе у него большая, но так как дроссельная заслонка практически прикрыта и воздуха поступает очень мало, то двигатель высасывает всё что можно из впускного коллектора. Естественно, давление там падает из-за недостатка молекул воздуха.

И тут многие убеждены, что если приоткрыть дроссельную заслонку, то давление поднимется.

Но на самом деле всё будет совсем не так. Поэтому приходится постоянно отвечать на один и тот же вопрос – “Почему я открыл заслонку, а давление не поднялось, а упало ещё больше? Менять датчик абсолютного давления?”

Именно этот постоянный вопрос и побудил меня написать этот пост и ответить раз и навсегда – давление во впускном коллекторе зависит не от дроссельной заслонки, а от нагрузки на двигатель!

Попробую объяснить.

Автомобиль стоит на месте и двигатель работает в режиме холостого хода. Если мы приоткроем дроссельную заслонку, то давление действительно сделает скачок до 50-100 кПа (в зависимости как её открыть).

Но скачок этот будет кратковременным. Так как двигатель сам по себе довольно медленный и ему необходимо некоторое время, чтобы начать наращивать обороты, то он просто не успевает сразу всосать в себя резкий приток воздуха через открытую ДЗ. Но так как его ничто не держит (автомобиль стоит на месте на нейтральной передаче), то спустя секунду он с легкостью развивает обороты.

Но так как через приоткрытую ДЗ прохождение воздуха всё равно ограничено, то двигатель быстро всасывает в себя всё, что можно. Но так как он уже поднял обороты, то и его “всасывающая” способность увеличилась. Он стал мощнее и с большей силой всасывает в себя воздух. Естественно, давление во впуском коллекторе падает даже ниже того, которое было на холостом ходу.

Вот примеры графиков. Обороты больше 2000, а давление в коллекторе упало с 33 до 23 кПа!

Так и должно быть! Датчик абсолютного давления работает исправно.

Ещё раз повторю – открытие дроссельной заслонки не обязательно должно приводить к повышению давления в коллекторе. Потому что не заслонка влияет на повышение давления, а нагрузка на двигатель!

Вот как это выглядит. Допустим мы едем по дороге на 5-й передаче. Затем резко открываем дроссельную заслонку. В коллектор устремляется воздух без каких-либо препятствий, но двигатель уже не в состоянии быстро развить обороты и всосать в себя весь воздух, так как ему кроме самого себя необходимо крутить ещё и колеса! Поэтому ему тяжело и обороты он развивает очень медленно (а может и, вообще, не развивать, если ехать ещё и в гору). Естественно,  воздуха в коллекторе много и давление поднимается практически до атмосферного

Вот в этот момент ЭБУ видит, по большому давлению в коллекторе, что двигатель не в состоянии “переработать” весь воздух, который ему дали и понимает это, как большую нагрузку на двигатель.

Надеюсь, что теперь понятно, тем, кто этого не понимал и переживал за работоспособность своего датчика абсолютного давления.

Что не понятно – спрашивайте. Хотите дополнить – дополняйте. Комментарии на странице ниже.

Всем Мира и ровных дорог

Таинственный «мар» — журнал За рулем

ДВИГАТЕЛЬ «МЕРСЕДЕС-БЕНЦ»

Хвалить «мерседесы» излишне: их высокие ходовые качества и надежность давно оценили. Подтверждение тому — постоянный спрос на автомобили этой марки, в том числе подержанные. Покупая такие, естественно рассчитывать, что они еще долго прослужат, не подрывая семейный бюджет. Но так бывает не всегда.

НЕЯСНЫЙ СИМПТОМ

Вот одна, можно сказать, типичная история. Наш знакомый, купив «Мерседес» С-класса 1995 года выпуска

(«202-й» кузов), вынужден был тут же «прописаться» в автосервисе. Основная причина — неустойчивая работа двигателя на холостом ходу и провалы при интенсивном разгоне, но далеко не всегда. Никакой системы! К тому же двигатель порой не удавалось пустить в самый неподходящий момент. Поначалу новый хозяин пытался самостоятельно «вылечить» мотор, полагая, что всерьез «мерседесы» не ломаются, и заменил свечи зажигания. Не помогло — пришлось обращаться в автосервис.

Результат? Плачевный. Внимательно обследовали каждый компонент системы, для успокоения проконтролировали фазы ГРМ и компрессию, не забыли подключить компьютер — система в порядке. Как назло, в сервисе двигатель работал четко, без сбоев. А найти неисправность, если она не проявляет себя во время диагностики, совсем не просто.

И вот машина прибыла к нам. Двигатель — «111-й», рабочим объемом 1,8 л с системой распределенного впрыска PMS (фото 1). Кстати, этим двигателем комплектовали модель до середины 1996 года, потом ее сменила новая — HFM. Принципиальное их различие — в способе определения расхода воздуха двигателем. У PMS за это отвечает датчик абсолютного давления, а у HFM — пленочный датчик массового расхода. В остальном системы различаются мало.

ПОДКЛЮЧАЕМ СКАНЕР…

Специалисты называют датчик абсолютного давления МАР-сенсором. Расположен он в блоке управления, который крепится к арке левого переднего колеса, под бачком омывателя (фото 2). Датчик состоит из мембраны, вакуумной камеры, микросхемы с пьезоэлементом и нагрузочного сопротивления. Его внутренняя полость через трубку соединена с задроссельным пространством впускного коллектора. Разъем МАР-сенсора трехконтактный. На один подается напряжение 5 В, второй — выход сигнала, третий — «масса». Когда двигатель не работает, давление воздуха во впускном коллекторе равно атмосферному. На минимальных оборотах холостого хода оно понижается до 300–400 мБар.

Для проверки МАР-сенсора нужен сканер. В нашем распоряжении дилерский, под названием «Стар диагносис». Аппарат громоздкий, в его составе два блока — программный и мультиплексор (фото 3, 4). Диагностический разъем находится в моторном отсеке (фото 4).

Подключаем сканер. Соединение занимает несколько минут — серьезный автомобиль не терпит суеты. Начинаем с проверки показаний МАР-сенсора. На неработающем двигателе давление во впускном коллекторе 975 мБар — норма. Пускаем двигатель — 350 мБар, порядок: с ростом оборотов этот параметр уменьшается. Для точного расчета расхода воздуха блоком управления недостаточно показаний одного датчика абсолютного давления. Поскольку в зависимости от температуры плотность воздуха меняется, в паре с МАР-сенсором работает датчик температуры (фото 5). При пуске холодного двигателя его показания должны совпадать с температурой окружающего воздуха. Разброс показаний обычно — не больше двух градусов.

КОРРЕКЦИЯ

Разобравшись с расходом воздуха, обратимся к так называемым коэффициентам адаптации. Хотя сборка двигателей ныне максимально автоматизирована, собрать два абсолютно одинаковых невозможно. Поясним. Берем несколько моторов одной модели. Для устойчивой работы на холостом ходу каждому потребуется разное количество топлива, а значит, и время открытого состояния форсунок у них будет отличаться. Отклонение от расчетного состояния отражается в поправочных коэффициентах, названных адаптационными. Например, у загрязненных форсунок ниже производительность, из-за чего топливо-воздушная смесь беднее — это тотчас зафиксирует датчик кислорода в выпускной трубе. По его сигналу блок управления увеличит время открытия форсунок. И наоборот, если в цилиндр поступает больше топлива, чем необходимо, время открытого состояния форсунок уменьшится.

В нашем случае эти изменения отслеживают два коэффициента. Первый отвечает за коррекцию подачи топлива на холостом ходу и рассчитывается в миллисекундах, второй — за работу двигателя на частичных нагрузках и выражается в процентах. У нас на холостом ходу коэффициент 0,1 мс, а на частичных нагрузках — 1,04 — хорошие показатели. Согласно документации, смещение допускается до 25%, но это крайний случай. Когда коэффициент увеличивается до 1,17, есть повод задуматься. Владельцу этого «Мерседеса» беспокоиться вроде не стоит. В чем же тогда дело? Может, в способе «организации» холостого хода?

На большинстве двигателей за поддержание минимальных оборотов холостого хода отвечает регулятор (РХХ). Его также называют регулятором добавочного воздуха (РДВ). Он участвует в пуске холодного двигателя, движении накатом, а также при изменении нагрузки с включением мощных потребителей энергии, например кондиционера или гидроусилителя. На этой же машине РДВ нет. Его роль возложена на дроссельный патрубок (фото 6). По команде с блока управления заслонка поворачивается на требуемый угол. На холостом ходу максимальный составляет 5°. У нас 1,9° — опять норма. Впрочем, и так известно, что электронный дроссель — надежный узел. С поломками мы сталкивались редко. Владельцу это «удовольствие» стоит 350 долларов — тем более, что новый необходимо «адаптировать», — чтобы дроссельная заслонка заняла положение, соответствующее сложившимся условиям работы двигателя. Это делаем с помощью сканера.

ОПЫТ НЕ КУПИШЬ!

В нашем случае при работе двигателя на холостом ходу неисправность себя не проявила. Чтобы ее найти, механику пришлось совершить пробную поездку. В первые минуты все, казалось бы, в норме, но вскоре двигатель потерял мощность, в работе появились провалы. Вот она — неисправность! Остается снова подключить сканер и проконтролировать параметры. Ба! Теперь вместо атмосферного давления 975 мБар МАР-сенсор на неработающем двигателе показывает 730 мБар, обманывая блок управления. А тот, опираясь на искаженные данные о расходе воздуха, неправильно вычисляет время открытия форсунок.

К датчику абсолютного давления подобраться сложно: он внутри неразборного блока управления. У официального дилера заменяют весь блок, который стоит 1000 долларов. Видимо, поэтому у нас научились восстанавливать этот узел — всего за 200 долларов. Благо, выход из строя МАР-сенсора — довольно типичная неисправность для системы PMS. Случается такое в основном зимой, когда влага из впускного коллектора по вакуумной трубке попадает в датчик и, замерзнув, разрушает его. Но неисправность может проявить себя не сразу или не очень явно, как в нашем случае. Мастера со стажем знают об этом дефекте и с особой тщательностью проверяют МАР-сенсор.

Занимаясь диагностикой разных марок автомобилей, специалист постепенно накапливает опыт. И тогда на ремонт уходит значительно меньше времени, чем при поиске по картам неисправностей.

РОМАН СЕМЕНОВ, ЗАО «37-Й АВТОКОМБИНАТ»

Honda Civic Датчики на впускном коллекторе и дроссельной заслонке Honda Civic

Случайная статья узнай что то новое



Honda Civic EJ9: Электроника моторного отсека D14A4, D14A3 и других ДВС

После того как вы открыли в первый раз капот, вы увидели много проводов, датчиков, разъемов. Вы, возможно, испугались предстоящей работе. Но пугаться не стоит, попробую объяснить, какие датчики есть на впускном коллекторе, дроссельной заслонке, а так же их особенности в двигателях D14 и D14.

MAP

Manifold Absolute Pressure — Датчик абсолютного давления впускного коллектора, он же ДМРВ. Чаще всего встречал именно как на изображении снизу, датчик одинаковый по креплениям, и параметрам на многих моделях Honda. Находится на дроссельной заслонке — сверху.
Диапазон измеряемого давления в впускном коллекторе от 10 до 170 кПа. Диапазон выдаваемых значений показан в таблице (есть версии с размерностью от 400 до 4770 мВ).
При расположения ключа сверху, очередность проводов: 1 — Питание, 2 — Земля, 3 — Сигнал. Всего: 3 провода.

Метод измерения MAP

  • Рассоединить электрический разъем MAP датчика.
  • Включить зажигание, двигатель не запускать!
  • Проверить напряжение на разъем, 5.0 В.
  • Вывернуть винты датчика MAP.
  • Отсоединить датчик от дроссельной заслонки.
  • Подключить разъем, включить зажигание, двигатель не запускать!
  • Вольтметр подключить к сигнальному проводу (красно-зеленый) и массе кузова.
  • Сверить с таблицей параметров значения сопротивлений.

Датчик абсолютного давления MAP Honda Civic

Глубина разрежения, мм рт. ст.Величина сигнального напряжения, В
03.0
127 2.5
254 2.0
381 1.5
508 1.0
6350.5

Таблица значений напряжения датчика MAP

TPS

Throttle Position Sensor — датчик положения дроссельной заслонки, отслеживает степень открытия. Полное открытие, полное закрытие, четверть, восьмая часть и т.д. имеет 3 контакта, крепится клепками к дроссельной заслонке на уровне оси поворота. Черный датчик на боку дроссельной заслонки.
Итог: 3 провода, питание от 5 вольт.

IAT и TA

Intake Air Temperature — датчик температуры воздуха во впускном тракте. Двухконтактный датчик по измерению температуры воздуха во впускном тракте, благодаря его измерениям, контрольный блок ECU вносит характеристики в режим холостого хода. Крепится либо в коробе фильтра, либо непосредственно в трубке впуска. Значения такие же, как и на TA.

Temperature Air — Датчик температуры воздуха. Тоже датчик воздуха во впускном коллекторе, но устаревший вариант измерения температуры воздуха, так же полярность не имеет значения, в разных моделях использовался один и тот же. Крепился в задней нижней части впускного коллектора на 2х винтах. Винты обычно закислены, шляпки срезаются дремелем. Можно менять с разных моделей Honda. Итог: 2 провода, полярность не важна.

Датчик температуры Honda Civic впускного коллектора

Температура, °ССопротивление, кОм
-20 12
0 5
20 2
40 1
80 0.5
1010.4
121 0.2

Таблица сопротивлений датчика температуры

EGR

IACV

RACV

Инжекторная форсунка

Форсунка, в двигателях серии мотора D установлено 4 штуки, на каждый цилиндр по 1 форсунке. Необходимы для распыления топлива под действием высокого давления. Благодаря току в обмотке, сердечник открывает или закрывает канал. Сопротивление каждого вида форсунок — разное, поэтому будьте внимательны. Были случаи установки неправильных форсунок, и сгорала часть блока ECU. Более подробнее в статье. Все четыре форсунки одним контактом соединены на сплиттере. По другому контакту, проходит сигнал на форсунку.
Итог: 4 форсунки = 8 проводов, из них 4 сигнальные и 1 общий — питание.

Топливная форсунка Honda Civic в разрезе


Случайная статья узнай что то новое

Данная статья актуальна для автомобилей Honda выпуска 1992-2000 годов, таких как Civic EJ9, Civic EK3, CIVIC EK2, CIVIC EK4 и CIVIC FERIO (частично). Информация будет актуальна для владельцев Honda Integra в кузовах DB6, DC1, с моторами ZC, D15B, D16A.

Датчик температуры всасываемого воздуха: проверка, устройство

Современные автомобили содержат большое число средств автоматизации и контроля работы оборудования. Одним из таких устройство является датчик температуры всасываемого воздуха (ДТВВ), контролирующий состояние поступающих воздушных масс из окружающей среды. Что представляет собой это устройство, и с какими неисправностями может столкнуться автовладелец, мы рассмотрим в данной статье.

Назначение и расположение

Термодатчик предназначен для контроля температуры воздуха, поступающего воздуха из окружающей среды. В зависимости от температуры воздуха, изменяется состояние воздушно-топливной смеси и температура ее вспышки в цилиндре. В случае чрезмерного остывания или нагрева воздуха на улице режим движения автомобиля может существенно отличаться. Датчик реагирует на изменение температуры и посылает сигнал на блок управления для изменения действующих параметров работы.

Поэтому прямая функция датчика температуры всасываемого воздуха заключается в измерении текущих параметров. Косвенно он предназначен для повышения или уменьшения объема подаваемой топливной смеси в соответствии с внешними факторами.

Такой датчик температуры устанавливается в системе подачи воздуха автомобиля. Как правило, он располагается в непосредственной близи от воздушного фильтра или на его корпусе, в некоторых моделях может располагаться во впускном коллекторе.

Рис. 1. Место установки датчика воздуха

Способ расположения предусматривает направление чувствительного элемента в струю воздушного потока. Поэтому место установки должно предусматривать четкую фиксацию, так как при смещении сенсора в посадочном отверстии вы получите нечеткие показания.

Устройство и принцип работы

Для лучшего понимания возможных неисправностей и сбоев в работе необходимо разобраться в его устройстве и принципе действия.

Рис. 2. Устройство датчика температуры всасываемого воздуха

Конструктивно датчик температуры для контроля всасываемого воздуха состоит из:

  1. Контактного разъема – для подключения датчика температуры к внутренней электрической цепи;
  2. Корпуса – предназначен для защиты от механических повреждений и воздействия внешних факторов на электронные компоненты;
  3. Чувствительный элемент – для фиксации температуры поступающего воздуха применяется термистор, который, может располагаться как в открытом колпаке, так и в запаянной колбе.
  4. Посадочного штуцера – элемента оснащенного резьбой для вкручивания в точке контроля температуры воздуха.

Заметьте, для плотного прилегания датчика к монтируемой поверхности между ними располагается уплотнительное кольцо. В противном случае произойдет утечка воздуха из системы.

Принцип работы датчика температуры всасываемого воздуха основывается на показаниях термистора с отрицательным температурным коэффициентом. В соответствии с п.23 ГОСТ 21414-75 это такой нелинейный элемент, омическое сопротивление которого снижается по мере нагревания самого термистора. Положение датчика выбирается таким образом, чтобы сенсор взаимодействовал с движущимся воздухом напрямую, в остальном работа происходит следующим образом:

Рис. 3. Принцип работы датчика температуры всасываемого воздуха

Как видите на рисунке выше, при движении потока всасываемого в систему воздуха, он напрямую воздействует на датчик, обтекая терморезистор. В начале запуска двигателя воздух в патрубке будет холодным и при взаимодействии с термистором его сопротивление будет в пределах нескольких кОм. В случае повышения температуры воздуха в системе сопротивление датчика начнет снижаться, уменьшиться величина падения напряжения и увеличится сила тока. Как только параметр  достигнет установленного предела, в цепи управления начнет протекать ток  достаточный для команды блоку управления.

В случае прохождения холодного воздуха возникает утяжеляющий эффект, которые требует впрыска большего объема горючего в цилиндр для поддержания нормального режима работы. При повышении температуры, датчик отреагирует пропорциональным снижением сопротивления, и блок управления даст команду на сужение форсунок и уменьшение объема впрыскиваемого топлива. Таким образом осуществляется корректировка работы мотора, в зависимости от температуры подаваемого воздуха. Однако система может давать сбои, существенно отражающиеся на работе транспортного средства.

Признаки и причины неисправности

Для своевременного выявления неполадок, связанных как с самим датчиком, так и с работой системы подачи воздуха. Наиболее распространенными признаками неисправности датчика температуры являются:

  1. Плохо запускается ДВС в условиях пониженной температуры окружающей среды;
  2. Двигатель дает сбои при холостых оборотах;
  3. Заметное превышение расхода топлива;
  4. Возникают ощутимые перебои в работе мотора;
  5. Включение световой индикации на приборной панели или отображение сообщения на бортовом компьютере.

Причиной возникновения таких факторов могут быть различные неисправности, как в самом датчике, так и в сопутствующих элементах системы подачи воздуха. Среди причин у автомобилистов часто выявляются:

  • Короткое замыкание в цепи датчика;
  • Окисление контактов, что вносит ощутимую поправку на измеряемую величину;
  • Засорение чувствительного элемента датчика  — вместе с всасываемым воздухом по системе могут циркулировать частицы пыли, которые оседают в области термистора;
  • Механическое повреждение корпуса или других вспомогательных элементов, что влияет на точность измерений;
  • Обрыв в измерительной цепи датчика.

Также заметьте, что причина может быть в засорении фильтра и ухудшении проходимости системы. Но для определения конкретной неисправности необходимо провести диагностику.

Диагностика и замена

Для проверки работоспособности датчика температуры можно воспользоваться как простыми методами, доступными в домашних условиях, так и прибегнуть к помощи СТО.  Если вы решили диагностировать устройство самостоятельно, вам понадобиться обзавестись, хотя бы простейшим мультиметром. Процесс проверки состоит из следующих этапов:

  • Отключите питающий шнур от блока контактов датчика температуры всасываемого воздуха.
Рис. 4. Отключите питающий шнур от блока контактов датчика
  • С помощью мультиметра  замерьте величину сопротивления датчика в холодном состоянии.
Рис. 5. Измерьте сопротивление датчика мультиметром

Если двигатель только заглушили и вы не знаете величину температуры, можете извлечь датчик и принудительно охладить его.

  • Затем, с помощью бытового фена или, если конструкция чувствительного элемента выполнена из металла,  над газовой конфоркой подогрейте терморезистор.
Рис. 6. Нагрейте датчик бытовым феном
  • Повторно замерьте величину сопротивления электрическому току на выводах датчика.
Рис. 7. Повторно измерьте сопротивление нагретого датчика
  • Сравните полученные результаты замеров с таблицей для вашей модели датчика

К примеру, рассмотрим ряд температур для датчика от Лада Приора, приведенный в таблице ниже:

Таблица: зависимость сопротивления датчика от температуры

Температура всасываемого воздуха, °ССопротивление, кОм
–4039,2
–3023
–2013,9
–108,6
05,5
+103,6
+202,4
+301,7
+401,2
+500,84
+600,6
+700,45
+800,34
+900,26
+1000,2
+1100,16
+1200,13

Как видите, при измерении сопротивления у холодного датчика, температура которого составляет 0 °С мультиметр выдаст 5,5 кОм. Если сенсор нагреть до +70 °С, то сопротивление составит около 450 Ом. В противном случае устройство неисправно и не может правильно показывать температуру воздуха и требует замены.

Чтобы заменить вышедший со строя датчик температуры, вам необходимо выполнить несколько простых действий. Отключите шнур питания от сенсора и выкрутите его из посадочного места.

Рис. 8. Выкрутите датчик при помощи ключа

Установите в посадочное место новый датчик температуры и плотно закрутите его в корпус. Подключите разъем к блоку контактов – устройство готово к эксплуатации.

Как выбрать новый датчик?

Рядовой автомобилист может потратить уйму времени на поиски нужного сенсора всасываемого воздуха по каталогам интернет магазинов, теряясь в существующем изобилии предложений. Так как неправильно выбранное устройство может не только отказаться взаимодействовать с системами автомобиля, но и не поместиться в посадочное отверстие.

Поэтому при выборе обязательно учитывайте:

  • Маку автомобиля и конкретную модель;
  • Год ее выпуска;
  • Тип и функциональные особенности установленного в машине двигателя.

Такой подход позволит минимизировать вероятность ошибки и предоставит продавцу максимум необходимой информации.  Но, если вы новичок, и плохо разбираетесь в подобных вопросах, куда проще будет выбрать нужную модель с помощью VIN-коду.

VIN-код представляет собой  уникальный шифр, присущий исключительно вашему прибору. Если вы подберете для замены новый сенсор по VIN-коду, то вероятность ошибки сводится к нулю. Это наиболее точный метод выбора оборудования для вашего авто. Однако, если выбор изделия упирается в нескольких производителей, стоит рассмотреть наиболее известных из них. 

Среди зарубежных компаний, выпускающих сенсоры температуры всасываемого воздуха, лучшим качеством обладают японские и германские производители. Среди которых можно выделить Denso, Bosch, Borsehung, но и цена таких моделей относится к премиальному сегменту. Если вы ищите более демократичный вариант, то обратите внимание на отечественную компанию Энергомаш, тайваньскую фирму Vika или итальянский Facet.

Смысл ваших датчиков: Датчик MAP

Датчик абсолютного давления в коллекторе (MAP), который обычно встречается в двигателях с впрыском топлива, является одним из датчиков, которые модуль управления двигателем (ECM) использует для расчета впрыска топлива для оптимального соотношения воздух-топливо. непрерывный мониторинг информации о давлении во впускном коллекторе. Чаще датчик массового расхода воздуха (MAF) используется вместо датчика MAP, однако двигатели с турбонаддувом обычно используют как датчик MAP, так и датчик массового расхода воздуха. Датчик MAP также играет жизненно важную роль, помогая ECM определять, когда должно произойти зажигание при различных условиях нагрузки двигателя.

Какой бы датчик ни использовался в вашем двигателе, ECM не сможет оптимизировать впрыск топлива без точной информации о воздушных массах от работающего датчика. А плохое соотношение воздух-топливо, по крайней мере, вызовет проблемы с производительностью и преждевременный износ двигателя. Отказ датчика MAP может быть трудно диагностировать, но с помощью Delphi Technologies мы можем объяснить, что его вызывает, на что обращать внимание и как его заменить в случае отказа.

Как работает датчик MAP?

Датчик MAP обычно расположен на впускном коллекторе, рядом или на самом корпусе дроссельной заслонки.(На двигателе с принудительным впуском датчик MAP можно найти на впускном тракте перед турбонаддувом.) Внутри датчика MAP находится герметичная камера, в которой либо имеется разрежение, либо регулируемое давление, которое откалибровано для двигателя. Разделяет датчик вакуума и разрежения во впускном коллекторе гибкая силиконовая пластина (также известная как «чип»), через которую проходит ток.

Датчик MAP выполняет «двойную функцию» как датчик барометрического давления, как только ключ включен. При включенном ключе (до запуска двигателя) в двигателе отсутствует разрежение, подаваемое на датчик MAP, поэтому сигнал, поступающий в ECM, становится барометрическим показателем, помогающим определять плотность воздуха.Когда вы запускаете двигатель, давление во впускном коллекторе уменьшается, создавая разрежение, которое подается на датчик MAP. Когда вы нажимаете на педаль акселератора, давление во впускном коллекторе увеличивается, что приводит к уменьшению вакуума. Разница в давлении приведет к изгибу чипа вверх в герметичную камеру, вызывая изменение сопротивления напряжению, которое, в свою очередь, заставляет ЭБУ впрыскивать больше топлива в двигатель. Когда педаль акселератора отпускается, давление во впускном коллекторе уменьшается, в результате чего зажим возвращается в состояние холостого хода.

ЭБУ объединяет показания давления в коллекторе от датчика MAP с данными, поступающими от датчика IAT (температура воздуха на впуске), ECT (температура охлаждающей жидкости двигателя), барометрического давления и частоты вращения двигателя (RPM) для расчета плотности воздуха и точного определения воздуха в двигателе. массовый расход для оптимального соотношения воздух-топливо.

Почему датчики MAP выходят из строя?

Как и большинство электрических датчиков, датчики MAP чувствительны к загрязнению. Если датчик карты использует шланг, шланг может засориться или протечь и не сможет считывать изменения давления.В некоторых случаях сильные вибрации при движении могут ослабить его соединения и вызвать внешние повреждения. Электрические разъемы также могут расплавиться или потрескаться от перегрева из-за близости к двигателю. В любом из этих сценариев датчик MAP необходимо заменить.

На что обращать внимание при выходе из строя датчика MAP

Неисправный датчик MAP влияет на соотношение воздух-топливо в двигателе. Если соотношение неправильное, воспламенение внутри двигателя произойдет в неподходящее время цикла сгорания.Если серьезная предварительная детонация продолжается в течение длительного времени, внутренние части двигателя (такие как поршни, штоки, подшипники штоков) будут повреждены и в конечном итоге приведут к катастрофическому отказу. Обратите внимание на эти предупреждающие знаки:

  • Богатое соотношение воздух-топливо: Обратите внимание на грубый холостой ход, плохую топливную экономичность, медленное ускорение и сильный запах бензина (особенно на холостом ходу)
  • Обедненное соотношение воздух-топливо: Обратите внимание на помпаж, срыв, недостаток мощности, нерешительность при ускорении, обратный выброс через впускной канал и перегрев
  • Детонация и пропуски зажигания
  • Неудачный тест на выбросы
  • Проверить свет двигателя

Восстановленный двигатель — это гораздо больше хлопот, чем замена датчика, поэтому, если ваш двигатель испытывает какие-либо из вышеперечисленных симптомов, подумайте об устранении неисправностей вашего датчика MAP.

Общие коды неисправностей датчика MAP

Вот список кодов, связанных с датчиком MAP, которые нужно искать, если загорелся индикатор проверки двигателя:

  • P0068: MAP / MAF — корреляция положения дроссельной заслонки
  • P0069: Абсолютное давление в коллекторе — корреляция барометрического давления
  • P0105: Неисправность цепи MAP
  • P0106: MAP / Диапазон контура барометрического давления / Проблема с производительностью
  • P0107: Низкий уровень входного сигнала цепи абсолютного / барометрического давления в коллекторе
  • P0108: Высокий входной сигнал цепи давления МАР
  • P0109: Прерывистый сигнал в цепи давления MAP / баро
  • P1106: MAP / BARO Pressure Circuit Range / Performance Проблема
  • P1107: Низкое напряжение цепи датчика атмосферного давления

Примечание. Иногда различные датчики или другие неисправные детали могут вызывать установку этих кодов.Даже если ваш двигатель испытывает симптомы, перечисленные выше, и запускает один или несколько из перечисленных кодов OBD-II, рекомендуется проверить датчик MAP, чтобы убедиться, что он неисправен.

Как устранить неисправность датчика MAP

Перед любыми испытаниями проверьте внешний вид датчика MAP. Начните с проверки разъема и проводки на предмет повреждений, таких как оплавленные или потрескавшиеся провода, и убедитесь в отсутствии ослабленных соединений. Отсоедините датчик и осмотрите штыри; они должны быть прямыми и чистыми, без следов коррозии или изгиба.Затем осмотрите шланг (если есть), соединяющий датчик с впускным коллектором, на предмет повреждений и герметичность соединения с датчиком. Наконец, загляните внутрь шланга, чтобы убедиться, что он не загрязнен.

Если все прошло физический осмотр, вы можете проверить датчик MAP с помощью цифрового мультиметра, настроенного на 20 В, и вакуумного насоса.

  1. При включенной аккумуляторной батарее и выключенном двигателе подключите массу мультиметра к отрицательной клемме аккумуляторной батареи и проверьте достоверность, проверив напряжение аккумуляторной батареи.Оно должно быть около 12,6 вольт.
  2. Обратитесь к руководству по обслуживанию производителя, чтобы определить сигнал, заземление и опорное напряжение 5 В, а также проверить провода.
  3. Включите зажигание, не запуская двигатель. Мультиметр должен (как правило) отображать напряжение от 4,5 до 5 вольт для опорного напряжения 5 вольт, стабильное значение 0 вольт для заземляющего провода и от 0,5 до 1,5 вольт для сигнального провода в приложениях без турбонаддува и от 2,0 до 3,0 для турбо-приложения.Обратитесь к заводской сервисной информации OEM, чтобы узнать точные характеристики вашего автомобиля.
  4. Запустите двигатель, провернув сигнальный провод обратно. Мультиметр должен отображать напряжение от 0,5 до 1,5 В на уровне моря на автомобилях без турбонаддува и от 2,0 до 2,5 В на моделях с турбонаддувом.
  5. Выключите двигатель, но оставьте зажигание включенным.
  6. Под капотом отсоединить датчик МАР только от всасывания.
  7. Подключите ручной вакуумный насос и отметьте текущее напряжение на сигнальном проводе.
  8. Увеличьте разрежение на датчике с помощью вакуумного насоса.
  9. Напряжение должно постоянно падать по мере увеличения вакуума.

Если ваше напряжение сильно различается во время теста или изменение напряжения нестабильно, датчик MAP неисправен и его необходимо заменить.

Как заменить неисправный датчик MAP

Замена неисправного датчика MAP зависит от автомобиля, поэтому, пожалуйста, обратитесь к руководству производителя по обслуживанию для получения инструкций для получения каких-либо конкретных инструкций.После того, как неисправный датчик будет удален, можно приступить к установке новой детали.

  1. Найдите датчик MAP на впускном коллекторе, либо рядом, либо на самом корпусе дроссельной заслонки, либо на впускном коллекторе.
  2. Удалите все винты или болты, удерживающие датчик на месте.
  3. Отсоединить электрический разъем. Примечание. Не пытайтесь извлекать принудительно, поскольку в разъеме может быть фиксирующий язычок, который, возможно, придется удалить перед тем, как отсоединить разъем от датчика.
  4. Если возможно, отсоедините вакуумный шланг от датчика. Примечание. При замене датчика рекомендуется заменить вакуумный шланг на новый.
  5. Сравните новые и старые датчики.
  6. Если возможно, снова подсоедините вакуумный шланг.
  7. Подсоедините электрический разъем датчика.
  8. Установите на место все винты или болты, удерживающие датчик на месте.
  9. Еще раз проверьте все соединения, чтобы убедиться, что все в порядке.

Примечание. В зависимости от автомобиля и наличия установленного кода неисправности может потребоваться диагностический прибор для сброса контрольной лампы двигателя.

Признаки неисправного или неисправного датчика абсолютного давления в коллекторе (датчик MAP)

Датчик абсолютного давления в коллекторе (MAP) используется модулем управления трансмиссией (PCM) для ввода нагрузки двигателя. PCM использует этот, а также другие входные данные для расчета правильного количества топлива для впрыска в цилиндры.

Датчик MAP измеряет абсолютное давление во впускном коллекторе двигателя. На уровне моря атмосферное давление составляет около 14,7 фунтов на квадратный дюйм.Когда двигатель выключен, абсолютное давление во впускном канале равно атмосферному давлению, поэтому MAP покажет около 14,7 фунтов на квадратный дюйм. При идеальном вакууме датчик MAP покажет 0 фунтов на квадратный дюйм. Когда двигатель работает, движение поршней вниз создает вакуум во впускном коллекторе (для целей управления двигателем, когда технический специалист говорит «вакуум», на самом деле они говорят о давлении, которое меньше атмосферного). При работающем двигателе разрежение во впускном коллекторе обычно составляет около 18–20 дюймов ртутного столба.При 20 “Hg датчик MAP покажет около 5 фунтов на квадратный дюйм. Это связано с тем, что датчик MAP измеряет «абсолютное» давление на основе идеального вакуума, а не атмосферного давления.

Неисправный датчик MAP имеет серьезные последствия для контроля топлива, выбросов выхлопных газов автомобиля и экономии топлива. Симптомы неисправного или неисправного датчика MAP включают:

1. Чрезмерный расход топлива

Датчик MAP, который измеряет высокое давление во впускном коллекторе, указывает на высокую нагрузку двигателя на PCM.Это приводит к увеличению количества впрыскиваемого в двигатель топлива. Это, в свою очередь, снижает общую экономию топлива. Это также увеличивает количество выбросов углеводородов и окиси углерода из вашего автомобиля в окружающую атмосферу. Углеводороды и окись углерода являются одними из химических компонентов смога.

2. Недостаток мощности

Датчик MAP, который измеряет низкое давление во впускном коллекторе, указывает на низкую нагрузку двигателя на PCM. PCM реагирует уменьшением количества топлива, впрыскиваемого в двигатель.Хотя вы можете заметить увеличение экономии топлива, вы также заметите, что ваш двигатель не такой мощный, как был раньше. За счет уменьшения количества топлива в двигателе температура камеры сгорания увеличивается. Это увеличивает количество выделяемых в двигателе NOx (оксидов азота). NOx также является химическим компонентом смога.

3. Неудачный тест на выбросы

Плохой датчик MAP приведет к тому, что ваш автомобиль не пройдет тест на выбросы. Выбросы из выхлопной трубы могут указывать на высокий уровень углеводородов, высокое производство NOx, низкий уровень CO2 или высокий уровень окиси углерода.

Хорошо обученный технический специалист, такой как сотрудники YourMechanic, способен диагностировать и отремонтировать вышедший из строя датчик MAP.

Датчики абсолютного давления в коллекторе MAP

Датчик абсолютного давления в коллекторе (MAP) является ключевым датчиком, поскольку он определяет нагрузку на двигатель. Датчик генерирует сигнал, пропорциональный величине разрежения во впускном коллекторе. Затем компьютер двигателя использует эту информацию для регулировки угла опережения зажигания и обогащения топлива.

Когда двигатель сильно работает, разрежение на впуске падает, когда дроссельная заслонка широко открывается.Двигатель всасывает больше воздуха, что требует большего количества топлива, чтобы поддерживать соотношение воздух / топливо в равновесии. Фактически, когда компьютер считывает сигнал большой нагрузки от датчика MAP, он обычно делает топливную смесь немного богаче, чем обычно, поэтому двигатель может производить больше мощности. В то же время компьютер будет немного замедлять (замедлять) опережение зажигания, чтобы предотвратить детонацию (искровой детонация), которая может повредить двигатель и снизить производительность.

Когда условия меняются и автомобиль движется с малой нагрузкой, двигается по инерции или замедляется, от двигателя требуется меньше мощности.Дроссельная заслонка открыта не очень широко или может быть закрыта, что приводит к увеличению разрежения на впуске. Датчик MAP определяет это, и компьютер реагирует обеднением топливной смеси, чтобы снизить расход топлива, и увеличивает угол опережения зажигания, чтобы выжать из двигателя немного больше экономии топлива.



Типичные выходы датчика MAP для более старого приложения GM.

КАК РАБОТАЕТ ДАТЧИК КАРТЫ

Датчики MAP называются датчиками абсолютного давления в коллекторе, а не датчиками вакуума на впуске, поскольку они измеряют давление (или его отсутствие) внутри впускного коллектора.Когда двигатель не работает, давление во впускном коллекторе такое же, как и внешнее барометрическое давление. Когда двигатель запускается, внутри коллектора создается разрежение за счет откачивающего действия поршней и ограничения, создаваемого дроссельными заслонками. При полностью открытой дроссельной заслонке и работающем двигателе разрежение на впуске падает почти до нуля, а давление во впускном коллекторе снова почти равно внешнему барометрическому давлению.

Барометрическое давление обычно колеблется от 28 до 31 дюйма ртутного столба (Hg) в зависимости от вашего местоположения и климатических условий.На более высоких возвышенностях атмосферное давление ниже, чем в районах рядом с океаном или где-то вроде Долины Смерти в Калифорнии, которая на самом деле находится ниже уровня моря. В фунтах на квадратный дюйм давление в атмосфере составляет в среднем 14,7 фунт / кв. Дюйм на уровне моря.

Вакуум во впускном коллекторе двигателя, для сравнения, может варьироваться от нуля до 22 дюймов ртутного столба или более в зависимости от условий эксплуатации. Вакуум на холостом ходу всегда высокий и обычно составляет от 16 до 20 дюймов рт. Ст. В большинстве автомобилей. Самый высокий уровень разрежения возникает при замедлении с закрытой дроссельной заслонкой.Поршни пытаются всасывать воздух, но закрытый дроссель перекрывает подачу воздуха, создавая высокий вакуум во впускном коллекторе (обычно на четыре-пять дюймов ртутного столба выше, чем на холостом ходу). Когда дроссельная заслонка внезапно открывается, как при резком ускорении, двигатель всасывает большой глоток воздуха, и вакуум падает до нуля. Затем вакуум медленно поднимается обратно, когда дроссельная заслонка закрывается.

При первом включении ключа зажигания модуль управления трансмиссией (PCM) проверяет показания датчика MAP перед запуском двигателя, чтобы определить атмосферное (барометрическое) давление.Таким образом, датчик MAP может выполнять двойную функцию как датчик BARO. Затем PCM использует эту информацию для регулировки топливно-воздушной смеси, чтобы компенсировать изменения давления воздуха из-за высоты и / или погоды. Некоторые автомобили используют для этой цели отдельный барометрический датчик, в то время как другие используют комбинированный датчик, который измеряет оба, называемый датчиком BMAP.

На двигателях с турбонаддувом и наддувом ситуация немного сложнее, потому что при наддуве во впускном коллекторе действительно может быть положительное давление.Но датчику MAP все равно, потому что он просто отслеживает абсолютное давление во впускном коллекторе.

В двигателях с электронной системой впрыска топлива «скорость-плотность» воздушный поток оценивается, а не измеряется непосредственно датчиком воздушного потока. Компьютер проверяет сигнал датчика MAP вместе с частотой вращения двигателя, положением дроссельной заслонки, температурой охлаждающей жидкости и температурой окружающего воздуха, чтобы оценить, сколько воздуха поступает в двигатель. Компьютер может также принимать во внимание сигнал кислородного датчика об обогащении / обедненной смеси и положение клапана рециркуляции отработавших газов, прежде чем вносить необходимые корректировки в топливно-воздушную смесь, чтобы все было сбалансировано.Этот подход к управлению топливом не так точен, как системы, в которых для измерения фактического расхода воздуха используются заслонки или датчик массового расхода воздуха, но он не такой сложный и дорогостоящий.

Еще одно преимущество систем EFI с плотностью и скоростью состоит в том, что они менее чувствительны к утечкам вакуума. Любой воздух, который просачивается в двигатель на задней стороне датчика воздушного потока, является «неизмеренным» воздухом и действительно нарушает точный баланс, необходимый для поддержания точной топливно-воздушной смеси. В системе «скорость-плотность» датчик MAP обнаруживает небольшое падение вакуума, вызванное утечкой воздуха, и компьютер компенсирует это, добавляя больше топлива.

На многих двигателях GM, оснащенных датчиком массового расхода воздуха (MAF), датчик MAP также используется в качестве резервного на случай потери сигнала расхода воздуха и для контроля работы клапана рециркуляции отработавших газов. Отсутствие изменения сигнала датчика MAP при подаче команды на открытие клапана рециркуляции ОГ указывает на проблему с системой рециркуляции ОГ и устанавливает код неисправности.

ДАТЧИКИ АНАЛОГОВОГО КАРТЫ

Датчик MAP состоит из двух камер, разделенных гибкой диафрагмой. Одна камера представляет собой «эталонный воздух» (который может быть герметизирован или вентилироваться для наружного воздуха), а другая — вакуумная камера, которая соединена с впускным коллектором на двигателе резиновым шлангом или прямым соединением.Датчик MAP может быть установлен на брандмауэре, внутреннем крыле или впускном коллекторе.

Чувствительная к давлению электронная схема внутри датчика MAP отслеживает движение диафрагмы и генерирует сигнал напряжения, который изменяется пропорционально давлению. Это создает аналоговый сигнал напряжения, который обычно находится в диапазоне от 1 до 5 вольт.

Аналоговые датчики MAP имеют трехпроводной разъем: заземление, опорный сигнал 5 В от компьютера и обратный сигнал. Выходное напряжение обычно увеличивается при открытии дроссельной заслонки и падении вакуума.Датчик MAP, показывающий 1 или 2 вольта на холостом ходу, может показывать от 4,5 до 5 вольт при полностью открытой дроссельной заслонке. Выходная мощность обычно изменяется от 0,7 до 1,0 вольт на каждые 5 дюймов ртутного столба изменения вакуума.

ЦИФРОВЫЕ ДАТЧИКИ КАРТЫ FORD

Датчики Ford BP / MAP (атмосферное давление / абсолютное давление в коллекторе) также измеряют нагрузку, но выдают цифровой частотный сигнал, а не аналоговый сигнал напряжения. Этот тип датчика имеет дополнительную схему, которая создает сигнал напряжения «прямоугольной формы» (включение-выключение) 5 вольт.Частота сигнала увеличивается по мере падения вакуума.

На холостом ходу или при замедлении вакуум высокий, и выходной сигнал датчика BP / MAP может упасть до 100 Гц (герц, или циклов в секунду) или меньше. При полностью открытой дроссельной заслонке, когда во впускном коллекторе почти нет вакуума, выходной сигнал датчика может подскочить до 150 Гц или выше. При нулевом вакууме (атмосферное давление) датчик Ford BP / MAP должен показывать 159 Гц.

СИМПТОМЫ ПРИВОДНОСТИ ДАТЧИКА КАРТЫ

Все, что мешает датчику МАР контролировать перепад давления, может нарушить топливную смесь и угол опережения зажигания.Это включает в себя проблему с самим датчиком MAP, заземление или обрыв в цепи проводки датчика и / или утечки вакуума во впускном коллекторе (системы датчиков воздушного потока) или шланге, который соединяет датчик с двигателем.

Типичные симптомы управляемости, которые могут быть связаны с MAP, включают:

* Пульсация.

* Неровный холостой ход.

* Обогащенное топливо, которое может вызвать засорение свечей зажигания.

* Детонация из-за слишком большого опережения зажигания и бедной топливной смеси.

* Потеря мощности и / или экономии топлива из-за замедленного времени и чрезмерно богатой топливной смеси.

Утечка вакуума снизит разрежение на впуске и заставит датчик MAP указывать на более высокую, чем обычно, нагрузку на двигатель. Компьютер попытается компенсировать это за счет обогащения топливной смеси и замедления времени, что вредит экономии топлива, производительности и выбросам.

ПРОВЕРКИ ДАТЧИКА КАРТЫ

Во-первых, убедитесь, что вакуум в коллекторе двигателя находится в пределах технических характеристик на холостом ходу. Если вакуум необычно низкий из-за утечки вакуума, задержки опережения зажигания, ограничения выпуска (засорение преобразователя) или утечки EGR (клапан EGR не закрывается на холостом ходу).

Низкое значение вакуума на впуске или чрезмерное противодавление в выхлопной системе может обмануть датчик MAP, чтобы он указывал на наличие нагрузки на двигатель. Это может привести к богатому топливу.

С другой стороны, ограничение на впуске воздуха (например, засоренный воздушный фильтр) может привести к более высоким показаниям вакуума, чем обычно. Это может привести к индикации низкого уровня нагрузки от датчика MAP и, возможно, к обедненному топливу.

Хороший датчик MAP должен показывать атмосферное давление при включении ключа перед запуском двигателя.Это значение можно прочитать на диагностическом приборе, и его следует сравнить с фактическим показанием барометрического давления, чтобы убедиться, что они совпадают. Ваш местный погодный канал или веб-сайт должен сообщить вам текущее значение атмосферного давления.

Проверьте вакуумный шланг датчика на предмет перегибов или утечек. Затем с помощью ручного вакуумного насоса проверьте сам датчик на предмет утечек. Датчик должен удерживать вакуум. Любая утечка требует замены.

Полный отказ датчика MAP, потеря сигнала датчика из-за проблемы с проводкой или сигнал датчика, выходящий за пределы нормального диапазона напряжения или частоты, обычно устанавливают диагностический код неисправности (DTC) и включают Check Engine свет.


ПРОВЕРКИ ИНСТРУМЕНТОВ СКАНИРОВАНИЯ ДАТЧИКА КАРТЫ

На автомобилях 1995 года и более новых с самодиагностикой OBD II код DTC от P0105 до P0109 указывает на неисправность в цепи датчика MAP.

P0105 …. Контур абсолютного давления в коллекторе / барометрического давления
P0106 ​​…. Абсолютное давление в коллекторе / барометрическое давление вне диапазона
P0107 …. Низкий вход абсолютного давления в коллекторе / барометрического давления
P0108 …. Коллектор Входной сигнал высокого абсолютного / барометрического давления
P0109…. Прерывистый контур абсолютного давления / барометрического давления в коллекторе

На старых автомобилях до OBD II коды MAP:

* General Motors: коды 34, 33, 31

* Ford: коды 22, 72

* Chrysler: коды 13, 14

На автомобилях, которые обеспечить поток данных через диагностический разъем и позволить сканирующему прибору отображать значения датчиков, выходное напряжение датчика MAP можно считывать и сравнивать со спецификациями. По сути, вы хотите видеть быстрое и резкое изменение сигнала датчика MAP, когда дроссельная заслонка на двигателе на холостом ходу открывается и закрывается.Никакие изменения не будут указывать на неисправность датчика или проводки.

Если датчик показывает низкое значение или его нет вообще, проверьте правильность опорного напряжения на датчике. Оно должно быть очень близко к 5 вольт. Также проверьте заземление. Если опорное напряжение низкое, проверьте жгут проводов и разъем на предмет ослабления, повреждений или коррозии.

Инструменты сканирования, отображающие данные OBD II, также будут отображать «рассчитанное значение нагрузки», которое можно использовать для определения, работает датчик MAP или нет.Значение нагрузки рассчитывается с использованием входных данных от датчика MAP, датчика TPS, датчика воздушного потока и частоты вращения двигателя. Значение должно быть низким на холостом ходу и высоким, когда двигатель находится под нагрузкой. Отсутствие изменения значения или превышение нормального значения на холостом ходу может указывать на проблему с датчиком MAP, датчиком TPS или датчиком воздушного потока.


Если вы отображаете выходной сигнал датчика MAP на цифровом запоминающем осциллографе (DSO), то форма волны может выглядеть как
в виде положения дроссельной заслонки, нагрузки двигателя и изменения скорости.

ИСПЫТАНИЯ ДАТЧИКА КАРТЫ

Датчик MAP также можно испытать в лабораторных условиях, подав вакуум на вакуумный порт с помощью ручного вакуумного насоса. При 5 вольт на опорном проводе выходное напряжение аналогового датчика MAP должно упасть, а на цифровом датчике MAP Ford частота должна увеличиться.

Напряжение аналогового датчика MAP также можно считывать напрямую с помощью вольтметра или осциллографа. Частотный сигнал цифрового датчика MAP можно считать с помощью DVOM, если он имеет частотную функцию, или с помощью осциллографа.Выводы будут подключены к сигнальному проводу и заземлению.

Предупреждение : НЕ используйте обычный вольтметр для проверки датчика Ford BP / MAP, поскольку это может привести к повреждению электроники внутри датчика. Датчик этого типа можно диагностировать только с помощью DVOM, который отображает частоту, или с помощью осциллографа или диагностического прибора.

Еще один способ проверить цепь цифрового датчика MAP Ford — ввести «смоделированный» сигнал датчика MAP с помощью тестера, который может генерировать сигнал с регулируемой частотой.Изменение частоты смоделированного сигнала должно заставить компьютер изменить топливную смесь (обратите внимание на изменение сигнала ширины импульса форсунки).

Никакие изменения не указывают на возможную проблему с компьютером.

ЗАМЕНА ДАТЧИКА КАРТЫ

Если необходимо заменить датчик MAP, убедитесь, что он подходит для данной области применения. Различия в калибровке между модельными годами и двигателями повлияют на работу системы управления двигателем.

Если автомобилю более пяти лет, вакуумный шланг, соединяющий датчик MAP с двигателем, также следует заменить.





Щелкните здесь, чтобы узнать больше о руководстве по датчикам



Другие статьи о датчиках двигателя:

Анализ датчиков двигателя

Датчики температуры воздуха

Датчики охлаждающей жидкости

Датчики положения коленчатого вала Датчики CKP

MAF

Датчики массы

Датчики VAF воздушного потока

Датчики положения дроссельной заслонки

Датчики кислорода

Датчики воздушного топлива (WRAF) с широким соотношением сторон

Общие сведения о системах управления двигателем

Модули управления трансмиссией (PCM)

Встроенная диагностика

II (OBD II)

Обнуление диагностики OBD II

Диагностика сети контроллеров (CAN)

Веб-сайты с информацией о сервисном обслуживании автомобилей OEM и сборы за доступ

Щелкните здесь, чтобы увидеть больше технических статей Carley Automotive

Требуется информация в руководстве по заводскому обслуживанию для вашего автомобиля?

Mitchell 1 DIY eautorepair manuals

Что нужно знать о датчике MAP

Датчик абсолютного давления в коллекторе (MAP) используется модулем управления трансмиссией (PCM) для контроля давления во впускном коллекторе.Поскольку давление обратно пропорционально вакууму, PCM также может определять вакуум двигателя и нагрузку по сигналу датчика MAP. В некоторых случаях датчик MAP также используется для определения барометрического давления. В зависимости от приложения PCM будет использовать эту информацию, чтобы помочь вычислить одно или несколько из следующего: контроль топлива, угол зажигания и работа системы рециркуляции отработавших газов.

Как работает датчик MAP

Обычно к датчику MAP подключаются три провода: опорное напряжение, обратный сигнал и земля.PCM посылает датчику MAP 5-вольтовый опорный сигнал. Затем датчик MAP изменяет напряжение в соответствии с давлением в коллекторе и отправляет обратный сигнал на PCM.

Для измерения давления в коллекторе датчик MAP подсоединяется к двигателю с помощью вакуумного шланга или трубки. Внутри датчика MAP находятся две камеры, одна из которых содержит окружающий воздух, а другая связана с вакуумом двигателя. Камеры разделены диафрагмой. Цепь внутри датчика измеряет движение диафрагмы для определения давления в коллекторе.

Когда двигатель выключен, давление в коллекторе такое же, как атмосферное. Когда двигатель работает, во впускном коллекторе создается разрежение за счет движения поршней вверх и вниз и ограничения дроссельной заслонки. На холостом ходу вакуум в коллекторе высокий (хотя он самый высокий при замедлении с закрытой дроссельной заслонкой). По мере увеличения нагрузки на двигатель увеличивается и степень открытия дроссельной заслонки, и разрежение в коллекторе падает.

Существует два основных типа датчиков MAP: аналоговые и цифровые.При использовании аналогового датчика напряжение обратного сигнала увеличивается при открытии дроссельной заслонки и падении вакуума. Другими словами, напряжение и давление пропорциональны. Напряжение датчика обычно изменяется от 1 В на холостом ходу до 5 В при полностью открытой дроссельной заслонке. Аналоговый датчик выдает традиционную форму волны постоянного тока.

С другой стороны, цифровые датчики вырабатывают сигнал включения / выключения, который можно рассматривать как прямоугольную форму волны. Частота сигнала уменьшается при открытии дроссельной заслонки и падении вакуума.На холостом ходу выходной сигнал датчика MAP может составлять всего 100 Гц, тогда как при полностью открытой дроссельной заслонке он может достигать 150 Гц.

Признаки неисправности датчика MAP

Симптомы неисправного датчика MAP могут включать в себя горящую лампу проверки двигателя, плохую работу двигателя и снижение расхода топлива. Эти симптомы также могут быть результатом чего-либо, что препятствует правильной работе датчика MAP. Это может включать проблемы с проводкой, утечки вакуума во впускном коллекторе, протекающий вакуумный датчик MAP или даже неисправный PCM.

Тестирование датчика MAP

Датчик MAP обычно находится в моторном отсеке, прикрепленном к впускному коллектору или брандмауэру. Аналоговый датчик MAP можно проверить с помощью цифрового мультиметра (DMM). Для этого включите зажигание и установите счетчик на значение постоянного напряжения. Подсоедините положительный провод измерителя к клемме обратного сигнала датчика MAP с помощью испытательного провода заднего датчика. Подключите другой провод измерителя к земле. При включенном зажигании на выходе датчика MAP должно быть около 5 вольт.Запустите двигатель и проверьте показания; на холостом ходу датчик MAP должен показывать от 1 до 2 вольт. Это указывает на то, что датчик MAP реагирует на изменения вакуума.

Датчики

Digital MAP лучше всего тестировать с помощью осциллографа. Однако их также можно проверить с помощью тахометра, который является разновидностью частотомера. Как было сказано ранее, правильно работающий цифровой датчик MAP должен выдавать сигнал, частота которого возрастает при повышении давления в коллекторе и понижении вакуума. Большинство датчиков MAP также можно проверить, просмотрев выходное напряжение на ручном диагностическом приборе.

Замена датчика MAP

В большинстве случаев заменить датчик MAP несложно. Просто отсоедините вакуумный шланг от датчика MAP, затем снимите крепежные винты. Установите новый датчик в порядке, обратном снятию.

Теперь вы знаете немного больше о датчиках MAP и их фундаментальной роли в электронной системе управления двигателем. Надеюсь, вы будете лучше подготовлены, если у вашего автомобиля возникнут проблемы с MAP.

Датчик давления во впускном коллекторе со встроенным датчиком температуры воздуха на впуске

Общие

Датчик давления во впускном коллекторе измеряет разрежение во впускном коллекторе после дроссельной заслонки.Измеренные значения датчика давления во впускном коллекторе и датчика температуры всасываемого воздуха необходимы для расчета массы всасываемого воздуха.

В зависимости от системы впрыска датчик давления во впускном коллекторе и датчик температуры воздуха на впуске могут быть установлены вместе как одно целое. Датчик давления во впускном коллекторе может быть установлен непосредственно во впускном коллекторе или прикреплен поблизости.

Устройство и функции

Чувствительной частью датчика давления является мост Уитстона при трафаретной печати на мембране.Он состоит из четырех резисторов, которые соединены вместе, образуя замкнутое кольцо, с источником напряжения на одной диагонали и устройством измерения напряжения на другой. С одной стороны мембраны — атмосферный вакуум, с другой стороны — вакуум от всасывающего патрубка. Сигнал, генерируемый деформацией мембраны, обрабатывается электронной схемой оценки и отправляется в блок управления двигателем. В состоянии покоя мембрана изгибается под давлением наружного воздуха. При работающем двигателе отрицательное давление действует на мембрану датчика, влияя на сопротивление.Поскольку опорное напряжение абсолютно постоянное (5 В), выходное напряжение изменяется пропорционально изменению сопротивления. Датчик температуры воздуха представляет собой термистор NTC (отрицательный температурный коэффициент). Сопротивление датчика становится меньше при повышении температуры. Входная цепь электроники распределяет опорное напряжение 5 В между резистором датчика и фиксированным резистором, так что получается напряжение, пропорциональное сопротивлению и, следовательно, температуре.

Схема подключения

Хотя изначально кажется, что нет отличий от обычного датчика давления во впускном коллекторе, более пристальный взгляд на разъем показывает дополнительный контакт в корпусе.В датчике давления во впускном коллекторе 6PP 009 400-481, изображенном на рисунке, этот контакт обозначен как (t). NTC, установленный в датчике, который используется для контроля температуры, соединен с блоком управления двигателем через жгут проводов.

Схема подключения

  • (+) Электропитание
  • (-) Земля
  • (t) Выход / датчик температуры
  • (MAP) Выход / сигнал датчика давления

Для получения дополнительной информации об устранении неисправностей или причинах неисправности см. Техническую информацию «Датчик давления во впускном коллекторе» (MAP).

7 Признаки неисправности датчика MAP

В современных двигателях модуль управления двигателем (ECM) измеряет или рассчитывает расход воздуха с помощью датчика массового расхода воздуха (MAF) или абсолютного давления в коллекторе (MAP). В двигателях с турбонаддувом можно использовать оба, но в двигателях без наддува обычно используется один или другой. Если датчик MAP выходит из строя или сломан, ECM — и, следовательно, двигатель — не может работать должным образом. Поддерживая и ремонтируя датчик MAP, вы обеспечите бесперебойную работу двигателя.

Как работает датчик MAP

Этот датчик MAP устанавливается непосредственно на впускной коллектор, но другие могут быть подключены с помощью шланга.

Бенджи Джерю / Flickr / CC BY 2.0

Контроллер ЭСУД использует данные датчика MAP для выполнения важных расчетов, таких как нагрузка двигателя, импульс топливной форсунки и опережение зажигания. В состоянии покоя датчик MAP считывает атмосферное давление на уровне моря (29,93 дюйма рт. Ст.). Поскольку атмосферное давление меняется в зависимости от погоды и высоты, контроллер ЭСУД вычисляет эту «нулевую» точку непосредственно перед запуском двигателя, точно настраивая схему искры и впрыска топлива с этой точки.

На холостом ходу давление на впуске обычно находится в пределах 16-22 дюймов рт. Ст. Поскольку это давление ниже атмосферного, воздух врывается в воздухозаборник. Когда водитель использует двигатель для торможения, давление может упасть до 10 дюймов ртутного столба. Однако при ускорении открытый корпус дроссельной заслонки позволяет воздуху врываться быстрее, увеличивая давление на впуске. При полностью открытой дроссельной заслонке давление на впуске и атмосферное давление почти равны.

Признаки неисправности датчика MAP

Проблемы с датчиком MAP могут вызвать диагностический код неисправности и проверить свет двигателя.

baloon111 / Getty Images

Датчики MAP выходят из строя из-за засорения, загрязнения или повреждения. Иногда тепло двигателя «переваривает» электронику датчика MAP или дает трещины в вакуумных линиях. Если датчик MAP выходит из строя, ECM не может точно рассчитать нагрузку на двигатель, что означает, что соотношение воздух-топливо станет либо слишком богатым (больше топлива), либо слишком бедным (меньше топлива).

Итак, как вы узнаете, что ваш датчик MAP выходит из строя? Вот основные проблемы, на которые следует обратить внимание:

  1. Плохая экономия топлива.Если ECM показывает низкий уровень вакуума или его отсутствие, он предполагает, что двигатель работает с высокой нагрузкой, поэтому он сливает больше топлива и увеличивает время зажигания. Это приводит к чрезмерному расходу топлива, плохой экономии топлива и, возможно, к детонации.
  2. Отсутствие мощности. Если контроллер ЭСУД показывает высокий вакуум, он предполагает, что нагрузка на двигатель мала, поэтому он сокращает впрыск топлива и замедляет синхронизацию зажигания. С одной стороны, снизится расход топлива, что, кажется, хорошо. Однако, если расходуется слишком мало топлива, двигателю может не хватать мощности для разгона и обгона.
  3. Неудачная проверка выбросов. Поскольку впрыск топлива не соответствует нагрузке на двигатель, сломанный датчик MAP может привести к увеличению вредных выбросов. Избыточное количество топлива приводит к более высоким выбросам углеводородов (HC) и окиси углерода (CO), в то время как недостаточное количество топлива может привести к более высоким выбросам оксидов азота (NO x ).
  4. Грубый холостой ход. Недостаточный впрыск топлива приводит к нехватке топлива в двигателе, что приводит к резкому холостому ходу и, возможно, даже к случайным пропускам зажигания в цилиндрах.
  5. Жесткий запуск.Точно так же чрезмерно богатая или обедненная смесь затрудняет запуск двигателя. Если вы можете запустить двигатель только тогда, когда ваша нога находится на акселераторе, у вас, вероятно, проблема с датчиком MAP.
  6. Неуверенность или заедание. Когда вы начинаете с остановки или пытаетесь выполнить маневр обгона, нажатие на газ может не доставить вам никакого удовольствия, особенно если ECM выдает обедненную смесь на основе ошибочных показаний датчика MAP.
  7. Проверьте свет двигателя. В зависимости от возраста вашего автомобиля диагностические коды неисправностей датчика MAP могут варьироваться от простой цепи или неисправности датчика до неисправностей корреляции или диапазона.Неисправный датчик MAP ничего не считывает, в то время как неисправный датчик MAP может выдавать данные ECM, которые не имеют смысла, например, низкий вакуум в двигателе, когда датчик положения дроссельной заслонки (TPS) и датчик положения коленчатого вала (CKP) показывают двигатель в праздный.

Проблемы с датчиком MAP

Сканирующий прибор Bluetooth OBD2 — недорогой, но мощный инструмент для диагностики всех видов проблем двигателя, таких как неисправный датчик карты.

Ален ван ден Хенде / PublicDomainPictures / Public Domain

Функциональный датчик MAP — важная часть обслуживания вашего автомобиля.Если вы подозреваете, что у вас проблема с датчиком MAP, сначала проверьте следующие элементы.

  1. Электрооборудование. Начните с проверки разъема и проводки. Разъем должен быть надежно подсоединен, а контакты — чистыми и прямыми. Коррозия или погнутые штифты могут вызвать проблемы с сигналом датчика MAP. Точно так же проводка между ECM и датчиком MAP должна быть исправной. Истирание может вызвать короткое замыкание, а обрыв может вызвать обрыв цепи.
  2. Шланг. Некоторые датчики MAP подсоединяются к впускному коллектору шлангом.Убедитесь, что шланг датчика MAP подсоединен и не поврежден. Также убедитесь, что в порте нет нагара или другого мусора, который может заблокировать шланг и привести к плохим показаниям датчика MAP.
  3. Датчик. Если датчик подключен правильно, как электрически, так и к впускному коллектору, используйте диагностический прибор или измеритель напряжения и вакуумный пистолет для проверки выходного сигнала датчика MAP. Вам нужно будет найти диаграмму, чтобы измерить напряжение в условиях отсутствия вакуума и полного вакуума. Если выходной сигнал датчика MAP не соответствует диаграмме, можно с уверенностью сказать, что датчик следует заменить.

ДАТЧИК АБСОЛЮТНОГО ДАВЛЕНИЯ В КОЛЛЕКТОРЕ (ДАТЧИК КАРТЫ)

Общее описание
Датчик MAP (MAP) измеряет разбавление во впускном коллекторе, а его чувствительный элемент преобразует сигнал в электрический, который может быть возвращен на бортовой контроллер. Датчик MAP используется в основном как дешевая альтернатива датчикам нагрузки двигателя. Его относительно низкая стоимость является причиной его широкого распространения, хотя его измерения не так точны, как различные типы датчиков количества воздуха.MAP может располагаться в моторном отсеке как отдельный компонент или интегрироваться в бортовой контроллер. MAP используется в системах обоих типов — MPi и SPi, но чаще встречается в SPi.

Внешний вид
На рис. 1 показан типичный датчик MAP.


Фиг.1

Типы датчиков
По принципу действия бывают:

  • С аналоговым выходом — широко используется. Его напряжение пропорционально нагрузке двигателя.
  • С цифровым выходом — используется в таких системах, как Ford EEC IV.Цифровая карта посылает сигналы прямоугольной формы с определенной частотой. При повышении нагрузки частота также увеличивается, а время между импульсами, измеряемое в миллисекундах, уменьшается. Бортовой контроллер очень быстро реагирует на цифровой сигнал, потому что нет необходимости преобразовывать его в аналоговый.

Принцип работы датчика MAP
MAP подключается к впускному коллектору через вакуумный шланг. Вакуум во впускном коллекторе приводит в действие диафрагму датчика MAP.Конвертер преобразует измеренное давление в электрический сигнал, который подается на бортовой контроллер. ЭБУ оценивает данные от значений датчика MAP как: «Абсолютное давление» = «Атмосферное давление» — «давление в коллекторе».
Используя метод скорости / плотности, бортовой контроллер вычисляет состав топливной смеси в зависимости от сигнала MAP и частота вращения двигателя. Этот метод основан на теории, согласно которой при каждом обороте двигатель всасывает фиксированный объем воздуха. Точность этого метода несравнима с точностью датчика количества воздуха, который после точного измерения расхода воздуха рассчитывает соотношение топливной смеси. в зависимости от массы или объема воздуха, всасываемого из двигателя.
При высоком уровне вакуума во впускном коллекторе (например, на холостом ходу) выходной сигнал MAP относительно низкий, и бортовой контроллер подает меньше топлива.
В системах с впускным коллектором «мокрого» типа (например, SPi) изменения давления в коллекторе могут привести к тому, что топливо, попадающее в вакуумный шланг, достигнет MAP. Чтобы этого не произошло, используется специальный уловитель и соответственно прослеживаемый вакуумный шланг. Если топливо достигнет датчика MAP, его диафрагма может быть повреждена.
В системах MPi коллектор «сухого» типа, и топливо не может поступать, так как оно распыляется через впускные клапаны.Таким образом, отсутствует риск проникновения топлива датчика MAP и загрязнения диафрагмы, поэтому специальный уловитель не используется.
Когда датчик MAP используется в качестве отдельного компонента, может быть достигнуто недорогое обслуживание. Когда датчик MAP встроен во встроенный контроллер, возможная замена MAP потребует замены всего контроллера.

Порядок проверки работоспособности датчика MAP

ПРИМЕЧАНИЕ: Если датчик MAP расположен внутри бортового контроллера, проверка выходного сигнала невозможна.
1.) ДАТЧИК КАРТЫ ВО ВПУСКНОМ КОЛЛЕКТОРЕ — АНАЛОГОВЫЙ ТИП
— Первичный общий осмотр

  • Подключите вакуумметр между впускным коллектором и датчиком MAP с помощью тройника.
  • Оставил двигатель на холостом ходу. Если вакуум в двигателе небольшой (менее 570 мбар¸700 мбар), проверьте наличие следующих неисправностей:
    • разгерметизация;
    • вакуумная трубка повреждена или треснута;
    • заблокирован вакуумный шланг;
    • механическая проблема двигателя, например, неправильно отрегулированный ремень ГРМ, приводящий в движение распределительный вал;
    • Утечки в мембране датчика MAP (если датчик встроен во встроенный контроллер).
  • Отсоедините вакуумметр и подсоедините вместо него вакуумный насос.
  • С помощью насоса создайте вакуум около 750 мбар (75 кПа) в датчике MAP.
  • Выключите вакуумный насос. Мембрана сенсора должна поддерживать то же значение вакуума не менее 30 секунд.

— Проверка точности внешнего датчика MAP
Условия, при которых проводятся проверки — двигатель не запускается и разрежение обеспечивается вакуумным насосом.

  • Подключите отрицательную клемму вольтметра постоянного тока к массе шасси.
  • Определите клеммы напряжения питания, сигнала и заземления.
  • Присоедините положительную клемму вольтметра к сигнальному проводу датчика MAP.
  • Отсоедините вакуумный шланг от датчика.
  • Подсоедините датчик MAP к вакуумному насосу.
  • Включить зажигание (но не запускать двигатель).
  • Сравните напряжение с нормативным значением для этого типа автомобиля и двигателя.
  • Создайте вакуум со значением, указанным в таблице 1, и следите за плавностью изменения напряжения.
  • Результаты для турбомоторов (Таблица 3) отличаются от результатов для «атмосферных» двигателей (Таблица 2).

Прикладной вакуум, мБар

Напряжение, В

Значение МАР, Бар

0

4,3 — 4,9

1,0 ± 0,1

200

3.2

0,8

400

2,2

0,6

500

1,2 — 2,0

0,5

600

1,0

0.4

Таблица 1
Состояние

Напряжение, В

Значение МАР, Бар

Вакуум, бар

Полностью открытая дроссельная заслонка

4,35

1,0 ± 0,1

0

Включить зажигание

4.35

1,0 ± 0,1

0

Скорость холостого хода

1,5

0,28 — 0,55

0,72 — 0,45

Остановите двигатель

1,0

0.20 — 0,25

0,80 — 0,75

Таблица 2

Состояние

Напряжение, В

Значение МАР, Бар

Вакуум, бар

Полностью открытая дроссельная заслонка

2,2

1.0 ± 0,1

0

Включить зажигание

2,2

1,0 ± 0,1

0

Скорость холостого хода

0,2 — 0,6

0,28 — 0,55

0.72 — 0,45

Прикладываемое напряжение

Напряжение, В

0,9 Бар (проверка давления турбокомпрессора

4,75

Таблица 3

— Быстрая проверка аналогового датчика MAP с помощью осциллографа

  • Восстановите все подключения к датчику MAP, как при нормальной работе двигателя.
  • Подсоедините заземляющий щуп осциллографа к заземлению шасси.
  • Подключите активный конец щупа осциллографа к сигнальной клемме датчика MAP.
  • Запустить двигатель и оставить его работать на холостом ходу.
  • Резко нажмите на дроссельную заслонку и сразу же отпустите ее. Вы должны смотреть сигнал, как на рис. 2.


Фиг.2

Если напряжение резко возрастает до максимального значения при нажатии на акселератор и быстро падает до минимума при отпускании педали акселератора — датчик MAP исправен.

— Возможные сбои в аналоговом датчике:
Хаотичный выходной сигнал

  • Хаотичный выходной сигнал — это когда сигнал напряжения изменяется случайным образом, падает до нуля и исчезает. Обычно это происходит при наличии неэффективного датчика MAP. В этом случае датчик необходимо заменить.

Отсутствует напряжение сигнала

  • Проверьте, подано ли опорное напряжение (+ 5,0 В).
  • Проверить заземление на наличие проблем.
  • Если опорное напряжение и заземление в порядке, проверьте сигнальный провод между датчиком MAP и бортовым контроллером.
  • Если опорное напряжение и / или заземление неправильные, проверьте целостность проводов между датчиком и ЭБУ.
  • Если все провода датчика в порядке, проверьте все соединения на опорное напряжение и массу бортового контроллера. Если они верны, то под подозрение падает контроллер.

Напряжение питания или сигнал датчика MAP совпадает с напряжением автомобильного аккумулятора.

  • Проверить на короткое замыкание положительную клемму автомобильного аккумулятора.

— Прочие проверки:

  • Проверьте, нет ли чрезмерного количества топлива в вакуумном шланге или уловителе.
  • Проверить вакуумный шланг на утечки и / или другие повреждения.
  • Проверить, нет ли механических повреждений деталей двигателя, системы зажигания или топливной системы, вызывающих низкий вакуум.

2.) ДАТЧИК КАРТЫ ВО ВПУСКНОМ КОЛЛЕКТОРЕ — ЦИФРОВОЙ ТИП
ПРИМЕЧАНИЕ. Реальный сигнал с выхода этого типа датчика МАР можно увидеть только с помощью осциллографа.

  • Определите напряжение питания, сигнальные и заземляющие клеммы.
  • Подключите заземляющий щуп осциллографа к массе шасси, а активный конец — к проводу выходного сигнала датчика.
  • Запустить двигатель. Вы должны наблюдать форму волны, подобную изображенной на рис. 3.


Фиг.3

  • Если у вас есть устройство для чтения неисправностей и вы можете считывать изменение оборотов двигателя, выполните процесс, описанный ниже.
  • Увеличить частоту вращения двигателя до 4500 — 4900 об / мин.
  • Подсоедините вакуумный насос к вакуумному шлангу датчика MAP. Вакуум должен поддерживаться на одном уровне для всех значений напряжения. Зависимость изменения давления и скорости приведена в таблице 4.

200 мбар

Скорость необходимо снизить до 525 ± 120 об / мин

400 мбар

Скорость необходимо снизить до 1008 ± 120 об / мин

600 мбар

Скорость необходимо снизить до 1460 ± 120 об / мин

800 мБар

Скорость необходимо снизить до 1880 ± 120 об / мин

Таблица 4
  • При отключении давления измеренное значение количества циклов должно быть равно исходному положению — 4500 — 4900 об / мин.
  • Заменить датчик MAP, если он работает иначе, чем описано выше.

— Возможные сбои в цифровом датчике:
Отсутствие напряжения сигнала

  • Проверьте наличие опорного напряжения + 5,0 В.
  • Проверить заземление на наличие проблем.
  • Если опорное напряжение и заземление в порядке, проверьте сигнальный провод между датчиком MAP и бортовым контроллером.
  • Если опорное напряжение и / или заземление неправильные, проверьте целостность проводов между датчиком и ЭБУ.
  • Если все провода датчика в порядке, проверьте все соединения на опорное напряжение и массу бортового контроллера. Если они верны, то под подозрение падает контроллер.

Опорное напряжение или сигнал датчика MAP равны напряжению автомобильного аккумулятора.

  • Проверить на короткое замыкание провод, подключенный к положительной клемме автомобильного аккумулятора, или провод, включающий и отключающий питание.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *