Кислородный датчик лямбда зонд: Кислородный датчик (лямбда-зонд): устройство и принцип работы

Содержание

Лямбда зонд (кислородный датчик): устройство и принцип работы, неполадки и способ замены

string(10) "error stat"

Ввиду постоянного ухудшения экологических условий и для снижения (к сожалению, абсолютной ликвидации загрязняющих источников на данный момент достичь пока не удалось) загрязнения окружающей среды правительствами многих стран мира были введены крайне жесткие требования к выбросам выхлопных газов (т.е. были введены нормы содержания вредных веществ в автомобильных выхлопах). Поэтому для этих целей в автомобилестроении начали применять специальной устройство – катализатор, который отвечает за снижение концентрации вредных продуктов сгорания в выхлопных газах.

Катализатор является важным узлом в выхлопной системе. Но для того, чтобы он работал с максимальной эффективностью, требуется соблюдение строго определенных условий (постоянный контроль состава подаваемой топливной смеси и % содержания воздуха на выходе). Без их соблюдения катализатор довольно быстро выйдет из строя, и перестанет выполнять свои функции.

Именно для поддержания оптимальной работы катализатора инженерами было разработано решение в виде специального кислородного датчика, который также носит название «Лямбда зонд» (от буквы греческого алфавита «L» — «лямбда», которая в автомобилестроении обозначает коэффициент избытка воздуха в воздушно-топливной смеси).

Принцип работы лямбда зонда

С одной стороны, схема работы данного устройства довольно несложная. Заключается она в измерении концентраций кислорода при выходе из выпускного коллектора и затем после прохождения выхлопных газов через катализатор. Тем самым осуществляется контроль работы катализатора. Но на самом деле принцип действия кислородных датчиков немного сложнее, и сейчас попробуем понять, как работает лямбда зонд.

Замеры концентрации кислорода осуществляются двумя специальными электродами, которые вступают в реакцию с воздушной смесью. Полученные результаты затем преобразовываются в электрические импульсы, которые передаются на электронный блок управления двигателем (ЭБУ). Но, если говорить более понятным языком, то при появлении изменения в соотношении концентрации атмосферного воздуха и воздуха, оставшегося после сгорания топлива, напряжение между электродами меняется (уменьшается при повышенном содержании воздуха и увеличивается при пониженном).

После того, как лямбда зонд измерит напряжение между электродами, он пересылает эти данные на ЭБУ, который сравнивает полученные показания с нормативными показателями, которые записаны в его памяти. При необходимости (если напряжение выходит за нормы) ЭБУ производит корректировку состава подаваемой воздушно-топливной смеси.

Кислородные датчики начинают измерять концентрацию воздуха только в том случае, когда достигается оптимальная температура двигателя. Поэтому для снятия необходимых показателей и поддержания нормы выброса загрязнителей применяется специальный подогреваемый кислородный датчик (под корпусом которого находится подогревающая система, напрямую подсоединяемая к электрической системе автомобиля). Провода лямбда зонда плотно удерживаются благодаря уплотнительным манжетам и керамическому изолятору.

Расположение кислородного датчика

Установка первого лямбда зонда производится в выпускном коллекторе. При этом подключение зондов происходит непосредственно перед тем местом, где находится катализатор (для обеспечения его бесперебойной и длительной работы). В двигателях некоторых марок автомобилей на производстве осуществляется установка второго лямбда зонда. Наличие второго лямбда зонда дает возможность значительно повысить эффективность измерения концентрации воздуха, получая более точные показатели. Благодаря этому катализатор будет работать намного дольше и лучше, а количество выбрасываемых в атмосферу вредных веществ заметно снизится.

По своей конструкции кислородные датчики подразделяются на такие типы:

  • Широкополосный лямбда зонд (ШЛЗ). Применяется как входной датчик.
  • Двухточечный лямбда зонд (ДЛЗ). Устанавливается как перед, так и за катализатором. Измеряет содержание воздуха в выхлопе автомобиля и атмосфере.

Неисправность лямбда зонда

Как и в отношении любой детали, неисправность лямбда зонда – это лишь дело времени. И, хоть некоторым может показаться, что кислородный датчик играет не такую уж важную роль в функционировании автомобиля – это далеко не так. Сломанный зонд, при дальнейшей эксплуатации транспортного средства, способен привести к довольно серьезным поломкам, вплоть до перехода двигателя в режим аварийной работы. Почему?

Признаки неисправности лямбда зонда

  • При езде со сломанным кислородным датчиком ЭБУ начинает регулировать состав топливно-воздушной смеси согласно тем параметрам (к слову, довольно усредненным), которые записаны в памяти данного устройства. При этом состав топливной смеси весьма далек от нормативных показателей.
  • Повышается расход топлива (этот симптом является одним из ключевых сигналов о поломке кислородного датчика). Двигатель на холостом ходу начинает неустойчиво работать.
  • Повышение содержания вредных выбросов.
  • Определенные модели автомобилей при поломке кислородного датчика реагируют довольно неадекватно. ЭБУ начинает нагнетать в цилиндры все больше горючего, в результате чего запас топлива израсходуется крайне быстро. Выхлопные газы приобретают ярко выраженный черный цвет, а нагрузка на двигатель значительно повышается.

Для дальнейшей езды можно отключить лямбда зонд, но рано или поздно все равно придется обращаться в автосервис. Одним из самых простых и эффективных решений проблемы является установка обманок лямбда зонда. Они позволяют погасить чек на приборной панели и позволить блоку управления двигателем перейти на штатный режим работы.

Ремонт лямбда зонда

Перед тем, как произвести необходимые ремонтные работы, необходимо выкрутить кислородный датчик. Для этого в большинстве случаев необходимо наличие одного инструмента – разводного ключа. С его помощью можно легко откручивать зонд. Но перед тем, как открутить это устройство, тщательно осмотрите его корпус на наличие ржавчины. Отложения чаще всего находятся в месте прикрепления датчика к посадочному месту. Поэтому снятие лямбда зонда, корпус которого частично покрыт ржавчиной, лучше доверить опытным мастерам в автосервисе.

Как почистить лямбда зонд?

Для снятия нагара с кислородного датчика можно использовать ортофосфорную кислоту комнатной температуры. Замачивание зонда в данном веществе на протяжении 10 минут способствует удалению посторонних отложений, а также осевшего свинца со стержня устройства. Но нельзя держать зонд в кислоте слишком долго, так как это приведет к повреждению платиновых электродов.

Для большого количества автолюбителей замена лямбда зонда – это лучшее решение проблемы его неисправностей, так как в этом случае отпадает необходимость траты времени на чистку лямбда зонда и проведение сопутствующих операций. Поэтому для поддержания оптимальной работы катализатора рекомендуется менять кислородный датчик каждые 2-3 года (сохраняя чек для возможной замены по гарантии). Но, так как он может сломаться раньше указанного срока, то для предотвращения этого рекомендуется регулярная проверка лямбда зонда.

Как проверить лямбда зонд тестером?

Для проверки работоспособности кислородного датчика используются специальные считывающие устройства – тестеры (более точное название – «мультиметры»), которые сочетают в себе функции нескольких измерительных приборов.

Перед тем, как проверить лямбда зонд мультиметром, необходимо завести автомобиль, дать двигателю прогреться и после заглушить его. Затем, после осмотра зонда на предмет загрязнений (которые необходимо удалить, либо при их отсутствии) необходимо подключить мультиметр к лямбда зонду (который предварительно отсоединяется от колодки). После нужно завести автомобиль и довести количество оборотов до 2500. Если показания тестера не превышают при этом 0,9 Вт, то датчик исправен. В противном случае (если показатель меньше 0,8 Вт) иного выхода, кроме как поменять лямбда зонд, нет. При этом необходимо учитывать их распиновку.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Проверка лямбда-зонда — как проверить кислородный датчик на работоспособность

03.11.2020

Внутри каждого современного автомобиля находятся десятки датчиков и зондов, призванных определять исправность каждого агрегата и системы (и уведомлять водителя о появлении поломки). Лямбда зонд – датчик контроля уровня кислорода в выхлопных газах. Расскажем, как проверить лямбду на работоспособность своими руками, чтобы своевременно отследить возможные проблемы.

Разновидности

Кислородные датчики подразделяются на три основных категории:

  • с подогревом;
  • без подогрева;
  • широкополосные.

Исходя из этого варьируется и количество проводов лямбда-зонда – 1, 2, 3, 4 или 5. Зонд с одним черным проводом – самый простой, который также называют сигнальным. С двумя (черным и серым/белым) – второй ориентирован на массу. С тремя (черный + 2 белых) – отслеживают работу нагревательного элемента. С четырьмя (черный, 2 белых, серый) – белые отвечают на нагревательный элемент, серый за массу, а черный за сигнал. Наконец, с пятью – синий и желтый это плюс и минус нагревательного элемента, серый – сигнал ячейки измерения, а белый контролирует ток накачки в камеру кислорода.

В зависимости от вида кислородного датчика, к тестированию тоже подходят по-разному. Но основные этапы во всех случаях похожи.

Признаки неисправности

Если лямбда-зонд неисправен, могут появиться некоторые из этих проблем:

  • Хлопки в двигателе и резкие скачки оборотов при работающем моторе.
  • Повышенный расход топлива.
  • Повышенная токсичность выхлопных газов (состав можно определить специальными тестерами, но и без них заметен нестандартных запах и цвет).
  • Ухудшение динамических характеристик.
  • Перегрев катализатора вплоть до выхода из строя.

Причины поломки могут быть самыми разными: механические повреждения в результате ДТП, проблемы в работе двигателя, засор топливной системы, короткие замыкания в электрике, некачественные присадки в топливе, изношенная поршневая группа и пр.

Способы проверки лямбды

Рассмотрим проверенные методики проверки датчика кислорода на работоспособность:

  • Визуальный осмотр как внешней части, так и внутренней, спрятанной в катализаторе. Если заметны пятна сажи, то это говорит о чрезмерно концентрированном топливе. Серые отложения – повышенном содержании свинца в бензине. Не должно быть замкнутых или оборванных контактов, оплавленных зон.
  • Применение мультиметра. Его требуется переключить в режим замера сопротивления. Затем вывести из колодки датчика кабели, отвечающие на третий и четвертый разъем, измерить их сопротивление. Показатель должен быть более 5 Ом, а минимально возможное значение – 2 Ом.
  • Прогревание. Восприимчивость зонда можно испытать путем прогрева двигателя до 70-80 °С и довести до 3000 об/мин. Сохранить показатели на протяжении двух-трех минут. Измерить мультиметром массу авто и выход зонда. Нормальные параметры – 0,2-1 В с регулярной сменой (до 10 раз за секунду). При нажатии газа исправный лямбда-зонд выдаст 1 В, а потом резко ноль.
  • Прозванивание осциллографом. Более информативный метод диагностики благодаря тому, что позволяет зафиксировать время изменения выходного напряжения. Оптимальное напряжение лямбды (на датчике кислорода) – не более 120 мс.
  • Проверка лямбды бортовой системой. ЭБУ имеет индикатор Check Engine, и в большинстве случаев он приходит на помощь – сигнализирует о проблемах с зондом. Можно подключить специализированный актосканер, чтобы уточнить причину ошибки.

В этой статье мы постарались кратко рассказать о том, каким должно быть напряжение, сопротивление, и какие инструменты можно использовать как тестер лямбда зондов. Вопрос в том, стоит ли самому проверять кислородный датчик и ток в нём? Это возможно, но мы рекомендуем обращаться в специализированные сервисные центры, чтобы диагностика была полной и исключила дополнительные риски.

Автосервис «Мастер глушителей» осуществляет проверку, ремонт и замену лямбда-зонда, а также установку обманок кислородного датчика на всех моделях автомобилей. Работаем в Санкт-Петербурге. Позвоните или напишите нам, чтобы записаться на предварительную диагностику.

Что такое кислородный датчик в автомобиле (лямбда зонд)

Главная » Советы по ремонту » Что такое кислородный датчик в автомобиле (лямбда зонд)

просмотров 2 715

Размеры кислородного датчика не самые великие, устройство механизма также не отличается сложным исполнением, тем не менее, его функции в работе двигателя играют важную роль. В связи с этим, износ кислородного датчика, особенным образом отразится на работе всей моторной системы. Данная неполадка существует с того момента, как появились инжекторные двигатели, поэтому для владельцев подобных автомобилей это постоянная, непримиримая борьба. Ниже постараемся разобраться, что входит в основные задачи механизма, как провести диагностику поломки и заменить изношенный кислородный датчик.

Принцип действия кислородного датчика. Его основные функции

Кислородный датчик носит название, не соответствующее его реальным функциям. Он реагирует совсем не на то вещество, в честь которого был назван. Монтаж устройства осуществляется в области системы выхлопов, в непосредственной близости от катализатора. Оборудован электродом, местоположение которого определяется внутренней полостью системы выхлопа.

Газы, выделяемые в результате сгорания топлива, направляются в выхлопную систему, где кислородный датчик, захватывая частицы не израсходованного горючего вещества, заряжается электричеством, сигнализируя об этом контроллеру, по средствам передачи напряжения незначительного размера. Блок управления двигателем, в свою очередь, проанализировав полученную информацию, определяет решение, в соответствии с которым устанавливается соотношение и регулировка состава горючей смеси и выбранного режима работы двигателя, в настоящий момент.

В задачи кислородного датчика входят постоянный контроль данного соотношения, чтобы добиться идеального состава горючей жидкости. Таким образом, он, на постоянной основе, осуществляет мониторинг соотношения горючего и воздуха, в соответствующем режиме эксплуатации автомобиля.

При нарушении работоспособности кислородного датчика, прекращается поступление сигналов о происходящей ситуации, контроллер больше не снабжается сведениями касающиеся состояния выхлопов, за этим следует установление режима аварийной работы двигателя. Состав топливной смеси больше не поддается контролю, следовательно, его транспортировка осуществляется исключительно для поддержания работоспособности ДВС.

В результате, потребление горючей жидкости повышается (увеличивается расход топлива), при этом условия функционирования двигателя становятся не самыми благоприятными. Передвигаться в дальнейшем, в подобных условиях, чревато нарушением работы силовой системы. Этот режим позволяет доехать до станции техобслуживания, не больше.

Нарушение работоспособности кислородного датчика

Все детали автомобиля имеют свой срок годности или срок износостойкости. Кислородный датчик не исключение. На случай выхода его из строя, на приборной панели имеется специальный индикатор, сигнализирующий об этом CheckEngine. Он дает ясно понять, что двигатель находится в режиме аварийного функционирования.

Для конкретизации проблематики, осуществляются мероприятия по выявлению проблемы при помощи диагностики, по средствам бортового компьютера. Аппаратура должна определить наименование ошибки, получив которую, можно воспользоваться техническими документами, прилагаемыми с автомобилем, для понимания причины нарушения. Если это был кислородный датчик, проводится безотлагательная замена.

В чем причина износа?

Смесь газов, которая выделяется при обработке горючей жидкости, является достаточно сложной структурой, с богатым составом. Данный состав может содержать элементы, влияющие, на электроды датчика, негативным образом. Природа появления подобных примесей может быть различной, но основная причина — это покупка бензина, изначально не качественного, на станциях, не проверенных долгим использованием.

К сожалению, подобных заправок не так мало. В результате длительной эксплуатации, большое воздействие оказывают процессы окисления, что влечет к снижению работоспособности, выражаемое в передаче данных, не устраивающих нормальную работу двигателя. Осуществляется переход на аварийный режим эксплуатации.

Но это не единственная причина, по которой перестает функционировать кислородный датчик. Распространенным источником является изношенная прокладка головки блока цилиндров. В результате этого, в камере сгорания образуется антифриз, что не приемлемо. Неизвестное химическое соединение, впервые попавшее в систему выхлопа, снижает износостойкость, приводя к быстрой потере работоспособности датчика.

Установка нового кислородного датчика

В общем, установка нового кислородного датчика не представляется сложным мероприятием. В работе потребуется эстакада или смотровая яма, в зависимости от возможностей. Особое значение играет плотная фиксация транспортного средства, так как безопасность, при любой работе, является самым главным направлением. В противном случае, непредвиденное перемещение, может привести к серьезным травмам.

  • Далее проводится работа с аккумулятором. От нее отсоединяют «минусовой» провод. Такие мероприятия являются неотъемлемой частью работы с электроникой. Если этого не сделать, то возможно образование короткого замыкания. Провод контакта датчика с основным компьютером требуется отсоединить. Проведя данные мероприятия, можно говорить о готовности к замене.

 

  • Крепеж датчика ослабляется соответствующим ключом. Чтобы избежать получения ожогов, все мероприятия проводятся на двигателе в холостом режиме. В случае отсутствия продвижения в демонтаже, прикладывать излишние усилия не следует, иначе можно повредить катализатор, что только повысит расходы на ремонт системы выхлопа.

Здесь велика вероятность появления прикипевших соединений, удаление которых целесообразнее проводить с помощью тормозной жидкости или керосина. Как правило, такие процессы сопровождаются образованием ржавчины, которая под воздействием данных веществ, частично растворяется, что позволяет выкрутить кислородный датчик. Как правило, подобный подход решает проблему.

Открутив датчик, он извлекается вместе со штекером из-под капота. Далее, устанавливается новое устройство, с последующим подключением. Закручивание элемента должно быть максимально плотным, иначе возможна низкая герметизация, которая станет причиной образования отверстия, являющееся источником постороннего звука, при работе двигателя.

Видео

В общем, это все что нужно знать о кислородном датчике и его замене.

Проголосуйте, понравилась ли вам статья? Загрузка...

Что такое лямбда-зонд или кислородный датчик

Согласно строгому определению, лямбда-зонд или кислородный датчик – это устройство, оценивающее концентрацию кислорода в отработавших выхлопных газах. Казалось бы, зачем "мозгам" двигателя знать, что вылетает наружу? Очень просто – чтобы приготовить оптимальную топливно-воздушную смесь и снизить токсичность выхлопных газов.

При чем тут лямбда?

Название "лямбда-зонд" не случайно происходит от греческой литеры "лямбда" (λ) – в автомобилестроении она обозначает коэффициент избытка воздуха в топливно-воздушной смеси (соотношении топлива и воздуха). Когда ее состав оптимален – а таким принято считать 14,7 кг воздуха к 1 кг топлива – то коэффициент избытка воздуха равен единице, а смесь считается стехиометрической и обеспечивает полное сгорание топлива. В зависимости от коэффициента существует три вида топливно-воздушной смеси – это упомянутая выше оптимальная стехиометрическая, "богатая" с избытком топлива (в данном случае λ < 1) и "бедная" с не оптимально большим содержанием воздуха (λ > 1).

Если датчик увидел наличие свободного кислорода, не вступившего в реакцию, то это означает, что топлива должно быть больше. В противном случае, когда воздуха наоборот мало, требуется сократить подачу горючего.

Двигатели способны работать не только на оптимальной топливно-воздушной смеси, но также на "богатой" или "бедной" – все зависит от целей и задач, к которым относится динамика, экономичность и снижение вредных выбросов. Наименьшее потребление топлива и чистота выхлопа будет при лямбде, равной единице, а на обогащенной смеси двигатель будет развивать оптимальную мощность. Отметим, что заметные отклонения от стехиометрической смеси могут привести к поломкам как выпускной системы, так и двигателя. Раз уж зашел разговор об идеальной топливно-воздушной пропорции, то следует отметить следующее. Двигатель нечасто работает на стехиометрической смеси, но при этом постоянно стремиться к ней. Удерживать "идеальный" состав длительное время невозможно, поскольку на смесеобразование влияет масса факторов. Таким образом, электронный блок управления постоянно регулирует его, удерживая в условно оптимальных рамках.

Где расположен кислородный датчик

Лямбда-зонд находится в выпускном тракте (проще говоря, он вкручен в систему) и соседствует с каталитическим нейтрализатором. У современных автомобилей кислородный датчик установлен как перед ним (называется верхний лямбда-зонд), так и на выходе катализатора (нижний лямбда-зонд). Конструктивно они идентичны, но выполняют несколько разные замеры. Так, верхний датчик отслеживает, сколько кислорода содержится в отработавших газах. Сигнал с него отправляется в электронный управляющий блок двигателя и тот считывает характеристики топливно-воздушной смеси – проще говоря, понимает, стехиометрическая ли она, обогащенная или обедненная. В зависимости от результата, происходит корректировка объемов подаваемого в цилиндры топлива для приготовления смеси с оптимальным составом. Что касается нижнего кислородного датчика, то он нужен для контроля работы каталитического нейтрализатора и более точной корректировки. Отметим, что в стародавние времена гораздо менее строгих экологических норм нижние лямбда-зонды не применялись.

Как устроен кислородный датчик

Наиболее популярны устройства на основе диоксида циркония. Выглядят они как металлический стержень, конец которого скруглен, с проводом. Непосредственно с выхлопными газами контактирует наружный электрод (для этого в защитном кожухе предусмотрены отверстия), в то время как с атмосферой взаимодействует внутренний. Между ними как раз и находится двуокись циркония или твердый электролит. Оба электрода имеют платиновое напыление. Есть и нагревательный элемент, который призван как можно скорее выводить лямбда-зонд на высокую рабочую температуру в районе 300 °С.

Неисправности кислородного датчика

Датчик работает в крайне неблагоприятных тяжелых условиях, находясь в потоке горячих отработавших газов. Водитель узнает о неисправности и дело не в загоревшейся контрольной лампе Check Engine на приборной панели. Выход лямбда-зонда из строя сопровождается увеличением расхода топлива, неустойчивой работой двигателя на холостых оборотах и снижением мощности, а также характерным "бензиновым" запахом из выхлопной трубы – резким и "токсичным". В общем, автомобиль подаст сигнал.

Причины неисправностей кислородного датчика редко провоцируются механическими повреждениями – все-таки он сравнительно неплохо защищен. Наиболее часто лямбда-зонд требует замены из-за износа в процессе эксплуатации, либо загрязнения или обрыва электрической цепи нагревательного элемента. Прикончить датчик может некачественное топливо, технические проблемы, например, сгорание масла из-за плохого состояния маслосъемных колец или антифриз в топливе. Правда, в этом случае проблемы с лямбда-зондом будут наименьшей из сложностей. Бывает, что он работает с перебоями из-за электрического питания и окисления контактов, что отражается на топливно-воздушной смеси и, соответственно, поведении автомобиля.

Можно ли заменить самостоятельно

Как видите, неисправность кислородного датчика не только делает езду на автомобиле проблематичной, но в ряде ситуаций способна повлечь за собой другие поломки. Поменять датчик можно самостоятельно, если до него получиться добраться. Перед этим следует обесточить автомобиль и снять с датчика колодку. Дальше – самое интересное: далеко не всегда удается выкрутить прикипевший лямбда-зонд с первого раза, поэтому следует проявить осторожность, чтобы не сломать. Если вывернуть удалось, то не забудьте перед установкой нового очистить резьбу в выпускной системе.

Как проверить лямбда зонд? — 2 ответа

Перво-наперво при выходе из строя и неисправности лямбды в поведении авто появляются несколько ощутимых последствий:

Затем, чтобы проверить лямбда-зонд, для начала можно выкрутить и провести визуальную проверку (так же как и визуальная проверка свечей может о многом рассказать).

Визуальная проверка лямбда-зонда

На автомобилях устанавливается несколько видов лямбд, датчики могут быть с одним, 2-мя, 3-мя, 4-мя даже пятью проводами, но стоит запомнить что в любом из вариантов один из них является сигнальным (зачастую чёрный), а остальные предназначены для подогревателя (как правило они белого цвета).

Чем и как можно проверить лямбду

Для проверки потребуется цифровой вольтметр (лучше аналоговый вольтметром, поскольку у него время «дискретизации» значительно меньше чем у цифрового) и осциллограф если есть возможность, измерения будут более точнее. Перед проверкой следует прогреть авто поскольку лямбда правильно работать при температуре более 300C°.

Сначала ищем провод обогрева:

Заводим двигатель, разъем лямбды не разъединяем. Минусовой щуп вольтметра (обычная цешка) соединяем с кузовом автомобиля. Плюсовым щупом цешки “тыкаем” на каждый контакт провода и наблюдаем за показанием вольтметра. При обнаружении плюсового провода обогревателя, вольтметр должен показывать постоянные 12 В. Далее минусовым щупом вольтметра пытаемся найти минусовой провод подогревателя. Включаемся в оставшиеся контакты разъема датчика. При обнаружении минусового контакта, опять же вольтметр покажет 12 В. Оставшиеся провод, провода сигнальные.

Проверка лямбда-зонда тестером

Берём электронный милливольтметр постоянного напряжения и подсоединяем его параллельно ЛЗ («+» «-» к ЛЗ, — к массе), причём лямбда зонд должен быть подключен к контроллеру.

Когда двигатель прогреется (5-10 мин) затем нужно смотреть на стрелку вольтметра. Она должна периодически ходить между 0,2 и 0,8 В (т.е. 200 и 800 мВ, причём, если за 10 секунд произойдёт менее 8-и циклов — ЛЗ пора менять. Также к замене если напряжение «стоит» на 0,45 В.

Когда же напряжение всё время 0,2 или 0,9 В — то что-то со впрыском — смесь слишком бедная или слишком богатая. Поскольку напряжение датчика кислорода все время должно изменятся и скакать от ≈0,2 до 0,9V.

Имеется еще один быстрый способ проверки лямбда зонда. Следует сделать так:

Аккуратно прокалывается плюсовым контактом тестера (чёрный провод лямбды), другой контакт — на массу. На работающем моторе показания должны колебаться от 0,1 до 0,9V. Постоянные показания (к примеру, всё время 0,2) или показания, выходящие за эти рамки, или колебания с меньшей амплитудой говорят о неисправности зонда.

Исключения:

  • всё время 0,1 — мало кислорода
  • всё время 0,9 — много кислорода
  • Зонд исправен, проблема в чём-то другом.  

Если есть время и желание позаморачиватся можно провести несколько тестов на богатую и бедную смесь и дополнительно проверить датчик лямбда зонд.

  1. Отключите кислородный датчик от колодки и подключите его цифровому вольтметру. Заведите автомобиль, и, нажав педаль газа, увеличьте обороты двигателя до отметки 2500 оборотов в минуту. Используя устройство для обогащения топливной смеси, устройте снижение оборотов до 200 в минуту.
  2. При условии, что ваш автомобиль оборудован топливной системой с электронным управлением, выньте вакуумную трубку из регулятора давления топлива. Посмотрите на показания вольтметра. Если стрелка прибора приблизится к отметке 0.9 В, значит, лямбда зонд находится в рабочем состоянии. О неисправности датчика свидетельствует отсутствие реакции вольтметра, и показания его в пределах меньших отметки 0.8 В.
  3. Сделайте тест на бедную смесь. Для этого возьмите вакуумную трубку и спровоцируйте подсос воздуха. Если кислородный датчик исправен, показания цифрового вольтметра будут на уровне 0.2 В и ниже.
  4. Проверьте работу лямбда зонда в динамике. Для этого подключите датчик к разъему системы подачи топлива, и установите параллельно ему вольтметр. Увеличьте обороты двигателя до 1500 оборотов в минуту. Показатели вольтметр при исправном датчике должны быть на уровне 0,5 В. Другое значение свидетельствует о выходе из строя лямбда зонда.

Проверка напряжения в цепи подогрева

Для проверки наличия напряжения в цепи нужен вольтметр. Включаем зажигание и подсоединяем его щупами к проводам нагревателя (отсоединять разъем не можно, лучше проткнуть острыми иголками). Их напряжение должны быть равно тому, что выдает аккум на не запущенном двигателе (около 12В).

Если нет плюса нужно пройти цепь АКБ-предохранитель-датчик, поскольку он всегда идет напрямую, а вот минус поступает с ЭБУ, так что если нет минуса смотрим цепь до блока.

Проверка нагревателя лямбда зонда

Кроме как померить напряжения мультиметром, можно замерить еще и сопротивления для проверки исправности нагревателя (двух белых проводов), но нужно будет тестер переключить на Омы. В документации к определенному датчику обязательно указывается номинальное сопротивление (обычно оно около 2-10 Ом), ваша задача только проверить его и сделать вывод. На видео показан данный способ:

Проверка опорного напряжения датчика кислорода

Тестер переключаем на режим вольтметра, затем включив зажигание измеряем напряжение между сигнальным и проводом массы. В большинстве случаев опорное напряжение лямбда-зонда должно быть 0,45В.

И так подведу итог чем можно проверить лямбда зонд: внешним осмотром, мультиметром, прогревом, осциллографом, бортовой системой.

Если отключить лямбда зонд и выполнять проверку без машины, можно измерить только опорное сопротивление. При подключенном элементе, можно измерить сопротивление и напряжение на прогретом двигателе.

Как проверить лямбда зонд мультиметром

Принцип проверки лямбда зонда на всех автомобилях похож. Отличия бывают только в напряжении. Детальнее разобраться поможет проверка на разных машинах.

К примеру, для проверки на Шкоде Октавия, выставляем на мультиметре сопротивление 200 Ом. Когда двигатель холодный оптимальное значение будет равно 9 Ом. Если прогреть двигатель, значение уменьшится за счет токопроводящего напыления.

После этого замеряем чувствительность датчика. Выставляем мультиметр в режим постоянного тока. Подсоединив красный щуп к лямбда зонду а черный к массе, нужно включить зажигание. Показатели будут находиться на уровне 0,45-0,47 V. После прогрева машины показатели будут прыгать от 0,1 до 0,9 V.

Проверка лямбда зонда на Тойоте Камри выполняется также. При включенном зажигании будет показывать до 0,5 V, а при постоянной работе мотора на уровне 2000 оборотов — 0,1 — 0,9 V.

Приблизительно такие же показатели будут на Форд Фокус. Только если нажать педаль газа, а потом ее резко отпустить, мультиметр покажет 1 V. На Камри и Октавии значение может быть чуть ниже — 0,8 V. Это означает, что лямбда зонд работает нормально.

Замена кислородного датчика автомобиля в Одинцово

Эффективную и безопасную эксплуатацию автомобиля обеспечивает множество специальных устройств и приспособлений. Кислородный датчик выхлопной системы сегодня устанавливается на всех моделях легковых машин для регулировки качества топливной смеси. Своевременная замена выслужившего ресурс лямбда-зонда позволяет поддерживать оптимальный расход топлива, обеспечивает его полное сгорание. Такую услугу автовладельцам Москвы и Подмосковья предоставляет сеть автотехцентров Авто Сервис h3O AUTO на выгодных условиях.

Одной из востребованных услуг Авто Сервис «h3O AUTO» в Одинцово является замена кислородного датчика и других населенных пунктах Подмосковья. Эта деталь устанавливается на всех современных моделях автомобилей, она предназначена для регулировки качества топливной смеси.

Если датчик выйдет из строя, это приведет к различным неприятным последствиям для двигателя, поэтому его необходимо своевременно заменить. Воспользуйтесь услугами профессионалов!

Основные причины неполадок

Назначение датчика – отслеживание количества кислорода в отработанных газах автомобиля. На этот показатель ориентируется электронный блок, от изменения содержания кислород зависит подача топлива. Этой деталью оснащаются все современные автомобили. Как правило, ресурс кислородного датчика составляет 60-80 тыс. км пробега, после чего его приходится менять.

Чаще всего он выходит из строя по следующим причинам:

  • Использование некачественного топлива. На большинстве заправок оно не соответствует стандартам надежности из-за высокого содержания примесей.
  • Перегрев при использовании с неисправным зажиганием. Многократные безуспешные попытки завести автомобиль приводят к поломке датчика.
  • Загрязнение техническими моющим средствами при неаккуратной мойке автомобиля.
  • Нарушение герметичности и некоторые другие факторы.

Проблемы с датчиком проявляются характерными признаками: расход топлива увеличивается, двигатель хуже работает на малых оборотах, появляется посторонний треск. Дополнительно о неполадке свидетельствует тревожный индикатор на приборной панели.

Преимущества профессиональной замены

Замена кислородного датчика выполняется опытными специалистами. Авто Сервис «h3O AUTO» в Одинцово предлагает профессиональный ремонт выхлопной системы с установкой качественных комплектующих, им гарантирована длительная эксплуатация.

Важное преимущество – доступная цена на замену кислородного датчика. У нас предлагается приобрести подходящие комплектующие – специалист проконсультирует по выбору. Итоговая стоимость работы зависит от марки и модели автомобиля.

Устранение проблем с выхлопной системой приведет к снижению расхода топлива, нормализации работы двигателя и устранению всех посторонних звуков. Поручите эту работу нашим специалистам, чтобы гарантированно получить отличный результат с небольшими затратами.

Лямбда зонд: признаки неисправности и диагностика

Кислородный датчик, иначе «лямбда-зонд», выполняет важную роль регулировки соотношения объема воздуха к объему топлива в камере сгорания автомобиля, таким образом деталь корректирует состав топливной смеси для достижения максимальной эффективности работы мотора при минимальной токсичности выбросов в атмосферу. Кислородный датчик не только положительно влияет на окружающую экологию, но и позволяет двигателю работать в полную мощность на минимальном расходе топлива.

Как правило, лямбда-зонд устанавливается перед и после катализатора, для двигателей V6, V8, V10 количество датчиков в два раза больше. В среднем ресурс датчика кислорода составляет 50 -100 тыс. км, в зависимости от качества детали и условий эксплуатации автомобиля. Следить за состоянием лямбда-зонда крайне важно, так как неисправность детали приводит к серьезным нарушениям в работе двигателя. Если вы обнаружили поломку, не стоит ее игнорировать, рекомендуем произвести замену детали в кратчайшие сроки. Кроме того, существует несколько факторов, которые могут привести к досрочной поломке датчика: использование химических средств для очистки корпуса датчика, попадание на поверхность антифриза или тормозной жидкости, повышенное содержание свинца в составе топлива, использование топливной смеси низкого качества, эксплуатация некачественного или «забитого» топливного фильтра.

Внешние признаки выхода из строя кислородного датчика:
  • увеличение расхода топлива
  • рывки во время движения
  • неисправная работа катализатора
  • повышение токсичности выхлопа
  • наличие кода неисправности (DTC)

Если вы заметили один из приведенных симптомов, советуем провести диагностику и оценить состояние установленного лямбда-зонда.

Как проверить состояние лямбда-зонда

  1. Проведите визуальный осмотр датчика на наличие утечек в системе выпуска отработавших газов, сажи или загрязнений на поверхности детали (в этом случае деталь лучше сразу заменить). Работающий датчик должен быть светло-серого цвета, если же цвет изменился на красный – скорее всего произошло загрязнение топливными присадками, и необходима замена детали.
  2. Проверьте провода и электрические разъемы системы управления двигателем на наличие признаков попадания воды.
  3. Если в вашем распоряжении есть вольтметр, вы можете провести диагностику датчика на работающем двигателе:
    - отключите лямбда-датчик от штатной колодки и подключите к вольтметру;
    - при режиме в 2500 оборотов /мин и вынутой вакуумной трубке датчик должен выдавать 0,9 В; неисправный датчик покажет результаты ниже 0,3 В. При работе двигателя в 1500 оборотов/мин датчик должен показывать напряжение примерно в 0,5 В.
  4. Проверьте диагностические коды DTC - такую процедуру лучше проводить в условиях автосервиса.

Купить лямбда вы можете у нас в интернет-магазине "Железка73.рф". Мы обязательно поможем сделать правильный выбор, ответим на все ваши вопросы. Обращайтесь, это выгодно и удобно.

Производитель Номер детали Наименование Применяемость*
DENSO DOX0106 Лямбда-зонд DENSO LEXUS LS
DENSO DOX0109 Лямбда-зонд DENSO SUZUKI SWIFT
DENSO DOX0110 Лямбда-зонд DENSO LEXUS LS
DENSO DOX0113 Лямбда-зонд DENSO DAIHATSU COPEN
DENSO DOX0114 Лямбда-зонд DENSO AUDI A4
DENSO DOX0125 Лямбда-зонд DENSO AUDI 100
DENSO DOX0119 Лямбда-зонд DENSO AUDI Q7
DENSO DOX0120 Лямбда-зонд DENSO ALFA ROMEO 145
DENSO DOX1371 Лямбда-зонд DENSO FORD FIESTA
DENSO DOX1000 Лямбда-зонд DENSO DAEWOO ARANOS
DENSO DOX0307 Лямбда-зонд DENSO SUBARU FORESTER
DENSO DOX0343 Лямбда-зонд DENSO MITSUBISHI OUTLANDER
DENSO DOX0351 Лямбда-зонд DENSO FIAT SEDICI
DENSO DOX0238 Лямбда-зонд DENSO LEXUS GS
DENSO DOX0261 Лямбда-зонд DENSO TOYOTA PREVIA
DENSO DOX0306 Лямбда-зонд DENSO SUBARU IMPREZA
DENSO DOX1409 Лямбда-зонд DENSO HONDA ACCORD V
DENSO DOX0237 Лямбда-зонд DENSO TOYOTA YARIS
DENSO DOX2004 Лямбда-зонд DENSO FORD C-MAX I
DENSO DOX0111 Лямбда-зонд DENSO TOYOTA COROLLA

* Применяемость деталей конкретно для Вашего автомобиля уточняйте по телефону: 72-60-60.

Проверка и устранение неисправностей лямбда-зонда

Использование нескольких лямбда-зондов

С момента введения EOBD необходимо контролировать работу каталитического нейтрализатора. Для этого за катализатором устанавливается дополнительный лямбда-зонд. Это используется для определения способности каталитического нейтрализатора накапливать кислород.

Функция зонда после каталитического нейтрализатора такая же, как у зонда перед каталитическим нейтрализатором.Амплитуды лямбда-зондов сравниваются в блоке управления. Амплитуды напряжения зонда ниже по потоку очень малы из-за способности каталитического нейтрализатора накапливать кислород. Чем меньше емкость каталитического нейтрализатора, тем выше амплитуда напряжения зонда, расположенного ниже по потоку, из-за повышенного содержания кислорода.

Высота амплитуд на датчике ниже по потоку зависит от фактической емкости каталитического нейтрализатора, которая изменяется в зависимости от нагрузки и скорости.Таким образом, при сравнении амплитуд датчиков учитываются условия нагрузки и скорость. Если амплитуды напряжения обоих датчиков все еще примерно одинаковы, емкость каталитического нейтрализатора достигнута, например через старение.

НЕИСПРАВНОСТЬ ДАТЧИКА КИСЛОРОДА ЛЯМБДА: СИМПТОМЫ

Неисправный лямбда-зонд может вызвать следующие симптомы:

  • Высокий расход топлива
  • Низкая производительность двигателя
  • Высокий выброс выхлопных газов
  • Загорается контрольная лампа двигателя
  • Сохраняется код ошибки

ВЛИЯНИЕ НЕИСПРАВНОСТИ ЛЯМБДА-КИСЛОРОДНОГО ДАТЧИКА: ПРИЧИНА НЕИСПРАВНОСТИ

Есть несколько причин, по которым может произойти отказ:

  • Внутреннее и внешнее короткое замыкание
  • Отсутствие заземления / напряжения
  • Перегрев
  • Отложения / загрязнения
  • Механическое повреждение
  • Использование этилированного топлива / присадок

Существует ряд типичных неисправностей лямбда-датчика, которые часто возникают.В следующем списке показаны причины диагностированных неисправностей:

Зонды без подогрева

Диагностированные неисправности Причина
Защитная трубка или корпус датчика забиты остатками масла Несгоревшее масло попало в выхлопную систему, например из-за неисправных поршневых колец или уплотнений штока клапана
Ложный воздухозаборник, недостаток эталонного воздуха Датчик установлен неправильно, отверстие для эталонного воздуха заблокировано
Повреждение из-за перегрева Температуры выше 950 ° C из-за неправильного зажигания точки или люфта клапана
Плохое соединение на штекерных контактах Окисление
Обрыв кабельных соединений Плохо проложенные кабели, точки истирания, укусы грызунов
Отсутствие заземления Окисление, коррозия на выхлопная система
Механическое повреждение Чрезмерный момент затяжки
Химическое старение Очень часто короткие пути
Свинцовые отложения Использование этилированного топлива

ДИАГНОСТИКА НЕИСПРАВНОСТЕЙ КИСЛОРОДНОГО ДАТЧИКА ЛЯМБДА: ОСНОВНЫЕ ПРИНЦИПЫ

Автомобили, оборудованные функцией самодиагностики, могут обнаруживать неисправности в цепи управления и сохранять их в памяти неисправностей.Обычно это отображается с помощью контрольной лампы двигателя. Затем память неисправностей может быть считана с помощью диагностического прибора для диагностики неисправностей. Однако более старые системы не могут определить, связана ли эта неисправность с дефектным компонентом или, например, с неисправность кабеля. В этом случае механик должен провести дальнейшие испытания.

В рамках EOBD мониторинг лямбда-зонда был расширен и теперь включает следующие точки:

  • Обрыв цепи,
  • Готовность к работе,
  • Короткое замыкание на массу блока управления,
  • Замыкание на плюс
  • Обрыв кабеля и старение лямбда-зонда.

Для диагностики сигналов лямбда-зонда блок управления использует форму сигнала частоты.

Для этого блок управления вычисляет следующие данные:

  • Максимальное и минимальное обнаруженное значение напряжения датчика,
  • Время между положительным и отрицательным фронтом,
  • Регулирующая переменная лямбда-регулятора в соответствии с богатой и бедной,
  • Порог контроля лямбда-регулирования,
  • Напряжение датчика и длительность периода.

Амплитуда: максимальное и минимальное значение больше не достигается, определение богатой / обедненной смеси больше невозможно.

КАК ОПРЕДЕЛЯЮТСЯ МАКСИМАЛЬНОЕ И МИНИМАЛЬНОЕ НАПРЯЖЕНИЕ ДАТЧИКА?

При запуске двигателя все старые максимальные / минимальные значения в блоке управления удаляются.Во время работы минимальные / максимальные значения отображаются в диапазоне нагрузки / скорости, заданном для диагностики.

Время отклика: зонд слишком медленно реагирует на изменение смеси и больше не отображает статус в нужное время.

РАСЧЕТ ВРЕМЕНИ МЕЖДУ ПОЛОЖИТЕЛЬНЫМ И ОТРИЦАТЕЛЬНЫМ ПЛАНОМ

Если напряжение зонда превышает контрольный порог, начинается измерение времени между положительным и отрицательным фронтом.Если напряжение зонда падает ниже контрольного порога, измерение времени прекращается. Период времени между началом и окончанием измерения времени измеряется счетчиком.

Время отклика: частота датчика слишком низкая, оптимальное управление больше невозможно.

ОБНАРУЖЕНИЕ ВОЗРАСТНОГО ИЛИ ЗАГРЯЗНЕННОГО ЛЯМБДА-ДАТЧИКА

Если зонд сильно изношен или загрязнен, e.г. через присадки к топливу это влияет на сигнал датчика. Сигнал зонда сравнивается с сохраненным шаблоном сигнала. Медленный зонд определяется как неисправность, например через длительность периода сигнала.

ПРОВЕРКА ЛЯМБДА-ЗОНДА С ПОМОЩЬЮ ОСЦИЛЛОСКОПА, МУЛЬТИМЕТРА, ТЕСТЕРА ЛЯМБДА-ДАТЧИКА, АНАЛИЗАТОРА ВЫБРОСОВ: УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

Как правило, перед каждой проверкой следует проводить визуальный осмотр, чтобы убедиться в отсутствии повреждений кабеля или разъема.Выхлопная система не должна иметь утечек.

Для подключения измерительного прибора рекомендуется использовать переходной кабель. Также необходимо убедиться, что лямбда-регулирование неактивно во время некоторых рабочих состояний, например. при холодном пуске до достижения рабочей температуры и при полной нагрузке.

Проверка лямбда-зонда тестером выхлопных газов

Один из самых быстрых и простых тестов - это измерение с помощью анализатора выбросов четырех газов.

Испытание проводится так же, как и предписанное испытание на выбросы выхлопных газов. Когда двигатель прогрет до рабочей температуры, ложный воздух включается в качестве возмущающей переменной путем снятия шланга. Из-за изменения состава выхлопных газов изменяется и значение лямбда, которое рассчитывается и отображается тестером выхлопных газов. Система образования смеси должна определять это по определенному значению и регулировать его в течение определенного времени (60 секунд, как в тесте на выброс выхлопных газов).Если переменная возмущения удаляется, значение лямбда должно быть уменьшено до исходного значения.

В качестве основного принципа следует соблюдать спецификации производителя для подключения переменных возмущений и значения лямбда.

Однако этот тест может только определить, работает ли лямбда-регулирование. Электрический тест невозможен. При этой процедуре существует риск того, что современные системы управления двигателем контролируют смесь посредством точного определения нагрузки, так что λ = 1, несмотря на то, что лямбда-регулирование не работает.

Проверка лямбда-зонда мультиметром

Для проверки следует использовать только высокоомные мультиметры с цифровым или аналоговым дисплеем.

Мультиметры с низким внутренним сопротивлением (чаще всего в аналоговых устройствах) перегружают сигнал лямбда-зонда и могут вызвать его выход из строя. Из-за быстро меняющегося напряжения сигнал лучше всего отображать с помощью аналогового устройства.

Мультиметр подключается параллельно сигнальной линии (черный кабель, см. Принципиальную схему) лямбда-зонда. Диапазон измерения мультиметра устанавливается на 1 В или 2 В. После запуска двигателя значение между 0.На дисплее появляется 4 - 0,6 В (опорное напряжение). При достижении рабочей температуры двигателя или лямбда-зонда фиксированное напряжение начинает меняться от 0,1 В до 0,9 В.

Для получения безупречных результатов измерения двигатель следует поддерживать на скорости прибл. 2500 об. / Мин. Это гарантирует достижение рабочей температуры зонда даже в системах с ненагреваемым лямбда-зондом. Если температура выхлопных газов недостаточна в режиме холостого хода, существует риск того, что ненагретый датчик остынет и сигнал больше не будет генерироваться.

Проверка лямбда-зонда осциллографом

Форма сигнала лямбда-зонда

Сигнал лямбда-зонда лучше всего отображать с помощью осциллографа.Что касается измерения с помощью мультиметра, основным условием является то, что двигатель или лямбда-зонд должны иметь рабочую температуру.

Осциллограф подключается к сигнальной линии. Устанавливаемый диапазон измерения зависит от используемого осциллографа. Если устройство имеет автоматическое обнаружение сигнала, его следует использовать. Для ручной настройки установите диапазон напряжения 1–5 В и настройку времени 1–2 секунды.

Обороты двигателя снова должны быть прибл.2500 об. / Мин.

Переменное напряжение отображается на дисплее в синусоидальной форме. Следующие параметры могут быть оценены по этому сигналу:

  • Высота амплитуды (максимальное и минимальное напряжение 0,1–0,9 В),
  • Время отклика и продолжительность периода (частота примерно 0,5–4 Гц).

Проверка лямбда-зонда при помощи тестера лямбда-зонда

Различные производители предлагают специальные тестеры лямбда-зондов для тестирования.В этом устройстве функция лямбда-зонда отображается с помощью светодиодов.

Как мультиметр и осциллограф, он подключается к сигнальной линии пробника. Как только зонд достигнет рабочей температуры и начнет работать, светодиоды начнут попеременно загораться - в зависимости от соотношения воздух-топливо и кривой напряжения (0,1–0,9 В) зонда.

Здесь все характеристики настроек измерительного устройства для измерения напряжения относятся к датчикам диоксида циркония (датчики скачков напряжения).Для диоксида титана диапазон измерения напряжения изменяется на 0-10 В, при этом измеряемые напряжения меняются в пределах 0,1-5 В.

Проверка состояния защитной трубки

В качестве основного принципа необходимо соблюдать спецификации производителя. Наряду с электронным тестом состояние защитной трубки элемента зонда может указывать на функциональные возможности:

ЗАЩИТНАЯ ТРУБКА СЛОЖНО ЗАСАЖЕНА

  • Двигатель работает со слишком богатой смесью

Необходимо заменить датчик и устранить причину чрезмерно богатой смеси, чтобы предотвратить повторное засорение датчика.

БЛЕСКА НА ЗАЩИТНОЙ ТРУБКЕ

Свинец разрушает элемент зонда.Необходимо заменить зонд и проверить каталитический нейтрализатор. Замените этилированное топливо неэтилированным.

БЕЛЫЕ (БЕЛЫЕ ИЛИ СЕРЫЕ) ОТЛОЖЕНИЯ НА ЗАЩИТНОЙ ТРУБКЕ

  • Двигатель горит масло, дополнительные присадки в топливо

Необходимо заменить датчик и устранить причину возгорания масла.

НЕПРАВИЛЬНЫЙ МОНТАЖ

Неправильная установка может привести к повреждению лямбда-зонда, и его правильная работа не может быть гарантирована.Во время монтажа необходимо использовать предписанный специальный инструмент и соблюдать момент затяжки.

ПРОВЕРКА НАГРЕВА ДАТЧИКА КИСЛОРОДА ЛЯМБДА: УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

Можно проверить внутреннее сопротивление и напряжение питания нагревательного элемента.

Для этого отсоедините разъем к лямбда-зонду. Со стороны лямбда-зонда с помощью омметра измерьте сопротивление на обоих кабелях нагревательного элемента.Это должно быть от 2 до 14 Ом. На стороне автомобиля используйте вольтметр для измерения напряжения питания. Должно быть напряжение> 10,5 В (бортовое напряжение).

Различные варианты подключения и цвета кабелей

Зонды без подогрева

Количество кабелей Цвет кабеля Подключение
1 Черный Сигнал (заземление через корпус)
2 Черный Сигнал
Заземление

Зонды с подогревом

Количество кабелей Цвет кабеля Подключение
3 Черный
2 x белый
Сигнал (заземление через корпус) нагревательного элемента
4 Черный
2 x белый
Серый
Сигнал, нагревательный элемент, заземление

Зонды диоксида титана

Количество кабелей Цвет кабеля Подключение
4 Красный
Белый
Черный
Желтый
Нагревательный элемент (+)
Нагревательный элемент (-)
Сигнал (-)
Сигнал (+)
4 Черный
2 x белый
Серый
Нагревательный элемент (+)
Нагревательный элемент (-)
Сигнал (-)
Сигнал (+)

(Технические характеристики производителя должны соблюдаться)

ЗАМЕНА КИСЛОРОДНОГО ДАТЧИКА ЛЯМБДА: ВИДЕО

Как проверить и заменить лямбда-зонд

Лямбда-зонд, или датчик кислорода, является жизненно важным элементом выхлопной системы вашего автомобиля, гарантируя, что ваша топливная смесь содержит необходимое количество кислорода для эффективного и экологически чистого сгорания.В этом сообщении блога мы кратко рассмотрим, что такое лямбда-зонд, как он работает, когда его следует проверять и как его заменить.

Что такое лямбда-зонд?

Лямбда-зонд расположен внутри выпускного коллектора рядом с двигателем. В автомобилях, оборудованных EOBD II (европейские автомобили после 2001 г.), также имеется второй датчик после каждого каталитического нейтрализатора с целью измерения производительности каталитического нейтрализатора. Датчик измеряет процент несгоревшего кислорода, чтобы увидеть, слишком ли его количество (слишком бедная смесь) или слишком мало (слишком богатая смесь).Результаты отправляются в электронный блок управления двигателем (ЭБУ), чтобы количество топлива, поступающего в двигатель, можно было отрегулировать для получения оптимальной смеси. Он постоянно меняется в зависимости от ряда факторов, включая нагрузку на двигатель (например, холмы), ускорение, температуру двигателя и период прогрева.

На рынке есть три типа лямбда-зондов, самые старые и самые распространенные на рынке - лямбда-зонды из оксида циркония. Этот тип существует в разной конфигурации (один, два, три или четыре провода), в зависимости от того, подогревается датчик или нет.Второй тип - это лямбда-зонд из оксида титана, который также доступен в четырех различных типах (см. Рисунок). Этот тип легко идентифицировать, поскольку диаметр угрозы меньше, чем у оксида циркония (в качестве визуальной подсказки эти датчики имеют желтый цвет. и красные провода). Наконец, третий тип - это так называемый широкополосный лямбда-зонд, также называемый «5-проводным датчиком», который является новейшим и более точным. Широкополосный лямбда-зонд является наиболее распространенным в новых автомобилях, оснащенных двумя лямбда-зондами на каждый каталитический нейтрализатор.

Как работает лямбда-зонд?

Лямбда-зонд используется для регулирования топливной смеси, при этом ЭБУ реагирует на измерения датчика, чтобы определить необходимое количество топлива. Это означает, что топливная смесь будет постоянно колебаться от богатой к обедненной, позволяя каталитическому нейтрализатору работать с максимальной эффективностью, одновременно уравновешивая общую смесь для минимизации выбросов.

Если ЭБУ не получает никаких измерений от датчика, например, когда двигатель только что запустился или датчик не работает, ЭБУ будет использовать фиксированную богатую топливную смесь, что увеличивает расход топлива и выбросы.Если лямбда-зонд или провода повреждены или изношены, автомобиль будет постоянно циркулировать в богатой смеси, увеличивая расход топлива и подвергая опасности другие элементы системы контроля выбросов, такие как каталитические нейтрализаторы.

Когда следует проверять лямбда-датчики?

Обычный лямбда-зонд имеет долгий срок службы, но все равно может выйти из строя. Если вы заметили какой-либо из следующих симптомов, возможно, стоит проверить свой лямбда-зонд:

  • Нерегулярный дроссель на холостом ходу
  • Грубые звуки двигателя
  • Большой расход топлива и низкая производительность
  • Неудачный тест на выбросы
  • Черный дым и нагар вокруг выхлопной трубы
  • Лямбда-датчики могут выйти из строя по ряду причин, в том числе:
  • Использование уплотнительной пасты, содержащей силикон, на выхлопных патрубках перед лямбда-датчиками
  • Загрязненное топливо или присадки, содержащие свинец
  • Двигатель, который начал сжигать масло, оставляя нагар на датчике
  • Внешнее загрязнение, например, дорожная соль, грунтовочный материал или химикаты
  • Сенсор подошел к концу срока службы
Как проверить лямбда-зонд из оксида циркония

Для проверки лямбда-зонда проверьте натяжение сигнального провода (в основном черного цвета).Обычно после прогрева двигателя и при нормальной работе измерение должно меняться от 0,1 до 0,9 В примерно два раза в секунду при 2000 об / мин.

Если нагревается лямбда-зонд (трех- или четырехжильный), возьмите нагреватель и измерьте его сопротивление омметром. Нагреватель представляет собой два провода одного цвета, обычно белого или черного цвета. Рекомендуется всегда проверять электрическую схему автомобиля и проводить измерения при нормальной рабочей температуре двигателя.

Как проверить титановый лямбда-зонд (легко обнаружить, потому что диаметр нагрева меньше, чем у оксида циркония, и всегда присутствуют желтый и красный провод.)

Измеренное натяжение сигнального провода аналогично натяжению, полученному от циркониевого лямбда-зонда. Низкое значение напряжения соответствует обедненной смеси, а высокое напряжение (около 1 В) соответствует богатой смеси. В некоторых ЭБУ все наоборот, в соответствии с их внутренним подключением

Как диагностировать широкополосный лямбда-зонд:

Для диагностики широкополосных лямбда-зондов необходимо использование сканирующего прибора или осциллографа.

Как снять и заменить лямбда-зонд

Используйте специальную розетку, чтобы облегчить снятие лямбда-зонда.Найдите нужное приложение в каталоге, похожие приложения могут иметь разное время реакции, не являясь эквивалентами. Нанесите смазку вокруг резьбы на новом датчике, чтобы упростить установку датчика сейчас и удалить его позже. Датчик можно ввинтить вручную и затянуть с помощью специального гнезда с правильным моментом, указанным в руководстве по эксплуатации автомобиля.

Смотрите больше с Garage Gurus

Сделайте шаг ближе к действию и посмотрите, как эксперт Garage Gurus точно покажет вам, как проверить, снять и заменить лямбда-зонд.

Лямбда как инструмент диагностики

Расчет лямбда определяет соотношение между количеством кислорода, фактически присутствующим в камере сгорания, и количеством, которое должно было присутствовать для достижения идеального сгорания.

Давайте узнаем больше об этом замечательном инструменте, начиная со значения лямбды. Лямбда представляет собой отношение количества кислорода, фактически присутствующего в камере сгорания, к количеству, которое должно было присутствовать, чтобы получить «идеальное» сгорание.Таким образом, когда смесь содержит ровно столько кислорода, сколько требуется для сжигания имеющегося количества топлива, соотношение будет один к одному (Ll), а лямбда будет равна 1,00. Если смесь содержит слишком много кислорода для данного количества топлива (бедная смесь), лямбда будет больше 1,00. Если смесь содержит слишком мало кислорода для данного количества топлива (богатая смесь), лямбда будет меньше 1,00.

Широкополосный датчик генерирует переменный сигнал в отличие от простого сигнала богатой / обедненной смеси стандартного кислородного датчика.Поскольку сигнал различается по силе, а также по направлению (полярности) тока, невозможно напрямую просмотреть сигнал с помощью чего-либо, кроме осциллографа. Однако при наличии подходящего вспомогательного оборудования широкополосный датчик можно использовать для регулировки топливно-воздушной смеси на любом двигателе.

Все мы знаем, что для идеального сгорания требуется соотношение воздух / топливо примерно 14,7: 1 (по весу) при нормальных условиях. Таким образом, обедненное соотношение воздух / топливо, скажем, 16: 1, будет соответствовать значению лямбда, равному 1.088. (Чтобы вычислить, разделите 16 на 14,7.) Лямбда 0,97 будет означать соотношение воздух / топливо 14,259: 1 (полученное путем умножения 0,97 на 14,7).

Вот и волшебство: Лямбда полностью не изменяется при сгорании. Даже полное сгорание или полное отсутствие сгорания не влияет на лямбду! Это означает, что мы можем брать пробы выхлопных газов в любой точке потока выхлопных газов, не беспокоясь о влиянии каталитического нейтрализатора.

Что не так с этой машиной?

HC: 2882 частей на миллион CO:.81%

CO2: 13,69% O2: 2,18%

Это механическая проблема? Проблема с зажиганием? Дисбаланс соотношения воздух / топливо? Что эти показания выбросов пытаются нам сказать? На первый взгляд может показаться, что высокое содержание углеводорода (HC) указывает на обилие доступного топлива, однако очень высокое значение содержания кислорода (O2) может заставить нас задуматься, не смотрим ли мы на обедненную смесь пропусков зажигания. Относительно низкий показатель оксида углерода (CO), кажется, исключает богатую смесь, в то время как показание диоксида углерода (CO2) может указывать либо на неисправный каталитический нейтрализатор, либо на проблему с механической эффективностью двигателя.

В этом случае лямбда указывает на существенно богатую смесь - прямо противоположное тому, что мы могли бы подумать, основываясь только на показаниях отдельных газов. В конце концов, CO, обычно индикатор богатого состояния, значительно ниже, чем Oz, который является контрольным показателем обедненного выхлопа. В сочетании с высокими показателями HC, большинство из нас, вероятно, сочло бы это состоянием обедненной осечки.

Фактически, эти показания были сняты на Ford Escort с заземленным одним проводом вилки.Конвертеру дали ненадолго остыть (в надежде избежать раскаленного расплавления), но нагретый кислородный датчик быстро вернулся в замкнутый контур. Избыточное содержание O2 в выхлопном потоке из мертвого цилиндра заставило PCM в ответ подать команду на обогащенную смесь.

А как насчет этой машины?

HC: 834 ppm CO: 0,01%

CO2: 13,78% O2: 2,29%

Расчетное значение для лямбда составляет 1,07. Это, очевидно, бедная смесь, в данном случае из-за ленивый кислородный датчик и плохой соединительный провод на Volkswagen Jetta 86 года выпуска.

Попробуйте этот набор показаний.

HC: 330 частей на миллион CO: 8,49%

CO2: 9,93% O2: 0,15%

Здесь лямбда была 0,77, что указывает на чрезвычайно богатую смесь. Это образцы выхлопной трубы автомобиля с неисправным (разомкнутым) датчиком температуры охлаждающей жидкости.

Что может нам сказать лямбда-анализ этих показаний выхлопной трубы?

HC: 72 ppm CO: 0,16%

CO2: 15,24% O2: 0,86%

Фактически, при значении лямбда 1,03 эта смесь обеднена, хотя измерения на выхлопной трубе выглядят довольно приемлемыми.

Использование лямбды

На первый взгляд может показаться, что значение лямбды крайне ограничено. В конце концов, обычный газовый анализ может сказать нам, идет ли автомобиль на обедненной или обедненной смеси, верно? (Если вы все еще так думаете, вернитесь к нашему самому первому примеру, чтобы еще раз взглянуть!) И с OBD II, делающим показания корректировки топлива частью каждого потока данных, есть ли какая-то большая загадка относительно того, какая смесь идет в сгорание камера? Давайте рассмотрим каждый из этих вопросов.

Помните, что основная цель каталитического нейтрализатора - очистить чрезмерные выбросы углеводородов, монооксида углерода и оксидов азота (NOx). Конвертер пытается превратить их все в углекислый газ и воду (h3O). Таким образом, хороший преобразователь может замаскировать небольшой дисбаланс смеси, будь то обедненная или богатая часть спектра. Когда каталитический нейтрализатор подвергается воздействию постоянно богатой или бедной смеси, он должен работать более интенсивно, и его срок службы может сократиться.

Будем ли мы видеть хроническое обогащение или обеднение выхлопных газов? Только если состояние тяжелое, или если смесь уже перегрузила катализатор.Лямбда помогает здесь, позволяя нам видеть входящую смесь, чтобы мы могли определить, правильна ли она.

Каталитические преобразователи обычно работают эффективно только тогда, когда поступающая смесь находится в пределах примерно 4% от стехиометрии или в диапазоне лямбда от 0,96 до 1,04. Вернемся к нашему последнему примеру выше. При 1,03 лямбда находится в пределах допустимых пределов обедненной смеси. Но если это пограничное состояние обедненной смеси сохраняется в течение длительного периода времени, катализатор будет медленно разлагаться в результате чрезмерного тепла, которое он генерирует при очистке выхлопного потока.

Теперь рассмотрим случай автомобиля, оборудованного системой OBD II. Предположим, мы видим, что долгосрочная корректировка подачи топлива показывает добавление на 25% больше топлива, чем было изначально запрограммировано для наблюдаемых условий эксплуатации (LTFT = + 25%). И у нас есть непрерывный бережливый код. Очевидно, что многие причины могут вызвать это состояние, в том числе низкая подача топлива, неисправный датчик массового расхода воздуха (MAF), большая утечка вакуума и даже неисправный датчик кислорода. Может ли лямбда помочь нам сузить круг подозреваемых? Конечно, может.

Рассмотрим датчик O2.Предположим, что код датчика O2 отсутствует. Если лямбда практически равна 1,00, можно сразу исключить датчик O2 из рассмотрения. Лямбда будет правильной на этом уровне корректировки топлива, только если датчик O2, на котором основана корректировка топлива, работает правильно.

Можем ли мы еще больше сузить поле? Если лямбда остается практически равной 1,00 в условиях холостого хода, частичного открытия дроссельной заслонки и высокого крейсерского режима, но корректировка расхода топлива увеличивается с нагрузкой, мы можем исключить утечку вакуума.Утечка вакуума представляет собой уменьшение процента поступающего воздушного заряда по мере увеличения частоты вращения двигателя и нагрузки. Таким образом, мы бы сосредоточились на проблеме с подачей топлива или неисправности массового расхода воздуха. Если, однако, мы обнаружим, что лямбда будет значительно меньше 1,00, мы немедленно заподозрим неисправность датчика O2 - возможно, короткое замыкание на массу.

Упражнения

Давайте применим то, что мы узнали о лямбде, к следующим примерам. В каждом случае постарайтесь увидеть, какие неисправности могут быть причиной данных. Ответы и анализ появляются после пяти примеров.

  1. Автомобиль OBD I с MAP и EGR показывает LTFT на уровне -15%, с переключением STFT в пределах ± 5%. Лямбда составляет 1,05, уровни NOx повышены, но все остальные выхлопные газы находятся в допустимых пределах. Автомобиль не прошел государственные испытания на выбросы выхлопных газов. Клапан рециркуляции ОГ получает разрежение в нужное время во время дорожных испытаний. Открытие клапана рециркуляции ОГ вручную при 2000 об / мин приводит к тому, что двигатель работает заметно грубо, без пропусков зажигания, характерных для конкретного цилиндра.
  2. Грузовик OBD II с MAF показывает лямбду на.96 на холостом ходу и 1,03 на крейсерском. Общая корректировка топливоподачи (LTFT

+ STFT) на холостом ходу составляет -12%, а общая корректировка подачи топлива на крейсерском режиме составляет + 9%. Жалоба покупателя - неуверенность в ускорении. Подача топлива в норме. Временное отключение EGR не дает никаких улучшений. Предыдущий магазин очистил коды, и все мониторы не укомплектованы.

  1. Автомобиль OBD II с MAP и EGR работает немного неровно на холостом ходу с несколько повышенными показателями IAC. Лямбда - 0,99. В крейсерском режиме шероховатость исчезает, и лямбда увеличивается до 1.00. Подсчет МАК на крейсерском рейсе уместен.
  2. Несмотря на то, что у него значение лямбда 0,99, грузовик с MAF показывает неприемлемо завышенные показания выхлопной трубы HC и CO, полученные в условиях холостого хода с нагрузкой сразу после продолжительного круиза по шоссе.

Анализ и ответы

  1. Клапан системы рециркуляции ОГ работает нормально, но, как показывает высокое значение лямбда, этот автомобиль работает на обедненной смеси. PCM вычитает топливо (отрицательное значение LTFT), но только до определенной точки (переключение STFT). Неисправность должна быть в датчике U2.Он смещен положительно, возможно, из-за частичного короткого замыкания между линией датчика и питанием нагревателя. Каталитический нейтрализатор все еще в порядке? Если показания NOx меньше, чем вдвое превышают предел, и если условия еще не повредили слой NOx, преобразователь может быть в состоянии адекватно компенсировать, как только он начнет получать правильную исходную смесь. Тем не менее, покупателя следует предупредить, что после замены датчика O2 потребуются дальнейшие испытания для оценки состояния преобразователя.
    1. Что заставляет этот автомобиль работать на холостом ходу на холостом ходу и наклоняться на круизе? Мы знаем, что проблем с подачей топлива нет, и мы устранили систему рециркуляции отработавших газов.Проблема, скорее всего, не в грязных форсунках, поскольку реакция корректировки топливоподачи не согласуется между диапазонами скорости и нагрузки. Это не может быть утечка вакуума, так как реакция корректировки топливоподачи противоположна ожидаемой.
    2. Этот грузовик имеет загрязненный MAF. MAF переоценивает воздушный поток на холостом ходу и занижает его на круизе, двойной удар! Разные производители разработали разные стратегии взвешивания данных после очистки кода. Некоторые могут по умолчанию использовать максимальную добавку топлива до + 25%, в то время как другие могут вернуться к нулевой коррекции; даже метод, используемый для очистки кодов, например, KOER vs.KOEO - может изменить полученную стратегию повторного обучения. В этом случае числа корректировки топлива - это недавно очищенный ответ PCM на исправный датчик O2. Но, поскольку мониторы O2 неполные, PCM еще недостаточно доверяет им, чтобы достичь правильного значения корректировки топлива.
  2. Подсчет IAC - важный ключ к разгадке. В сочетании с показаниями лямбда они указывают на то, что двигатель компенсирует низкие обороты холостого хода, вызванные небольшой утечкой вакуума. Наиболее вероятный виновник - утечка системы рециркуляции отработавших газов. (Лямбда показывает богатую реакцию на пониженное абсолютное давление в коллекторе.Нормальная вакуумная утечка наружного воздуха приведет к более низким, а не более высоким показателям IAC.)
  3. Смесь находится в пределах 1% стехиометрии. В предыдущем круизе преобразователь должен был нагреться до температуры. Что осталось, кроме плохого преобразователя?

The Critical Link

Современные системы управления подачей топлива обычно работают в диапазоне λ = 1 ± 0,01 в установившихся условиях. Но точно так же, как вам пришлось потратить время на сбор библиотеки заведомо хороших сигналов, прежде чем вы действительно сможете извлечь выгоду из использования осциллографа, вам нужно потратить некоторое время на тестирование заведомо хороших автомобилей в различных повторяемых и диагностически значимых условиях вождения. чтобы получить истинную пользу от лямбда-анализа.

Некоторые Хонды, оборудованные датчиками бедной смеси воздуха / топлива, например, обычно работают на чрезвычайно бедных лямбда-диапазонах, превышающих 1,63, в условиях круиза по шоссе. Настройщикам может потребоваться знать, что максимальная мощность обычно достигается при значении лямбда приблизительно 0,85 в условиях полной нагрузки. Разработка библиотеки заведомо хороших лямбда-значений станет еще более важной с появлением систем прямого впрыска бензина (GDI). Поскольку системы GDI используют стратифицированный заряд и переменную синхронизацию впрыска (а также более привычную переменную продолжительность впрыска), нормальные значения лямбда для этих систем могут приближаться к 2.0 при некоторых условиях. Поскольку широкодиапазонные датчики воздуха / топлива (WRAF) становятся все более распространенными, ожидайте, что значения лямбда будут принимать еще более широкий диапазон.

Заключение

Несмотря на то, что пропуски зажигания могут сочетаться с нормальной работой обратной связи (замкнутым контуром) для создания нелогичного богатого состояния, лямбда-анализ остается мощным диагностическим инструментом. Регулярное использование лямбда может быстро сузить вашу диагностическую направленность для многих жалоб на управляемость, решая проблемы со смесью в течение нескольких минут.Лямбда-анализ может быстрее, чем другие методы, выявить неисправности кислородного датчика, такие как смещение датчиков. Лямбда-анализ в сочетании с анализом корректировки топливоподачи часто позволяет быстро выявить загрязненные или неисправные датчики массового расхода воздуха. А лямбда-анализ в сочетании с обычными показаниями выхлопных газов может окончательно выявить неисправные каталитические нейтрализаторы за считанные секунды.

ДАТЧИКИ КИСЛОРОДА / ДАТЧИК ЛЯМБДА /: ДЕТАЛИ, ВИДЫ, РАБОЧИЕ

ЧТО ТАКОЕ КИСЛОРОДНЫЙ ДАТЧИК?

Датчик кислорода (обычно называемый «датчиком O2», поскольку O2 - это химическая формула кислорода) установлен в выпускном коллекторе транспортного средства для отслеживания количества несгоревшего кислорода в выхлопных газах, когда выхлопные газы выходят из двигателя. .

ЧТО ДЕЛАЕТ КИСЛОРОДНЫЙ ДАТЧИК?

Датчики кислорода работают, вырабатывая собственное напряжение, когда они становятся горячими (примерно 600 ° F). На конце датчика кислорода, который подключается к выпускному коллектору, находится циркониевая керамическая груша. Внутренняя и внешняя части колбы покрыты пористым слоем платины, которая служит электродами. Внутренняя часть колбы вентилируется изнутри через корпус датчика во внешнюю атмосферу. Когда внешняя часть баллона подвергается воздействию горячих газов выхлопных газов, разница в уровнях кислорода между баллоном и внешней атмосферой внутри датчика вызывает прохождение напряжения через баллон.Если соотношение топлива бедное (недостаточно топлива в смеси), напряжение относительно низкое - примерно 0,1 вольт. Если соотношение топлива богатое (слишком много топлива в смеси), напряжение относительно высокое - примерно 0,9 вольт. Когда топливно-воздушная смесь находится в стехиометрическом соотношении (14,7 частей воздуха на 1 часть топлива), кислородный датчик выдает 0,45 вольт.

ГДЕ НАХОДЯТСЯ ДАТЧИКИ КИСЛОРОДА?

Количество кислородных датчиков в автомобиле различается. Каждый автомобиль, выпущенный после 1996 года, должен иметь кислородный датчик перед и после каждого каталитического нейтрализатора.Таким образом, в то время как большинство транспортных средств имеют два датчика кислорода, двигатели V6 и V8, оснащенные двойным выхлопом, имеют четыре датчика кислорода - один перед каталитическим нейтрализатором и после него на каждом ряду двигателя.

1. Верхний кислородный датчик (кислородный датчик 1)

Датчик кислорода 1 - это датчик кислорода перед каталитическим нейтрализатором. Он измеряет соотношение воздух-топливо в выхлопе, выходящем из выпускного коллектора, и отправляет сигналы высокого и низкого напряжения в модуль управления трансмиссией для регулирования топливовоздушной смеси.Когда модуль управления трансмиссией получает сигнал низкого напряжения (обедненной смеси), он компенсирует это за счет увеличения количества топлива в смеси. Когда модуль управления трансмиссией получает сигнал высокого напряжения (богатый), он обедняет смесь, уменьшая количество топлива, которое он добавляет в смесь. Использование модулем управления трансмиссией входного сигнала кислородного датчика для регулирования топливной смеси известно как замкнутый контур управления с обратной связью. Эта работа с замкнутым контуром приводит к постоянному переключению между богатой и бедной смесью, что позволяет каталитическому нейтрализатору минимизировать выбросы за счет поддержания надлежащего баланса общего среднего соотношения топливной смеси.Однако при запуске холодного двигателя или выходе из строя датчика кислорода модуль управления трансмиссией переходит в режим разомкнутого контура. В режиме разомкнутого контура модуль управления трансмиссией не получает сигнал от кислородного датчика и заказывает фиксированную богатую топливную смесь. Работа без обратной связи приводит к увеличению расхода топлива и выбросов. Многие новые кислородные датчики содержат нагревательные элементы, которые помогают им быстро достичь рабочей температуры, чтобы минимизировать время, затрачиваемое на работу без обратной связи.

2. Нижний кислородный датчик (кислородный датчик 2)

Кислородный датчик 2 - это нижний кислородный датчик по отношению к каталитическому нейтрализатору. Он измеряет соотношение воздух-топливо на выходе из каталитического нейтрализатора, чтобы убедиться, что каталитический нейтрализатор работает должным образом. Каталитический нейтрализатор поддерживает стехиометрическое соотношение воздух-топливо 14,7: 1, в то время как модуль управления трансмиссией постоянно переключается между богатой и обедненной воздушно-топливной смесью из-за входного сигнала от верхнего кислородного датчика (датчик 1).Следовательно, нижний кислородный датчик (датчик 2) должен выдавать стабильное напряжение примерно 0,45 В.

КАК РАБОТАЮТ ДАТЧИКИ КИСЛОРОДА

Пошаговое руководство по работе автомобильного кислородного датчика. Эта статья относится к большинству транспортных средств.

Шаг 1. Датчик кислорода - это электронный компонент, который разработан для измерения уровня кислорода в выхлопной системе автомобильного двигателя.

Шаг 2 - Обычно датчик кислорода устанавливается на трубе выхлопной системы или на стороне каталитического нейтрализатора, при этом датчик находится внутри трубы.Он измеряет кислородную смесь, генерируя небольшое количество электричества из-за разницы в атмосфере, кислороде и углекислом газе. Компьютер PCM контролирует это напряжение и соответственно регулирует подачу топлива. Датчики кислорода обычно можно найти в выхлопной трубе рядом с двигателем (первичный датчик), хотя иногда они устанавливаются в самом выпускном коллекторе, где соединяется выхлопная труба. Датчики, расположенные после каталитического нейтрализатора или на нем, являются вторичным блоком.

Шаг 3 - Работа датчика заключается в измерении количества кислорода, необходимого для сжигания любого топлива, остающегося в потоке выхлопных газов, и передаче этой информации обратно в компьютерный PCM (модуль управления трансмиссией), где она сравнивается с другой оперативной информацией, чтобы можно было внести корректировки. быть сделано, чтобы максимизировать топливную эффективность и мощность за счет правильной топливовоздушной смеси и момента зажигания в двигателе.Датчики кислорода делают это за счет химической реакции внутри самого датчика; В этой статье мы объясним эволюцию и применение этой очень важной части головоломки с впрыском топлива. Датчики кислорода работают за счет химической реакции. Сердечник или элемент датчика - циркониевая керамика с тонким слоем платины. Поскольку эти материалы являются реактивными и наносятся слоями, они со временем изнашиваются, снижая их эффективность.

Шаг 4 - Напряжение, создаваемое датчиком, затем передается на компьютер, где он сравнивает его с другой оперативной информацией, чтобы внести необходимые корректировки смеси и времени.Датчик кислорода постоянно связан с блоком управления двигателем, предоставляя ему информацию, необходимую для регулировки подачи топлива для оптимального сгорания.

Шаг 5 - Когда двигатель холодный, датчик кислорода показывает медленно, нагревательный элемент был установлен, чтобы исправить эту проблему и помочь датчику работать правильно, пока двигатель не достигнет рабочей температуры. Когда эти нагреватели выходят из строя, загорается лампа проверки двигателя. Количество вторичных датчиков будет зависеть от количества каталитических нейтрализаторов в автомобиле.Датчики кислорода используют чередование богатых и бедных смесей для достижения баланса, близкого к стехиометрическому (идеально для внутреннего сгорания).

ЗОНД

Чувствительный элемент представляет собой керамический цилиндр, покрытый внутри и снаружи пористыми платиновыми электродами; вся сборка защищена металлической сеткой. Он работает, измеряя разницу в кислороде между выхлопными газами и наружным воздухом, и генерирует напряжение или изменяет его сопротивление в зависимости от разницы между ними.

Датчики работают эффективно только при нагревании до приблизительно 316 ° C (600 ° F), поэтому большинство новых лямбда-зондов имеют нагревательные элементы, заключенные в керамику, которые быстро нагревают керамический наконечник до температуры. Более старые датчики без нагревательных элементов в конечном итоге будут нагреваться выхлопными газами, но между моментом запуска двигателя и достижением теплового равновесия компонентов выхлопной системы существует определенная временная задержка. Время, необходимое для того, чтобы выхлопные газы довели датчик до температуры, зависит от температуры окружающего воздуха и геометрии выхлопной системы.Без нагревателя процесс может занять несколько минут. Есть проблемы с загрязнением, которые приписываются этому медленному процессу запуска, в том числе аналогичная проблема с рабочей температурой каталитического нейтрализатора.

К зонду обычно подключаются четыре провода:
1. два для выхода лямбда и
2. два для мощности нагревателя,

, хотя некоторые автопроизводители используют металл в качестве заземления для сигнала сенсорного элемента, в результате чего получается три провода. Ранее датчики без электрического нагрева имели один или два провода.

ТИПЫ КИСЛОРОДНЫХ ДАТЧИКОВ

1. Циркониевый датчик

Лямбда-зонд из диоксида циркония или диоксида циркония основан на твердотельном электрохимическом топливном элементе, который называется ячейкой Нернста. Его два электрода обеспечивают выходное напряжение, соответствующее количеству кислорода в выхлопных газах по отношению к количеству кислорода в атмосфере.

Выходное напряжение 0,2 В (200 мВ) постоянного тока представляет «бедную смесь» топлива и кислорода, где количество кислорода, поступающего в цилиндр, достаточно для полного окисления монооксида углерода (CO), образующегося при сжигании воздуха и топлива. , в диоксид углерода (CO2).Выходное напряжение 0,8 В (800 мВ) постоянного тока представляет собой «богатую смесь», в которой много несгоревшего топлива и мало остаточного кислорода. Идеальная уставка составляет приблизительно 0,45 В (450 мВ) постоянного тока. Здесь количество воздуха и топлива находится в оптимальном соотношении, которое составляет ~ 0,5% обедненной смеси от стехиометрической точки, так что выхлопные газы содержат минимальное количество оксида углерода.

Напряжение, создаваемое датчиком, нелинейно по отношению к концентрации кислорода. Датчик наиболее чувствителен вблизи стехиометрической точки (где λ = 1) и менее чувствителен при очень бедной или очень богатой смеси.
ЭБУ - это система управления, которая использует обратную связь от датчика для регулировки топливно-воздушной смеси. Как и во всех системах управления, важна постоянная времени датчика; способность ЭБУ управлять соотношением топливо-воздух зависит от времени отклика датчика. Датчик старения или загрязнения обычно имеет более медленное время отклика, что может снизить производительность системы. Чем короче период времени, тем выше так называемый «перекрестный счет» и тем быстрее реагирует система.

Датчик имеет прочную конструкцию из нержавеющей стали внутри и снаружи.Благодаря этому датчик обладает высокой устойчивостью к коррозии, что позволяет эффективно использовать его в агрессивных средах с высокой температурой / давлением.
Датчик из диоксида циркония относится к «узкополосному» типу, имея в виду узкий диапазон соотношений топливо / воздух, на который он реагирует.

2. Широкополосный циркониевый датчик

Вариант датчика из диоксида циркония, называемый «широкополосным» датчиком, был представлен NTK в 1992 году и широко используется в системах управления двигателем автомобилей, чтобы удовлетворить постоянно растущие требования к лучшей экономии топлива, снижению выбросов и лучшему двигателю. производительность в то же время.Он основан на плоском элементе из диоксида циркония, но также включает электрохимический газовый насос. Электронная схема, содержащая контур обратной связи, управляет током газового насоса, чтобы поддерживать постоянную мощность электрохимической ячейки, так что ток насоса напрямую указывает на содержание кислорода в выхлопных газах. Этот датчик исключает циклическую смену обедненной и богатой смеси, присущую узкополосным датчикам, позволяя блоку управления гораздо быстрее регулировать подачу топлива и угол зажигания двигателя. В автомобильной промышленности этот датчик также называют датчиком UEGO (универсальный датчик кислорода в выхлопных газах).Датчики UEGO также широко используются при настройке динамометрических стендов на вторичном рынке и в высокопроизводительном оборудовании для отображения воздуха и топлива водителя. Широкополосный циркониевый датчик используется в системах стратифицированного впрыска топлива, а теперь может также использоваться в дизельных двигателях, чтобы соответствовать предстоящим ограничениям выбросов EURO и ULEV.

Широкополосные датчики состоят из трех элементов:
1. ионно-кислородный насос,
2. узкополосный циркониевый датчик,
3. нагревательный элемент.

Схема подключения широкополосного датчика обычно состоит из шести проводов:
1.резистивный нагревательный элемент,
2. резистивный нагревательный элемент,
3. датчик,
4. насос,
5. калибровочный резистор,
6. общий.

3. Датчик титана

Менее распространенный тип узкополосных лямбда-зондов имеет керамический элемент из титана (диоксида титана). Этот тип не генерирует собственное напряжение, но изменяет свое электрическое сопротивление в зависимости от концентрации кислорода. Сопротивление титана зависит от парциального давления кислорода и температуры.Поэтому некоторые датчики используются с датчиком температуры газа для компенсации изменения сопротивления из-за температуры. Значение сопротивления при любой температуре составляет примерно 1/1000 от изменения концентрации кислорода. К счастью, при λ = 1 происходит большое изменение кислорода, поэтому изменение сопротивления обычно в 1000 раз между богатым и бедным, в зависимости от температуры.

Поскольку диоксид титана является полупроводником N-типа со структурой TiO2-x, x-дефекты в кристаллической решетке проводят заряд.Так, для выхлопа с высоким содержанием топлива (более низкая концентрация кислорода) сопротивление низкое, а для выхлопа с обедненным топливом (более высокая концентрация кислорода) сопротивление высокое. Блок управления питает датчик небольшим электрическим током и измеряет результирующее падение напряжения на датчике, которое варьируется от почти 0 вольт до примерно 5 вольт. Подобно датчику из диоксида циркония, этот тип является нелинейным, поэтому его иногда упрощенно называют двоичным индикатором, показывающим либо «богатый», либо «обедненный». Датчики из диоксида титана дороже, чем датчики из диоксида циркония, но они также быстрее реагируют.

В автомобильной промышленности датчик из титана, в отличие от датчика из диоксида циркония, для правильной работы не требует эталонного образца атмосферного воздуха. Это упрощает проектирование узла датчика против загрязнения водой. В то время как большинство автомобильных датчиков являются погружными, датчики на основе диоксида циркония требуют очень небольшого поступления эталонного воздуха из атмосферы. Теоретически жгут проводов датчика и разъем заделаны. Предполагается, что воздух, который просачивается через жгут проводов к датчику, исходит из открытого места в жгуте - обычно ЭБУ, который расположен в замкнутом пространстве, таком как багажник или салон автомобиля.

Лямбда - Шестнадцатеричный код

Фон

Лямбда-датчики также известны как датчики кислорода, поскольку они измеряют долю кислорода в выхлопных газах. Эти датчики были впервые разработаны Robert Bosch GmbH много десятилетий назад.

Они используются для определения соотношения воздух-топливо и, в свою очередь, являются неотъемлемой частью замкнутого цикла процесса впрыска топлива, поскольку их измерение в реальном времени определяет, работает ли смесь сгорания в режиме RICH или LEAN, и используя Эта обратная связь позволяет ЭБУ адаптировать импульсы форсунок для достижения оптимального сгорания...

Соотношение воздух-топливо для теоретического оптимального сгорания в бензиновых двигателях составляет 14,7 частей воздуха на 1 часть топлива или 14,7: 1, где части измеряются в массе воздуха и массе топлива. Это теоретическое оптимальное соотношение известно как стехиометрическое соотношение воздух-топливо.

График слева взят из документа Bosch « « Лямбда-датчики », тип LSM 11 »

БОГАТАЯ смесь вызывает потребность в кислороде в датчике и, таким образом, проявляется в виде более высокого напряжения датчика, чем БЕЗОПАСНОЕ. смесью, что проявляется низким напряжением на выходе датчика.Существует 2 основных типа лямбда-зондов:

  • Узкополосные датчики и
  • Широкополосные датчики

Это ясно изображено на графике и составляет основу для понимания графиков напряжения кислородного / лямбда-датчика на основе значений журнала GS-911 в реальном времени.

Страницы Wikipedia Oxygen Sensor и Wikipedia AFR-sensor являются хорошим источником базовой информации по общей теории и подробным сведениям о том, как работают лямбда-датчики.

Типичные графики напряжения лямбда

НЕТ ИДЕАЛЬНОГО графика... вот почему мы НЕ МОЖЕМ дать вам справочный график с инструкциями: « Вот как он должен выглядеть, и если он не ТОЧНО выглядит так, значит, проблема! ». Однако, как только вы поймете основы функционирования, вы сможете принять обоснованное решение относительно уместности и правильности того, что вы видите на графиках ...! Как правило, узкополосные лямбда-датчики могут измерять только небольшую область по обе стороны от стехиометрического отношения, а выходное напряжение ограничено диапазоном от нуля до 1 вольт.Выходной сигнал обычно выражается в милливольтах (мВ).

Электронный блок управления (ЭБУ) измеряет напряжение лямбда и использует его для систематического увеличения ширины импульса форсунки (следовательно, эффективного количества топлива) до тех пор, пока оно не превысит установленное среднее значение выше номинальной рабочей точки ... «более богатая» максимальная настройка, он начинает уменьшать базовое значение импульса форсунки до тех пор, пока не достигнет минимального «обедненного порога», прежде чем он снова начнет повторять цикл, при этом ЭБУ пытается поддерживать соотношение воздух-топливо на его заранее заданном значении. точку, отклоняясь от предварительно определенной уставки...

Вооружившись вышеуказанными знаниями, а также зная, что некоторые ЭБУ имеют минимальные уставки 150 или 200 мВ и максимальные уставки в диапазоне от 600 мВ до очень распространенных 700 мВ, некоторые из которых достигают 800 мВ, мы можем использовать это, чтобы сделать общее, но обоснованное решение о достоверности сигнала напряжения лямбда-зонда.

Ниже приведен график журнала напряжения лямбда-зонда одного из датчиков S1000RR.

Это совершенно нормальный сигнал напряжения датчика кислорода... И чтобы показать, насколько сильно они могут отличаться, вот еще один, на этот раз один из сигналов лямбда-напряжения HP2. Вы видите разницу, но и этот тоже хорош!

Оценка работоспособности кислородного датчика при рабочей температуре

Я выбрал этот конкретный график HP2, поскольку он также показывает запуск функции замкнутого цикла ... что подводит меня к еще одному очень важному моменту ...

ПРИМЕЧАНИЕ: Контроллер двигателя работает в разомкнутом контуре во время цикла обогащения при холодном пуске, поэтому работу лямбда-зонда следует оценивать только при рабочей температуре!

Что мы ищем?

Короче ищем:

  • колебательный сигнал, который колеблется от 200 мВ до более 600/700 мВ

Чего мы не хотим видеть?

Мы не хотим видеть следующее:

  • ровная линия, не вокруг центра, не высоко, не низко... (при рабочей температуре)
  • ровная восходящая или нисходящая линия
  • осциллирующий график, медленно восходящий или нисходящий
  • - осциллирующий график с небольшими колебаниями, которые почти не достигают пороговых значений 200 мВ и 700 мВ.

Пример неверного сигнала

Здесь у нас есть сигнал от того же HP2, что и выше, но от лямбда-зонда другого цилиндра.

Вы можете четко увидеть разницу с предыдущим сигналом и тот факт, что что-то определенно не так, выскакивает на вас!

Далее возникает вопрос: неисправен ли датчик или это правильное измерение очень неправильного соотношения воздух-топливо? На этот вопрос не всегда легко ответить, и он не является частью этого обсуждения, однако я все же хотел бы уделить этому немного времени.Ключ к BE LOGICAL и SYSTEMATIC о вашем подходе к поиску неисправностей! (это верно для ЛЮБОГО типа диагностики!). В этом случае вам следует взглянуть на обстоятельства. Если работа на холостом ходу грубая, скорее всего, у вас действительно очень плохое соотношение воздух-топливо (используя ваши знания, полученные выше, поскольку напряжение очень низкое, это действительно очень бедная смесь). Если вы подозреваете лямбда-зонд, вы можете поменять местами два лямбда-зонда.

Однако в приведенном выше случае датчик был хорош - как и в большинстве случаев... и соотношение воздух-топливо действительно было очень бедным, по-видимому, из-за "заедания дроссельной заслонки".

Коэффициент регулирования лямбда

Сначала некоторые определения

Лямбда - соотношение воздух / топливо.

Коэффициент лямбда-регулирования (также известный как коэффициент избытка воздуха) - это отношение между фактическим фактическим и идеальным соотношением воздух / топливо.

Таким образом, лямбда> 1 подразумевает смесь LEAN, и наоборот, лямбда <1 означает смесь RICH.

Ниже приведен график коэффициента лямбда-регулирования для одного из кислородных датчиков S1000RR. Мы можем видеть, что он постоянно работает немного ниже 1, таким образом, немного обогащен (хорошо известно, что немного более высокое, чем стехиометрическое, соотношение воздух-топливо дает более высокую выходную мощность).

По очевидным причинам ЭБУ может изменять или изменять время впрыска / ширину импульса только в определенных пределах, которые в случае большинства мотоциклов BMW составляют либо + - 0,20, либо + -0,25, что позволяет ЭБУ эффективно контролировать коэффициент регулирования лямбда. от 0.От 8 до 1,2 или от 0,75 до 1,25 соответственно.

Аналогичным образом мы видим коэффициенты регулирования лямбда для обоих датчиков кислорода в нашем примере HP2. Совершенно очевидно, что синий цилиндр кажется вполне нормальным, и столь же очевидно, что мы можем видеть, что красный цилиндр определенно работает на обедненной смеси, большую часть времени застревая при максимальном коэффициенте компенсации 1,25.

Лямбда-зонд Обогрев

Для эффективной работы лямбда-зондов их необходимо нагреть примерно до 316 градусов Цельсия.Для этого у них есть внутренние нагревательные элементы, которые контролируются ЭБУ. Большинство ЭБУ показывают состояние лямбда-нагрева (1 = ВКЛ и 0 = ВЫКЛ). Ниже показан график состояния нагрева одного из цилиндров HP2, который мы обсуждали выше.

Я надеюсь, что приведенной выше информации достаточно, чтобы сформировать достаточное общее представление о лямбда-датчике, о том, как он соотносится с коэффициентом регулирования лямбда и как, в свою очередь, используется ЭБУ для поддержания работы двигателя в соответствии с заданным соотношением воздух-топливо. рабочая точка.У вас под рукой много информации ... Интернет - обширный источник информации ... и, используя терминологию, полученную из этой статьи, а также 2 страниц вики в качестве отправной точки, вы скоро можете стать эксперт по лямбда-датчикам и понимание их интеграции в большой процесс впрыска топлива.

Объяснение

планарных датчиков кислорода - Auto Service World

Thought - не единственный производитель планарных датчиков кислорода - практически каждый крупный поставщик производит их для своих заказчиков оригинального оборудования - заявление Delphi о том, что он будет предлагать планарные датчики кислорода как часть своего Предложение на вторичном рынке подчеркивает тенденцию к постоянному развитию кислородных датчиков.

В 1976 году был представлен датчик без подогрева. В 1982 году прибыл датчик с подогревом. Планарный датчик вышел на уровень оригинального оборудования в 1994 году, а в 1998 году появился планарный широкополосный лямбда-датчик.

Ветераны за прилавком наверняка помнят самые ранние предложения, которые первоначально назывались лямбда-датчиками из уважения к их европейскому происхождению («лямбда» - это греческая буква, используемая для обозначения топливно-воздушной смеси в автомобильных кругах). Эти ранние датчики были довольно грубым делом по сравнению с современными аналогами.

Первые кислородные датчики полагались на тепло двигателя только для достижения надлежащей рабочей температуры, примерно от 325 до 350 градусов C (для достижения которой могло потребоваться некоторое время), и только тогда могли подавать сигнал напряжения на ЭБУ, чтобы позволить топливно-воздушная смесь должна быть изменена. Чтобы усугубить травму, их жизнь была намного короче, чем мы привыкли сегодня.

С технической точки зрения, даже когда в последующих конструкциях был добавлен нагрев, чтобы сократить время между запуском двигателя и правильной работой (что должно уменьшить выбросы), работа была в основном такой же.

Датчик O2 основан на том факте, что, когда керамический датчик из диоксида циркония достигает рабочей температуры, он регистрирует разницу между содержанием кислорода в наружном воздухе (известная константа) и содержанием кислорода в выхлопных газах. Эта разница излучается как сигнал напряжения. Если наблюдается нехватка свободного кислорода, например, когда в выхлопе присутствует несгоревшее топливо, датчик генерирует напряжение выше 0,8 вольт; если присутствует свободный кислород, датчик генерирует нулевое напряжение.Сигнал отправляется в ЭБУ, который измеряет электрические точки переключения напряжения кислородного датчика при изменении содержания кислорода в выхлопных газах. Компьютер двигателя считывает этот сигнал и соответствующим образом регулирует топливную смесь, чтобы поддерживать идеальное соотношение воздух-топливо, называемое стехиометрическим, 14,7: 1.

Для более быстрого достижения рабочей температуры было разработано устройство с новой сенсорной технологией «быстрого отключения света», первое, в котором использовался планарный сенсорный элемент. Тесты, проведенные на датчиках Delphi в 2000 году, выявили некоторые существенные улучшения.Согласно результатам, опубликованным в документе SAE, испытания проводились в режиме открытого и закрытого контура в установившихся и переходных условиях с использованием рядного 4-цилиндрового двигателя DOHC 1996 года выпуска с двигателем объемом 2,4 литра и моноблочным каталитическим нейтрализатором. В целом датчик показал относительно быстрое время реакции для достижения рабочей температуры. В течение первых 30-секундного периода холодного пуска цикла FTP 75 регулирование с обратной связью и соотношение воздух-топливо были отрегулированы на как можно более обедненную смесь до стехиометрического отношения воздух-топливо без ущерба для управляемости.Выбросы углеводородов при выходе из двигателя для первого холодного цикла были сокращены на 8,1% за счет использования датчика и более короткого времени разомкнутого цикла. Рабочие характеристики датчика при холодном пуске позволили осуществить регулирование по замкнутому контуру менее чем за 10 секунд. Инженеры, опубликовавшие статью, заявили, что раннее регулирование с обратной связью может напрямую способствовать сокращению выбросов углеводородов.

Но в реальном мире даже датчик этого типа может считывать только хорошее / плохое и постоянно переключаться между ними, даже если он достигает цели быстрее.

В этом отношении новейший широкополосный планарный датчик кислорода действительно меняет правила игры.

Датчик кислорода этого типа не является переключателем включения / выключения; вместо этого он измеряет фактическое соотношение воздух-топливо. Это обеспечивает гораздо большую точность, а также гибкость в отображении топлива, например, со стратегиями сжигания обедненной смеси.

Чтобы получить эту дополнительную точность, этот тип датчика использует совершенно иную конструкцию и добавляет кислородный насос. Кислородный насос использует нагретые катод и анод для отвода некоторого количества кислорода из выхлопных газов в «диффузионный» зазор между двумя компонентами.Чувствительный элемент и кислородный насос соединены вместе таким образом, что требуется определенное количество тока для поддержания сбалансированного уровня кислорода в диффузионном зазоре. Величина тока, необходимая для поддержания этого баланса, прямо пропорциональна уровню кислорода в выхлопных газах. Это дает компьютеру двигателя точные измерения воздуха / топлива, необходимые для соответствия новым требованиям к выбросам.

Широкополосный датчик кислорода получает опорное напряжение от компьютера двигателя и генерирует ток сигнала, который изменяется в зависимости от топливной смеси.

Когда топливно-воздушная смесь идеально сбалансирована при 14,7: 1 (стехиометрическое соотношение и лямбда равны 2), датчик не выдает выходной ток. Когда смесь воздух / топливо богата, датчик вырабатывает «отрицательный» ток, который изменяется от нуля до примерно 2,0 миллиампер, когда лямбда равна 0,7, а соотношение воздух / топливо составляет около 11: 1.

Когда топливно-воздушная смесь обеднена, датчик вырабатывает «положительный» ток, который изменяется от нуля до 1,5 миллиампер, поскольку смесь становится почти воздушной.

Как уже отмечалось, в этих датчиках используется плоский керамический элемент из диоксида циркония, поэтому они нагреваются намного быстрее, чем датчики других типов, быстрее достигают своей рабочей температуры от 700 до 800 градусов C (примерно вдвое больше, чем у обычного датчика) и позволяют автомобиль быстрее переходит в режим замкнутого контура, что снижает выбросы при холодном запуске.

Эти датчики можно определить как имеющие пять или более проводов.

Широкополосные кислородные датчики всегда используются перед катализатором в выхлопной системе.

Лямбда-датчики - Denso

Отличия DENSO

Наши лямбда-датчики обеспечивают мониторинг смеси сгорания двигателя в режиме реального времени.

Особенности и преимущества

  • Оптимальная мощность двигателя
  • Качество и надежность оригинального оборудования
  • Широкий охват и уникальное применение для азиатских и европейских автомобилей

Корпус датчика

Лямбда-датчики

DENSO доступны в двух вариантах исполнения оригинального качества.А с датчиками DENSO корпус завершен. Нет необходимости в дополнительных деталях, таких как фланцевые переходники!

  • Фланец Корпус типа - включая фланцевую прокладку оригинального качества

Фитинг датчика

Какими бы ни были ваши потребности в установке, два варианта фитинга DENSO помогут вам каждый раз выполнять правильное подключение:

  • Датчик «Direct Fit» - с установленным штатным разъемом, готов к установке.
  • Датчик «универсальной посадки» - без разъема, что позволяет повторно использовать (и утилизировать!) Разъем старой детали.

Типы

Как и следовало ожидать, лямбда-датчики DENSO доступны для широкого спектра применений. Но они также предлагают все передовые технологии, которые вам понадобятся, чтобы найти для ваших клиентов качественные замены OEM:

  • Циркониевые датчики наперсточного и планарного типа.
  • Датчики
  • A / F * как наперстковые, так и планарные.
  • Датчики титана.

* Почему были разработаны датчики A / F (воздух / топливо)?

Технология датчика

A / F была первой в мире инновацией, разработанной DENSO, предлагая датчик с линейным выходом, который помогает автомобилям соответствовать ужесточающимся нормам выбросов, начиная с EURO 3.В этой новой системе используется датчик соотношения воздух / топливо (датчик A / F), заменяющий обычный лямбда-зонд.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *