принцип работы, бублик в АКПП, схема
Гидротрансформатор АКПП (ГДТ) — элемент трансмиссии, расположенный между двигателем и механизмом переключения передач. Агрегат работает по закону гидромеханики, и является частью гидросистемы АКПП. Узел требует регулярного техобслуживания. Чтобы его починить, придется обращаться в сервис.
Устройство гидротрансформатора АКПП
Что такое гидротрансформатор в АКПП или «бублик», как его называют механики? ГДТ — это гидропривод, который связывает двигатель и автомат без жесткого соединения. Играет роль сцепления в аналогии с МКПП.
Гидроприводы бывают двух видов: гидромуфта и гидротрансформатор. Разница между ними заключается в возможности трансформатора преобразовывать крутящий момент. В то время как гидромуфта может только передавать. «Бублик» АКПП работает в обоих режимах с автоматическим переключением, поэтому его можно назвать гибридным агрегатом.
Для чего в АКПП нужен гидротрансформатор? Узел имеет несколько назначений:
- обеспечивает бесступенчатое переключение скоростей и плавное движение автомобиля;
- гасит вибрации и удары от работы двигателя и трансмиссии, продлевая их срок службы;
- позволяет работать двигателю на холостом ходу;
- способствует торможению двигателем;
- повышает проходимость автомобиля в тяжелых условиях, непрерывно передавая крутящий момент от двигателя к колесам.
Устройство гидротрансформатора АКПП основано на законах гидравлики. Механическая сила двигателя переходит в «бублик» и превращается в гидравлическую энергию за счет движения потока жидкости в полости ГДТ. Возникает давление и кинетическая энергия, которые заставляют вращаться вал трансмиссии. А от него крутящий момент переходит в планетарный механизм переключения передач.
В теории АКПП могла бы состоять только из гидротрансформатора. Но на больших скоростях его КПД сильно снижается. Передаточное отношение «бублика» ограничено. Он не может обеспечить движение задним ходом или достаточное количество передач. Поэтому в АКПП за гидротрансформатором устанавливают планетарный редуктор, который способен получить любое передаточное число в заданном диапазоне.
Одним из передовых разработчиков восьми скоростных коробок передач с гидротрансформатором является немецкая компания ZF. Высокотехнологичные трансмиссии этого производителя устанавливают в автомобилях Jeep, BMW, Volkswagen, Audi, Jaguar, Cadillac, Infinity.
Описание конструкции гидротрансформатора
Гидротрансформатор расположен в корпусе АКПП и соединен с масляным насосом через входной вал трансмиссии. С противоположной стороны «бублик» крепится к маховику двигателя через резьбовые бобышки.
Детали гидротрансформатора АКПП находятся в герметичном кожухе, где погружены в жидкость ATF. Из-за тороидальной формы корпуса гидротрансформатора его и прозвали «бубликом». Чтобы добраться до начинки, нужно аккуратно разрезать сварной шов по экватору кожуха.
В разрезе гидротрансформатор АКПП представляет собой набор лопастных колес и муфт, установленных на одной оси:
- насосное колесо;
- турбинное колесо;
- реакторное колесо;
- обгонная муфта;
- муфта блокировки.
Насосное колесо приварено к крышке корпуса, который соединяется с коленчатым валом двигателя. Турбинное колесо конструктивно похоже на насосное и установлено напротив с небольшим зазором. Турбина жестко связана с входным валом трансмиссии.
Между насосом и турбиной стоит реактор. Он зафиксирован на муфте свободного хода, которая крепится на втулке входного вала. Муфта блокировки находится за турбиной.
На кинематической схеме изображено, как расположены основные части гидротрансформатора, и показана траектория движения потока жидкости. Конструктивно гидротрансформатор АКПП представляет собой устройство прямого хода, когда лопастные колеса заставляют жидкость циркулировать в таком порядке: насос — турбина — реактор — насос.
Гидротрансформаторы с обгонной муфтой называют комплексными.
Составные части гидротрансформатора
Основу насосного и турбинного колес гидротрансформатора составляет чаша, отлитая из легкого сплава. На внутренней и наружной поверхности чаши вырезаны пазы, между которыми расположены лопатки. Лопатки изготовлены штамповкой и соединены между собой торическим диском с помощью подгибных усиков. Дополнительно лопатки на чаше застопорены кольцом.
Кривизна чаши и сложная форма лопаток рассчитаны под требование увеличить эффективность циркуляции жидкости. Таким образом, конструкция колес обеспечивает необходимую скорость и направление движения масла.
Турбинное колесо опирается на вал посредством ступицы и подшипников скольжения или качения. Подшипник воспринимает радиальные и осевые нагрузки.
Ступица насоса обычно используется для привода масляного насоса, расположенного за гидротрансформатором. Привод срабатывает при заходе торцевых шлицев ступицы в соответствующие пазы ведущей шестерни насоса.
Реактор представляет собой 2 металлических кольца разных диаметров. Между кольцами приварены лопасти под заданным углом наклона. Окно лопатки реактора со стороны турбины шире, чем со стороны насоса. Это решение позволяет создавать необходимое давление жидкости.
Все рабочие механизмы размещенные в корпусе бублика
Реактор установлен на муфте свободного хода роликового типа. Муфта состоит из внешней и внутренней обоймы, между которыми находятся ролики и стопорные элементы. Внутренняя обойма зафиксирована на валу, а внешняя соединена с реактором. Когда ролики свободно перекатываются — обоймы вращаются независимо. При стопорении роликов пружинами обоймы сцепляются и могут двигаться только в направлении вала. Обгонная муфта обладает высокой нагрузочной способностью и износостойкостью
Для увеличения КПД и экономичности «бублика» в АКПП в конструкцию введена муфта блокировки. В ее состав входят: корпус, поршень с фрикционным диском и ступица. Корпус выполнен в виде диска с пазами, в которых установлены пружины. Они выполняют роль демпфера крутильных колебаний. Поршень представляет собой круглую металлическую плиту с приклеенным фрикционным диском со стороны корпуса ГДТ.
В автоматах с 6 ступенями муфта блокировки гидротрансформатора может работать в трех состояниях: разомкнутом, с проскальзыванием и замкнутом. Режим зависит от включенной передачи, нагрузки двигателя и скорости автомобиля. Обычно при разгоне блокировка сначала работает с регулируемым проскальзыванием, а потом замыкается.
Принцип работы гидротрансформатора
Принцип работы гидротрансформатора АКПП основан на преобразовании и передаче крутящего момента от двигателя к трансмиссии через работу жидкости. Производитель подбирает ATF по вязкости, допуску на нагрузку двигателя, количеству присадок. Поэтому от рабочих свойств масла зависит качество работы «бублика» и всей АКПП.
С запуском двигателя начинает работать насосное колесо и масляный насос. В гидротрансформатор попадает масло АКПП. Под действием центробежной силы жидкость от насосного колеса захватывается из центральной оси и нагнетается лопастями к верхнему краю по часовой стрелке. Оттуда масло перебрасывается на верхние лопатки турбинного колеса. Давление «толкает» их, заставляя турбину вращаться.
Под действием центростремительной силы ATF от верхней границы турбины переходит к центру, усиливая вращение. Происходит трансформация крутящего момента. Чем выше частота оборотов коленчатого вала, тем сильнее раскручивается турбина.
Жидкость от лопаток турбины движется против часовой стрелки и возвращается к насосному колесу. При этом, давление масла противодействует движению насоса, затормаживая его. Прекращается усиление крутящего момента. С этого момента АКПП работает без гидротрансформатора: он перешел в режим гидромуфты.
Для предотвращения торможения между колесами установлен реактор. Его задача — перенаправить поток жидкости от турбины в направление движения насосного колеса. Кинетическая энергия масла турбины расходуется на увеличение частоты вращения насоса. Таким образом, реактор помогает двигателю вращать насос или гидротрансформатор в целом, усиливая крутящий момент.
Режимы работы
Изменение гидродинамической передачи в гидротрансформаторе обеспечивается установкой реактора на обгонную муфту. Это позволяет «бублику» автоматически переключаться в режим гидромуфта и гидротрансформатор.
В задачи обгонной муфты входит:
- удерживать реакторное колесо в неподвижном состоянии — режим муфты;
- приводить во вращение;
- обеспечивать свободное вращение — режим трансформатора.
Реактор свободно вращается, пока разница между скоростями насосного и турбинного колес не достигает предела. Тогда обоймы муфты стопорятся. Реактор блокируется.
Через лопасти реактора со стороны турбины проходит масла больше, чем выходит к насосу. Скорости колес выравниваются. Объем входного потока жидкости на реакторе совпадает с выходным, и муфта освобождает ректор. Так гидротрансформатор снова превращается в гидромуфту.
Проскальзывание гидротрансформатора
20% гидравлической энергии переходит в тепловую. Излишки тепла выбрасываются в радиатор охлаждения, т.е. деньги за топливо буквально вылетают на воздух.
Чтобы повысить экономичность «бублика» в АКПП, инженеры установили муфту блокировки. Она устраняет проскальзывание ГДТ и обеспечивает режимы работы:
- полное включение;
- регулируемое по пробуксовке включение;
- полное выключение.
КПД гидротрансформатора при включении блокировки достигает 90%. Чтобы увеличить показатель до 97%, для управления муфтой в схему включили клапан с электронным управлением. В некоторых моделях АКПП блокировка включается уже на 2 передаче.
Блокировка гидротрансформатора АКПП
Муфта является гидроуправляемой и работает по сигналу золотниковых клапанов, которые приводятся в действие давлением жидкости. Трансмиссионное масло поступает в полость между кожухом «бублика» и поршневой плитой, а затем в полость турбины. Фрикционный диск не касается крышки ГДТ. Крышка работает со свободным скольжением. Когда давление в полостях равны, муфта отключена.
По сигналу из гидроблока клапан переключает контур движения масла. Давление жидкости передается к поршню со стороны турбины. В камере между поршнем и крышкой «бублика» стравливается давление. Жидкость сливается через канал. Давление со стороны турбины заставляет поршень сместиться в сторону кожуха. Муфта плавно включается.
Поршневая плита вибрирует относительно ступицы, пружины на крышке блокировочной муфты деформируются. Пружинный демпфер поглощает колебания, передавая их на вал гидротрансформатора. Трение между фрикционом и кожухом растет. В результате гидротрансформатор АКПП блокируется. Между валом двигателя и турбиной установлена жесткая связь.
Режим блокировки обеспечивает спортивные характеристики автомобиля с плавным переключением скоростей в АКПП. За динамичность, комфорт и экономичность приходится платить снижением надежности и срока службы ГДТ.
При жесткой сцепке двигатель и коробка подвержены ударным нагрузкам, поскольку жидкость «бублика» не гасит удары и вибрации. Из-за высоких скоростей быстро истирается фрикцион, загрязняя масло абразивом. В результате ресурс АКПП снижается.
Управление ГДТ
Современные гидротрансформаторы АКПП находятся под управлением электронного модуля (ТСМ). Он собирает и анализирует информацию с датчиков давления, скорости вращения вала трансмиссии и других. Затем формирует импульсы, которые передаются на соленоиды в гидроблоке. Оттуда запускается алгоритм управления датчиками и клапанами.
Про масло АКПП
Рабочее тело гидротрансформатора сильно нагревается. Для охлаждения масло покидает полость «бублика» и проходит в сливной клапан. Оттуда жидкость под давлением попадает в распределительный клапан. Если датчики регистрируют повышение температуры, масло отправляется в радиатор АКПП. Охлажденная жидкость переходит в масляный насос через регулятор давления.
Эффективность ГДТ
Работу гидротрансформатора в АКПП оценивают по:
- передаточному отношению угловых скоростей его колес;
- коэффициенту трансформации, который показывает степень увеличения крутящего момента;
- коэффициенту полезного действия, определяющему энергетические свойства и экономичность;
- коэффициенту прозрачности.
Трансформация Кт зависит от диаметра «бублика», плотности масла АКПП и крутящих моментов на колесах. Максимальное значение Кт=2,5—3,0 достигается, когда турбина неподвижна. Чем выше передаточное отношение, тем ниже коэффициент трансформации. В режиме гидромуфты крутящие моменты на валах колес равны, поэтому трансформации не происходит Кт=1.
КПД гидротрансформатора зависит от соотношения мощностей, подаваемых к турбине и насосу. Показатель может достигать 97% в режиме гидромуфты, когда передаточное отношение оптимально — 0,7—0,8. В среднем КПД составляет 70—80%.
Коэффициент прозрачности П определяет, насколько ГДТ нагружает двигатель в момент изменения режима работы турбины. Для определения прозрачности нужно соотнести моменты насосного колеса при остановленной турбине и при трансформации Кт=1.
При П=1 гидротрансформатор непрозрачен. Крутящий момент турбины не влияет на работу двигателя, который находится в постоянном нагрузочном режиме. У прозрачного ГДТ П>1. Изменение нагрузки на турбинном колесе отражается на мощности двигателя. Прозрачность позволяет использовать тяговые характеристики мотора для улучшения динамики автомобиля.
Признаки неисправности
О проблемах в гидротрансформаторе сигнализирует быстрое потемнение масла после замены. Автомобиль может расходовать больше топлива и дергаться при спокойном движении. Другие признаки можно распознать по ощущениям, слуху и запаху.
Симптом | Причина |
Громкий металлический стук, скрежет при переключении передач | Разрушились лопасти колес |
Легкий металлический звук, шуршание при переключении передач | Вышли из строя опорные подшипники |
Вибрации, толчки при переключении скоростей, движение «по терке» | Проскальзывание гидротрансформатора из-за износа фрикционного слоя на муфте блокировки
|
Вибрация на скорости 50 — 70 км/ч | Неравномерное истирание фрикциона, загрязнение жидкости, забитый масляный фильтр |
Ухудшилась динамика автомобиля | Неисправна обгонная муфта |
При проверке уровня масла обнаружены частицы металла | Возможно повреждение муфты свободного хода, износ деталей |
Двигатель заглох при смене передач | Работа гидротрансформатора блокируется системой управления |
Запах расплавленной пластмассы | Перегрев гидротрансформатора. Плавление пластиковых элементов. |
Обнаружение симптомов не всегда указывает на проблему в гидротрансформаторе, поскольку причина может скрываться и в других частях коробки. Диагностика гидротрансформатора поможет определить причину и характер поломки в АКПП.
Мастер автосервиса проводит проверку по такому алгоритму:
- Собирает информацию о побеге автомобиля, сроках замены ATF, проведенных капремонтах, симптомах.
- Снимает коды неисправности с бортового компьютера.
- Осматривает АКПП.
- Ставит диагноз или проводит дополнительные тесты: меняет масло, измеряет давление, прозванивает электрические цепи.
Предварительный диагноз можно поставить и самостоятельно. Для этого нужно изучить мануалы, устройство и особенности своей АКПП.
Что в гидротрансформаторах ломается чаще всего
Муфта блокировки
Неисправности в гидротрансформаторе чаще всего возникают из-за проскальзывания или трения муфты блокировки. Фрикционный диск истирается, отслойки материала и клей попадают в масло. В результате жидкость АКПП загрязняется и перегревается. Повышается износ втулок и подшипников.
Неоднородное истирание фрикциона в ГДТ АКПП становится причиной появления вибраций при блокировке муфты. Сальники, подшипники, втулки бьются, что ведет к ускорению износа «бублика». Страдает и масляный насос, что ведет к масляному голоданию всей коробки.
Уплотнители
Другим «слабым местом» гидротрансформатора являются сальники и уплотнители. Детали изготавливают из тефлона или пластика. Они способны пройти 200 000 км. Но из-за агрессивного вождения или неудачной конструкции АКПП, уплотнители начинают протекать, быстрее стареют. Когда сальники истончаются, от них отрываются крупные фрагменты, которые засоряют масло.
Обгонная муфта
В редких случаях бывает неисправна обгонная муфта. Ролики изнашиваются, начинают проскальзывать или заклинивать. В результате муфта не может блокировать реактор. ГДТ не перейдет в режим гидромуфты. Из-за чрезмерной нагрузки обойму муфты может провернуть, а металлические продукты износа попадут в масло.
Как влияет на АКПП
«Заболевания» гидротрансформатора отражаются на других узлах КПП, выводят их из строя. «Бублик» — главный «загрязнитель» и «нагреватель» АКПП. Масло разносит по коробке фрикционную и металлическую грязь. Забивает шлаками каналы гидроблока, соленоиды, клапаны, датчики. В результате переключение передач происходит с задержкой, растет расход топлива, истираются детали автомата. Поэтому при появлении посторонних звуков, вибраций в автоматической коробке, нужно сразу проверять состояние гидротрансформатора в АКПП. Это поможет его спасти с минимальными расходами.
Ремонт ГДТ
В ремонт гидротрансформатора АКПП в сервисном центре входит:
- съем и разбор автомата;
- слив жидкости из гидротрансформатора;
- разрез сварочного шва на токарном станке;
- мытье и очистка составных деталей от стружки и масляных пятен;
- проведение внешнего осмотра;
- замена фрикционного диска, уплотнителей, даже если они в целом состоянии;
- замена подшипников, обгонной муфты, ступицы при необходимости;
- сборка, сварка корпуса;
- проверка биения, давления, герметичности;
- установка ГДТ в АКПП;
- балансировка в сборе.
От качества и точности выполненных работ зависит дальнейший срок службы гидротрансформатора. Для ремонта нужны специализированные инструменты, станки, стенды, знания особенностей конкретной АКПП. В случае неполадок нужно обращаться в узконаправленный сервис, который «набил руку» на ремонте определенной модели.
Агрегат не всегда можно починить. Для особо редких экземпляров сложно найти замену. В этому случае принимают решение о восстановлении деталей ГДТ.
Средняя цена за ремонт «бублика» АКПП составляет 5000 р. Замена — от 50 000 р. Цены зависят от модели агрегата и сложности поломки.
Рекомендации по обслуживанию и эксплуатации ГДТ
Применение «бублика» в трансмиссии упрощает и облегчает управление автомобилем даже в тяжелых условиях. Однако, АКПП с гидротрансформатором при сравнении с МКПП проигрывает по параметрам:
- низкий КПД без применения блокировки;
- расход топлива на 10% выше;
- малый диапазон изменения крутящего момента «бублика» и необходимость установки планетарного редуктора;
- сложность конструкции и обслуживания;
- высокая стоимость.
Чтобы стать постоянным клиентом мастерской по ремонту гидротрансформатора АКПП, нужно соблюдать два правила:
- как можно чаще вжимать педали газа и тормоза в пол, чтобы быстрее истереть фрикцион муфты блокировки в абразивную пудру, загрязнить масло и ускорить износ автомата;
- никогда не менять жидкость, особенно, если она черная, горячая, а уровень выше или ниже нормы.
Если серьезно, то ГДТ выходит из строя медленно и незаметно для водителя. Явный сигнал неисправности — течь масла в месте соединения гидротрансформатора и двигателя. Другие признаки неполадки могут проявляться уже на стадии распространения «заболевания» по все АКПП. Поэтому, если автомобиль ведет себя странно: медленно разгоняется, увеличил расход топлива, при движении появляется вибрация — нужно отправить машину на проверку.
Перед самостоятельным осмотром коробки нужно изучить устройство и особенности конкретной модели АКПП. Чтобы добраться до гидротрансформатора, придется снимать всю коробку. Без распила и разборки отремонтировать «бублик» не получится. Промывка гидротрансформатора растворителями может повредить колесам и «разъесть» сальники.
После ремонта и сборки АКПП необходима балансировка гидротрансформатора. Не все сервисы проводят эту операцию, поскольку она трудоемка и проблематична. ГДТ работает на высоких оборотах — дисбаланс или нарушение соосности валов выведут из строя не только «бублик», но и всю АКПП.
Срок службы современного гидротрансформатора АКПП составляет 150 — 200 000 км. Ресурс сократится до 100 000, если менять масло. Фрикционы истираются к 120 — 150 000 км и тоже требуют замены. После 200 000 км «бублику» с регулируемым проскальзыванием прописан плановый капремонт.
akppoff.ru
Гидротрансформатор АКПП «Бублик»- Устройство. Принцип работы. Основные проблемы
Гидротрансформатор выполняет важную роль в автоматической коробке передач, он занимает пространство между корпусом силового агрегата и трансмиссией авто. Гидротрансформатор в АКПП работает, как муфта сцепления – передает вращение от работающего мотора непосредственно на автомат. Внешнее сходство гидротрансформатора АКПП с характерной формой тора позволяет называть данное устройство бубликом. Гидротрансформатор автоматической коробки передач – составная часть гидросистемы трансмиссии. Управление его работой осуществляется при помощи специального гидроблока.
Устройство гидротрансформатора коробки-автомат
Основное предназначение гидротрансформатора АКПП – это обеспечение плавного и своевременного перехода автоматической трансмиссии с одной передачи на другую. Первые образцы гидротрансформаторов для КПП были созданы в ХХ веке. С целью модернизации устройства ГТР, применялись новые технологии. Гидротрансформаторы АКПП становились более сложными по конструкции.
Помимо обеспечения плавности перехода на различные передачи, новые гидротрансформаторынаделены дополнительной функцией сцепления. При этом в момент переключения скоростей (понижающей либо повышающей) гидротрансформатор размыкает непосредственную связь двигателя внутреннего сгорания с коробкой передач. Гидротрансформатор АКПП частично принимает на себя силу крутящего момента. Именно это обеспечивает уникальную плавность при переключении скоростей.
В отличие от механической КПП, в автомате передача крутящего момента осуществляется не под воздействием механического трения между фрикционными дисками гидротрансформатора АКПП. Соединение двигателя и автоматической коробки передач происходит, благодаря давлению трансмиссионной жидкости. Срабатывает эффект вращения мельницы от ветра.Устройство гидротрансформатора обеспечивает сохранение целостности автоматической коробки и защиту от механических повреждений за счет важной функции – амортизации.
Фрикционные диски гидротрансформатора АКПП образуют сборный пакет, состоящий из деталей мобильного и неподвижного типов. При включении передачи в магистралях создается необходимое давление. При помощи специального устройства – гидравлического толкателяфрикционы гидротрансформатора АКПП взаимно сжимаются, включается заданная скорость.
Как действует гидротрансформатор АКПП
Современный гидротрансформатор блокируется при сравнивании скоростей оборотов валов – входного и выходного. На практике это случается после развития скорости транспортного средства, равной более 70 км/час. Тормозная накладка поршня гидротрансформатора замедляет вращение масляной жидкости. Валы двигателя внутреннего сгорания и коробки передач взаимно фиксируются. Силовой агрегат и трансмиссия образуют единое целое, происходит синхронное вращение валов.
Когда гидротрансформатор полностью передает вращение на АКПП от силового агрегата, потери мощности равны нулю. Данная функция гидротрансформатора напоминает действие педали механизма сцепления на коробке перемены передач механического типа.
Во время работы гидротрансформатора кинетическая энергия двигателя расходуется на движение масла, которое разогревается от трения. При взаимном касании фрикциона со стальным диском происходит интенсивное истирание накладки, фрагменты износа в виде пыли попадают в масляный состав гидротрансформатора. Стабильность работы автоматической трансмиссии и ходовой части находится в прямой зависимости от степени износа фрикционных накладок и смазочного материала.
Описание конструкции гидротрансформатора АКПП
Гидротрансформатор АКПП передает мощность от двигателя внутреннего сгорания непосредственно на узлы и детали автоматической трансмиссии. Принцип работы АКПП –гидротрансформатор не только передает вращение на коробку передач, он эффективно погашает амплитуду вибраций и сводит к минимуму силы механических ударов со стороны маховика.
Составные части гидротрансформатора:
- Насосное и турбинное колеса.
- Блокировочная муфта.
- Насос.
- Реакторное колесо.
- Муфта свободного хода.
Все рабочие механизмы размещены в корпусе устройства гидротрансформатора:
- насос напрямую работает от коленвала движка;
- турбина сопряжена с шестеренками АКПП;
- реакторное турбинное колесо – с турбиной и насосом;
- в гидротрансформатор вставлены уникальные лопасти оригинальной конфигурации;
- масло движется по внутреннему пространству коробки, благодаря гидротрансформатору;
- назначение блокировочной муфты – блокировать гидротрансформатор в заданных режимах;
- муфта свободного хода вращает реакторное колесо в противоположном направлении.
Принцип работы гидротрансформатора
Работа «бублика» осуществляется по замкнутому циклу. Смазочное вещество является главным рабочим материалом гидротрансформатора. Его вязкостные характеристики существенно отличаются от свойств масла, используемого в МКПП. При работе гидротрансформатора АКПП смазочное вещество под воздействием насосного колеса принудительно подается на лопатки реактора и турбины. Лопатки создают дополнительные завихрения и ускоряют движение масла,скорость вращения рабочих колес гидротрансформатора существенно падает, момент соответственно возрастает.
Ускорение вращения коленвала способствует выравниванию скоростей колеса насоса и турбины гидротрансформатора. При большой скорости автомобиля гидротрансформатор только передает крутящий момент по аналогии с работой гидромуфты. При блокировке ГТР вращение передается напрямую от силового агрегата на АКПП.
При переходе на другую передачу элементы гидротрансформатора разъединяются. Процесс сглаживания угловых скоростей возобновляется до окончательного выравнивания вращенияработающих турбин.
Функционирование гидротрансформатора происходит под постоянным контролем электронного блока управления ЭБУ. Датчики, установленные на гидротрансформаторе, подают сигналы на ЭБУ. Исходя из поступающих данных, формируются выходные управляющие команды. Если электронные приборы сообщают об ошибке, это означает, что возникли какие-то проблемы с ГТР.
Важно: Признаки неисправностей гидротрансформатора АКПП могут проявляться как в механической, так и электронной частях механизма. При экстренной остановке коробки-автомата необходимо провести тщательную диагностику с последующим ремонтом элементов гидротрансформатора.
На представленной схеме показано в разрезе, из чего состоит гидротрансформатор автоматической коробки перемены передач.
Спираль справа – схематическое изображение траектории движения масла внутри корпуса гидротрансформатора.
Здесь изображен принцип работы гидротрансформатора в различных режимах.
Признаки неисправности гидротрансформаторов АКПП
Гидротрансформатор занимает лидирующие позиции по надежности среди различных узлов и деталей АКПП. Он полностью вырабатывает заявленный эксплуатационный срок. Однако, это не означает, что ГТР вечен. С помощью характерных симптомов опытные водители могут определить место возможных поломок в гидротрансформаторе и автоматической коробке передач.
Признаки неисправности гидротрансформатора:
- Возникновение характерного звука (шуршащего, механического) при переключении скоростей. Этот малозаметный звук уходит, когда увеличиваются обороты, и машина ускоряется. Данный симптом указывает на деформации опорных игольчатых подшипников гидротрансформатора.
- При громком стуке металла нужно проверить состояние лопастей и колеса гидротрансформатора в сборе.
- Вибрации коробки передач на скорости 60 – 90 км/час (причина – неравномерное истирание фрикционов системы блокировки).
- Загрязнение масла (запах гари, темный оттенок, густая консистенция).
- Перегрев гидротрансформатора.
- Засорение клапана гидроблока.
- Снижение уровня трансмиссионного масла.
- Проблемы с динамикой машины (обгонная муфта нуждается в замене).
- Неожиданная остановка транспортного средства означает, что повреждены шлицы на турбинном колесе гидротрансформатора. При этом требуется установить новые шлицы или полностью менять деформированное колесо на новый механизм.
- Глохнет двигатель при переходе на другую передачу. Здесь виновата управляющая автоматика.
Появившиеся признаки и неполадки в гидротрансформаторе АКПП игнорировать не рекомендуется. Если вовремя не заменить изношенный фрикцион блокировки, гидротрансформатор начнет чрезмерно перегреваться, выходной вал коробки передач – вибрировать, масляный насос преждевременно выйдет из строя. Соответственно, прекратится подача масла в гидроблок и к пакетам сцепления АКПП.
Совет: При смене масляного фильтра рекомендуется производить полную замену масла в автоматической коробке передач и двигателе внутреннего сгорания одновременно. В случае, когда на контрольном щупе замечены следы пыли алюминия, следует проверить муфту свободного хода, которая изготовлена из данного материала, а также степень выработки торцовой шайбы.
Если на остановке при работающем моторе остро ощущается запах оплавленного пластика, это свидетельствует о чрезмерном перегреве гидротрансформатора. Основная причина повышения температуры ГТР – снижение объема смазочного материала (эффект масляного голодания гидротрансформатора и автоматической коробки передач). Охлаждающая система автоматической коробки передач тоже часто отказывает в работе. Причина дефекта СО кроется в чрезмерной засоренности теплообменника гидротрансформатора. После замены масла и тщательного обследования системы охлаждения неприятный запах гидротрансформатора улетучится.
Ремонт ГТР
Для многих автовладельцев ремонт гидротрансформатора АКПП является сложной процедурой.Не все люди обладают необходимыми знаниями, свободным временем, желанием, чтобы качественно восстановить функции гидротрансформатора своими руками. Самая большая сложность в ремонте гидротрансформатора состоит в его демонтаже с автомобиля. Профессиональные механики обладают набором специальных инструментов и приспособлений, чтобы благополучно снять гидротрансформатор с коробки передач.
Непосредственный ремонт гидротрансформатора АКПП начинается с механического разрезания корпуса на токарном станке и внимательной диагностики состояния каждого механизма. В процессе ремонта гидротрансформатора необходимо заменить следующие элементы:
- корпус бублика;
- сальники;
- уплотнительные кольца.
Перед разрезанием и диагностикой демонтированного гидротрансформатора рекомендуется слить масло в подготовленный тазик, а также тщательно промыть фрикционы и другие составляющие устройства.
Важно: Кольца и уплотнительные сальники гидротрансформатора необходимо менять на новые детали, даже при кажущемся удовлетворительном их состоянии. Во избежание протечек смазочного материала, устанавливать старые уплотнения категорически не рекомендуется.
Замена гидротрансформатора – лучшее решение. Однако, подавляющее большинство владельцев авто склоняются к тому, чтобы не покупать новый корпус или гидротрансформатор АКПП в сборе. В этом случае производится сваривание частей корпусной детали. При этом соблюдается главное условие: обеспечение абсолютной герметичности сварного шва корпуса гидротрансформатора. После установки отремонтированного устройства на автоматическую коробку передач производится балансировка этого бублика в сборе.
Мероприятие по замене гидротрансформатора АКПП сопровождается частичной или полнойзаменой трансмиссионного масла во всей системе.
Случаются поломки гидротрансформатора АКПП, которые не подлежат восстановлению. Автомеханики рекомендуют установить новый гидротрансформатор взамен поврежденного механизма.
Совет: Опытные мастера утверждают, ремонт гидротрансформатора автоматической коробки передач не отличается большой сложностью. Однако, перед самостоятельным проведением восстановительных работ в условиях гаража автовладельцам нужно внимательно ознакомиться с особенностями конструкции гидротрансформатора, методами диагностики, ремонта и пр. Для успешного проведения ремонта гидротрансформатора своими руками не помешает обзавестись специальными инструментами и необходимым оборудованием.
Чтобы увидеть, как производится ремонт гидротрансформатора АКПП на одном из специализированных предприятий, предлагается ознакомиться с материалами видео ролика, посвященного данной теме https://www.youtube.com/watch?v=hNXUsosCFh5.
Что в гидротрансформаторах ломается чаще и быстрее всего
Износ тормозной прокладки фрикциона – наиболее часто является причиной, приводящей к ремонту гидротрансформатора:
- Изношенная прокладка удаляется.
- Место ее расположения тщательно очищается от засохшего клеевого состава.
- Наносится новый клеевой состав.
- Устанавливается новая фрикционная прокладка.
Замена прокладки гидротрансформатора необходима для обеспечения герметичности системы и предотвращения утечек трансмиссионного масла. Если ее не заменить вовремя, возникают неприятные последствия:
- элементы износа в виде мелких кусочков заполняют масляные каналы в гидроплите;
- масляное голодание гидротрансформатора;
- рост температуры;
- повышенный износ сальников, втулок;
- проскальзывание стертой муфты блокирования;
- выход из строя электромагнитных соленоидов и электронных приборов;
- деформации фрикционных накладок гидротрансформатора;
- преждевременное разрушение сопряженных металлических узлов и деталей вследствие
- вибрационных колебаний изношенных муфт (старение железа).
Прочие поломки гидротрансформаторов АКПП
Автомеханики сервисных компаний в процессе диагностики ГТР часто выявляют дополнительные дефекты в гидротрансформаторах автоматических коробок передач:
- Деформации и поломка лопастей гидротрансформатора.
- Износ ступицы вследствие работы при повышенных температурах.
- Нарушение блокировки, заклинивание муфты обгона.
- Разрушение подшипников.
- Прогорание корпуса гидротрансформатора АКПП.
Почти все перечисленные дефекты выявляются только при вскрытии корпусной детали гидротрансформатора. После определения поломок производится их замена на новые рабочие элементы.
Если ремонт гидротрансформатора производится в условиях специализированных мастерских, оснащенных современным оборудованием, технологическими приспособлениями, оригинальными запчастями, восстановленный гидротрансформатор будет служить в течение длительного срока. Время эксплуатации отремонтированного механизма составляет около 80% от первоначального ресурса. Частичная либо полная замена трансмиссионного масла также входит в перечень ремонтных услуг. Длительность ремонта гидротрансформатора автоматической коробки передач в среднем занимает три рабочих дня.
Рекомендации по обслуживанию и эксплуатации ГТР автоматических коробок передач
По мнению квалифицированных специалистов, поломанный гидротрансформатор невозможно полноценно восстановить без разрезания корпуса.
При самостоятельном обслуживании бублика в гаражных условиях нужно избегать применения концентрированных растворителей и прочих чистящих, моющих средств. Это вызвано тем, что структура резиновых уплотнителей гидротрансформатора быстро разрушается под воздействием агрессивных веществ.
motoran.ru
Гидротрансформатор АКПП | Признаки неисправности
По мере развития технологии конструкция усложнялась и модернизировалась. В настоящее время трансформатор на автоматической коробкой передач выполняет функции сцепления. То есть во время приключений передач данный элемент размыкает связь коробки с двигателем. Сразу же после включения повышающей или понижающей передачи гидротрансформатор берет на себя часть крутящего момента, что позволяет обеспечить максимально плавное переключение ступеней.
Принцип работы | Общая информация | Устройство |
Конструкция гидротрансформатора для автоматической коробки передач состоит из трёх колец с лопастями. Все три кольца согласно вращаются и располагаются в одном корпусе. Внутри корпуса находится рабочая жидкость, которая позволяет смазывать и охлаждать подвижные элементы. Насаживается гидротрансформатор на коленчатый вал, и далее соединяется непосредственно с коробкой передач. Рабочая жидкость нагнетается внутрь корпуса устройства при помощи специальной помпы. Помпа позволяет обеспечить необходимое давление, а при проблемах с герметичностью конструкции появляются активные утечки рабочей жидкости, что в свою очередь приводит к повреждению механических вращающихся элементов.
Современные гидротрансформаторы, которые используются на автомобилях с АКПП, имеют полностью компьютерное управление, а многочисленные датчики следят за давлением и скоростью движения валов внутри ядра трансформатора. Необходимо сказать, что подобное усложнение конструкции привело к снижению надёжности устройства и на устройство гидротрансформатора в целом. В особенности на эксплуатационный срок и показатели надёжности сказывается эксплуатация в максимально жёстких режимах, что характерно для современных автомобилей.
Работа гидротрансформатора Видео
Контроль работы гидротрансформатора и его оптимизация с работой коробки передач выполняется при помощи специального блока управления. Это полностью автоматическая система управления получает данные с многочисленных датчиков, установленных в коробке и самом гидротрансформаторе. При появлении каких-либо проблем в работе устройства автоматика выводит сообщение об ошибке. В отдельных случаях может отмечаться полная блокировка работы гидротрансформатора, что приводит к отключению двигателя при изменении режимов работы коробки. Также необходимо отметить, что большинство поломок трансформаторов происходит на механическом уровне. Поэтому при выполнении диагностики автомобиля точно определить характер и место поломки затруднительно. Необходимо разбирать повреждённый элемент и визуально проводить его осмотр. Только так возможно определить имеющуюся поломку.
Инженеры ведущих автопризводителей постоянно проводят изыскания, которые должны позволить повысить показатели надёжности техники и устранить проблемы в работе данного устройства. Появление новых конструкторских разработок позволяет существенно модернизировать гидротрансформатор, который сегодня может с легкостью использоваться на автомобилях, оснащенных дизельными моторами. Для таких дизельных моторов характерен высокий показатель крутящего момента. Если ранее трансмиссии с трудом справлялись с высокими показателями крутящего момента и достаточно быстро выходили из строя, то сегодня существенным образом повысилась надёжность автоматических коробок передач и гидротрансформаторов.
Гидротрансформатор АКПП устройство
Теоретически срок эксплуатации гидротрансформатора совпадает с эксплуатационным сроком автоматической коробки передач. Однако, как и любой другой механический элемент, он может выходить из строя и требовать ремонта. В отдельных случаях необходимо проводить полную замену гидротрансформатора, что приводит к существенным расходам автовладельца на ремонт гидротрансформатора.
Гидротрансформатор АКПП Признаки неисправности
Опишем основные симптомы поломок гидротрансформаторов, которые должны являться поводом для скорейшего обращения в специализированные ремонтные мастерские.
1 При переключении передач может быть слышен лёгкий механический звук. При увеличении оборотов и под нагрузкой механический звук исчезает. Подобное может свидетельствовать о проблемах с опорными подшипниками. Необходимо разбирать гидротрансформатор и оценивать состояние подшипников.
2 В скоростном диапазоне от 60 до 90 километров в час может отмечаться лёгкая вибрация. По мере ухудшения проблем с гидротрансформатором вибрация будет увеличиваться. Подобное может быть вызвано тем, что продукты износа рабочей жидкости могут забивать масляный фильтр. В данном случае ремонт гидротрансформатора заключается в замене масляного фильтра и рабочей жидкости гидротрансформатора. Как правило, требуется провести одновременно замену масла в самом моторе и коробке передач.
3 Наличием проблем с динамикой автомобиля свидетельствует о выходе из строя так называемой обгонной муфты. В данном случае необходимо разбирать гидротрансформатор и менять вышедшую из строя муфту.
4 Остановка автомобиля без возможности продолжения движения свидетельствует о повреждении шлица на турбинном колесе. Устранение неисправности заключается в установке новых шлицов или же замене всего турбинного колеса.
5 Появление характерного шуршащего шума при заведённом автомобиле свидетельствует о проблемах с подшипником, которые располагаются между турбинным или же реакторным колесом и крышкой гидротрансформатора. При движении такой шуршащий звук может полностью исчезать. В данном случае вам необходимо как можно раньше обратиться в сервисный центр и провести ремонтные работы. В большинстве случаев необходимо будет провести замену повреждённых игольчатых упорных подшипников. Стоимость такого ремонта неисправности гидротрансформатора не слишком высока.
6 При переключении передач может быть слышен громкий металлический стук. Подобное свидетельствует о деформации и выпадении лопаток. Ремонт заключается в замене повреждённого колеса в гидротрансформаторе.
7 Необходимо регулярно проверять состояние масла в гидротрансформаторе и коробке передач. При появлении на масляном щупе коробки передач алюминиевой пудры необходимо выполнить проверку муфты свободного хода, которая изготовлена из алюминиевого сплава. В большинстве случаев появления такой пудры на щупе свидетельствует о проблеме в «бублике» и износе торцевой шайбы.
8 На работающем стоящем автомобиле в районе коробки передач может появляться характерный запах плавящейся пластмассы. Подобное происходит по причине перегрева гидротрансформатора и плавления полимерных элементов и деталей данного устройства. Перегрев гидротрансформатора может возникать по нескольким причинам. В первую очередь это проблемы со смазкой. Так, например, при падении уровня масла отмечаются характерные признаки голодания коробки и гидротрансформатора. Также могут отмечаться проблемы с системой охлаждения акпп, которая не может качественно охлаждать масло в забитом теплообменнике. Ремонт в данном случае заключается в замене масла и проверке работоспособности системы охлаждения смазки.
9 При переключении передач или же при смене режимов работы коробки двигатель может глохнуть. Подобное свидетельствует о выходе из строя управляющей автоматики, которая блокирует работу гидротрансформатора. Ремонт заключается в замене вышедшего из строя блока управления.
Необходимо отметить тот факт, что каких-либо конкретных признаков неисправности гидротрансформатора нет. Поэтому в отдельных случаях специалисты сервисного центра не могут сразу определить признаки и характер поломки. Все это приводит к увеличению расходов на ремонт и неизменному простою автомобиля в сервисе.
Ремонт гидротрансформатора
Несмотря на кажущуюся сложность, ремонт гидротрансформатора не представляет особой сложности и может быть выполнен автовладельцем самостоятельно. Единственный нюанс состоит лишь в демонтаже гидротрансформатора с коробки передач. В данном случае необходимо использовать специальный ремкомплект, который позволит провести демонтажные работы. При проведении ремонтных работ корпус устройства разрезается, после чего проводится проверка состояния гидротрансформатора. Именно поэтому при ремонтных работах необходимо заменять не только уплотняющие кольца, но и сам корпус устройства. При ремонтных работах проводится замена сальника и уплотнительных колец. Использовать старые, пускай даже хорошо сохранившиеся, кольца и сальники запрещается. В отдельных случаях возможна сварка корпуса гидротрансформатора, что позволяет добиться полной герметичности устройства. После завершения работы вам необходимо установить отремонтированное устройство на коробку передач и провести балансировочные работы.
Необходимо отметить, что при определённых видах поломок гидротрансформатора его ремонт и замена вышедших из строя элементов нецелесообразна с экономической точки зрения. Куда проще приобрести новые устройства и установить его вместо повреждённого элемента.
Ремонт гидротрансформатора Видео
Как вы можете видеть, ремонт гидротрансформатора относительно несложен. Однако без соответствующей подготовки и опыта работы по ремонту автомобиля провести его самостоятельно не представляется возможным. Поэтому если вы сомневаетесь в своих силах, лучше всего обратиться к профессиональным специалистам. Стоимость нового гидротрансформатора может составить порядка тысячи долларов в зависимости от марки автомобиля.
akpphelp.ru
«Бублик», убийца АКПП: что ломается в гидротрансформаторах и как их чинят
И чем мощнее становились двигатели, тем сильнее нагревалась жидкость в ГТД, тем сложнее было обеспечить его охлаждение, и тем больше работы по передаче крутящего момента старались переложить на сцепление блокировки.
Что ломается в гидротрансформаторе?
Раз есть сцепление внутри «бублика», значит, оно изнашивается — вечных фрикционных пар не бывает. К тому же продукты их износа загрязняют внутренности ГТД, поток горячей жидкости с абразивом «выедает» металл лопаток и других внутренних частей. Также потихоньку стареют, выходят из строя от перегрева или просто разрушаются уплотнения-сальники, а иногда выходят из строя подшипники или даже ломаются лопасти турбинных колес.
Продукты износа фрикционной накладки попадают и в саму АКПП, ведь охлаждение ГТД идет прокачкой масла через насос коробки и общий теплообменник. А в гидроблоке АКПП (о нем нужно рассказывать отдельно) есть еще много разных мест, где грязь может что-то забить или жидкость может проточить лишние отверстия, повредить соленоидные клапаны, замкнуть проводники…
В общем, со временем ГТД становится основным источником «грязи» в АКПП, которая обязательно выведет ее из строя. У некоторых АКПП проблема осложняется тем, что материал накладок «приклеен» к основе, и по мере износа в жидкость начинают попадать клеющие вещества, ускоряя процессы загрязнения в разы.
Таким образом, поживший «бублик» нужно менять или ремонтировать, пока он не сломал всю коробку передач. К слову, старые АКПП, у которых блокировка срабатывала редко, только на высших передачах или ее не имелось вовсе, имеют заметно большие интервал замены масла и ресурс.
Наиболее печальный случай
К чему это приводит, можно увидеть на примере широко распространенной 5-ступенчатой АКПП Mercedes 722.6. Она ставилась на несколько десятков моделей Mercedes-Benz, Jaguar, Chrysler, Dodge, Jeep и SsangYong c 1996 года и ставится по сей день.
В этой коробке передач гидротрансформатор блокируется на всех передачах, и специальный клапан регулирует его прижатие. Даже при плавном разгоне включается частичная блокировка, а при резком блокировка включается почти сразу. Машина получается экономичной и динамичной.
www.kolesa.ru
Гидромеханическая коробкая передач: устройство и прицип работы
Гидромеханическая коробка передач (ГМП) — это трансмиссия высокой проходимости с автоматическим управлением. ГМП поддерживает необходимую скорость автомобиля в разных режимах движения, упрощая процесс вождения. Подобные коробки используют в легковых автомобилях, грузовиках, автобусах, в тяжёлой технике мощностью до 1000 л. с. Гидромеханические коробки передач производят компании ZF, Borg Warner, Aisin, Mercedes-Benz, Voith, Honda, Allison, Caterpillar, Komatsu, БелАЗ и др.
Роль АКПП с гидромеханическим управлением
Что будет, если двигатель соединить напрямую с колёсами: машина лениво начнёт движение и поедет с максимальной скоростью 20 км/ч. По законам физики сила, которую должны преодолеть колёса равна F=ma+Fтр , где m — масса автомобиля, Fтр — сила трения с поверхностью земли. Двигатель достигнет максимальной мощности при оборотах 5000 — 6000 об/мин, но в таком режиме работы ресурс агрегата быстро иссякнет.
Чтобы мгновенно стартовать после нажатия педали газа, и защитить двигатель от перегрузки, в машине установлена трансмиссия. Она также способна изменять крутящий момент, ускоряя или замедляя автомобиль. Этот узел трансмиссии называется коробка переключения передач — КПП.
По типу переключения скоростей различают механические и автоматические КПП:
- механикой полностью управляет водитель, выжимая педаль сцепления и переводя рычаг для изменения скорости;
- в автоматах работает гидромеханическая передача с минимальным участием водителя.
Гидромеханическое управление облегчает и упрощает работу водителя, снимая часть «обязанностей». Плавность и бесшумность АКПП повышает комфорт вождения при трогании и разгоне. Также ГМП защищает двигатель и коробку от динамических нагрузок, которые может создать водитель, постоянно «выжимая» газ.
Основные элементы гидромеханической коробки передач:
- гидротрансформатор;
- масляный насос;
- коробка передач;
- система управления.
Функции гидротрансформатора
Гидромеханическая коробка передач работает за счёт движения жидкости, которую качает масляный насос. Главный «потребитель» масла — гидротрансформатор (ГДТ). ГДТ преобразует и передаёт крутящий момент от коленчатого вала в трансмиссию через работу жидкости.
Конструктивно ГДТ представляет собой набор лопастных колёс, «запертых» в герметичной камере в форме бублика:
- насосное колесо приварено к чаше корпуса и соединено с коленвалом;
- турбина через ступицу насажена на вал трансмиссии, и механически не связана с насосным колесом;
- реакторное колесо установлено между турбиной и насосом. Предназначено для усиления крутящего момента.
Гидромеханическая коробка передач начинает работать с запуском двигателя: включается масляный насос и насосное колесо. На лопасти колеса попадает жидкость и раскручивается вокруг оси ГДТ. Под действием центробежной силы масло отбрасывается на лопасти турбины, проходит через реактор и возвращается к насосному колесу. Под давлением потока лопатки турбины начинают вращаться, передавая крутящий момент по валу в коробку передач.
Чем выше обороты двигателя, тем быстрее вращаются колёса ГДТ, а крутящий момент снижается. Без реактора «бублик» работал бы только в режиме гидромуфты, передавая вращение без трансформирования. В момент, когда скорости насоса и турбины выравниваются, реактор начинает свободно вращаться, усиливая давление жидкости, попадающей на лопасти насоса.
Большая часть энергии двигателя уходит на перемещение и нагрев масла в ГДТ. В результате снижается общий КПД, и растёт расход топлива. Для устранения этого недостатка в «бублик» устанавливают муфту блокировки с фрикционной накладкой. При включении муфты двигатель и трансмиссия жёстко сцепляются, и передача момента происходит без потерь.
Передаточное число гидротрансформатора достигает максимально 2,5 — 3, что не достаточно для устойчивой работы двигателя в разных режимах движения машины. Нет возможности включить задний ход, поскольку колёса ГДТ вращаются только в одном направлении. Для компенсации этих недостатков гидромеханическая коробка передач оснащена дополнительным узлом.
Конструкция гидромеханики
В ГМП применяют простые ступенчатые или планетарные механизмы с электронным управлением. Принцип работы гидромеханической коробки передач в обоих вариантах заключается в изменении скорости вращения выходного вала за счёт различных передаточных чисел зубчатых передач.
Как работает вальная кпп
Устройство гидромеханической коробки передач вального типа похоже на механическую КПП. Преобразование крутящего момента происходит ступенчато через включение и отключение зубчатых передач, расположенных на параллельных валах. Количество и размер шестерённых пар соответствует определённому передаточному числу.
Первичный, входной вал, получает крутящий момент от гидротрансформатора. Через пару постоянно сцепленных шестерней мощность передаётся на вторичный вал, а затем на колёса. Для получения прямой передачи, в конструкцию добавляют промежуточный вал, а первичный и вторичный валы располагают на одной оси.
Для расширения диапазона скоростей применяются многовальные конструкции с 4 и более валами. Работа коробки при этом усложняется, увеличиваются габариты и масса. Подобные ГМП встречаются на грузовиках-тягачах.
Зубчатыми передачами управляют фрикционные многодисковые муфты. Муфта становится тормозом, когда соединяется с корпусом ГМП. Для включения блокировки масляный насос подает гидравлическое давление на фрикционы. Благодаря фрикционам скорость переключается плавно, а использование гидропривода ускоряет торможение.
Гидромеханические коробки передач вального типа плохо справляются с растущей тягой от повышения грузоподъёмности транспорта, с ужесточением требований по топливной экономичности. Рост параметров значительно увеличивает массу и габариты конструкции. По этим причинам вальные КПП заменяют на планетарные передачи.
Как работает планетарная кпп
Инженеры предпочитают устанавливать в гидромеханическую КПП планетарный механизм вместо ступенчатой конструкции по следующим причинам:
- компактные размеры;
- плавная и быстра работа;
- нет разрыва в передаче мощности при переключении передач;
- большое количество передаточных чисел за счёт использования многорядных конструкций.
Простая планетарная передача состоит из центральных шестерней: с внутренними зубьями — короны, с внешними зубьями — солнца. Между ними обкатываются зубчатые колёса сателлиты, оси которых закреплены на раме-водиле. В зависимости от конструкции водило соединено с выходным валом или коронной шестерней.
Устройство планетарной коробки определяет её принцип действия. Чтобы изменить крутящий момент гидротрансформатора, один из элементов планетарной передачи вращают, а другой элемент затормаживают. Третий элемент становится ведомым, а его скорость определяется числом зубьев всех шестерней.
Для получения прямой передачи водило и солнечную шестерню жёстко соединяют. Корона не может проворачиваться относительно закреплённой системы, поэтому механизм вращается как единый узел. Передаточное число в этом случае равно 1.
Чтобы получить задний ход, центральные шестерни вращают в одну сторону. Для этого останавливают сателлиты, блокируя водило.
В качестве тормозов планетарной коробки передач используют тормозные ленты или фрикционные диски. Блокировочные элементы работают в автоматическом режиме по сигналу электроники.
Электронная часть гидромеханической акпп
В гидромеханическом автомате отсутствует сцепление, поэтому каждая ступень коробки снабжена элементом переключения. Работу элементов контролирует электронный блок ЭБУ, связанный с блоком управления двигателем. Во время переключения передач автоматически регулируется частота вращения мотора, что помогает достичь оптимальных рабочих характеристик агрегата.
Система электронного управления гидромеханической коробки передач разбита на подсистемы:
- измерительную — для сбора параметров с датчиков давления, температуры и т.д.;
- функциональную — для управления маслонасосом, регуляторами давления и т.д.;
- управляющую — для выдачи сигнальных импульсов.
Для автоматизации управления помимо ЭБУ в систему входят электроклапаны, датчики, усилители, регуляторы, корректирующие элементы и т.д. Электроклапаны — соленоиды, расположены в гидроблоке, и по сигналу ЭБУ открывают канал гидроплиты для прохода жидкости к фрикционам, гидротрансформатору и другим узлам.
В зависимости от положения селектора ЭБУ действует по программному алгоритму, заложенному в память:
- при плавном разгоне дроссельная заслонка двигателя открывается медленно. Компьютер отслеживает степень открытия заслонки и посылает импульсы узлам гидромеханической коробки передач для увеличения скорости. При достижении первой передачи (20 км/ч), коробка переходит на вторую скорость. Такой режим движения называется «экономичным»;
- при агрессивном разгоне ЭБУ работает в «спортивном» режиме. Каждая последующая передача включаются после того, как двигатель максимально раскрутится. Если водитель отпустит педаль газа, обороты упадут не сразу. В этом режиме мотор развивает максимальную мощность, увеличивается расход топлива и снижается ресурс АКПП.
«Умное» управление проводит самодиагностику для корректирования работы ГМП. Например, если масло в коробке грязное, то в системе падает давление. Для защиты узлов ЭБУ может блокировать переключение передач, перераспределять нагрузку между электроклапанами, запретить включение гидротрансформатора. Неисправности и сбои в коробке компьютер записывает в виде кодов.
Компьютер умеет адаптироваться, выбирая подходящий режим под стиль вождения, динамику разгона и манеру торможения. Адаптация снижает износ коробки за счёт снижения числа переключений. При этом повышается комфорт водителя и безопасность движения.
Сильные и слабые стороны гидромеханики
Гидромеханическая коробка передач привлекает водителей простым управлением, плавностью переключения, низкой ценой по сравнению с вариаторами или DSG. И это ещё не все достоинства.
Сильные стороны | Слабые стороны |
Высокая безопасность движения, поскольку водитель больше концентрируется на дороге.
| Дорогой ремонт из-за сложной конструкции и количества электроники. |
Лёгкая и быстрая обучаемость вождения для новичков. | Высокий расход и стоимость оригинального масла . |
Защита двигателя от перегрузок, за счёт автоматического переключения скоростей и адаптации к стилю вождения. | При долгих и частых пробуксовках масло в коробке перегревается, поэтому нужно избегать движения по грязи. |
КПД гидротрансформатора достигает 97% при включении муфты блокировки. | Фрикционы истираются, загрязняя и перегревая трансмиссионную жидкость. |
За счёт использования реактора момент на турбинном колесе ГДТ приумножает крутящий момент двигателя. Это повышает ресурс и проходимость автомобиля. | В мороз гидромеханику нужно долго прогревать, чтобы масло пришло в рабочее состояние. |
Гидромеханическая коробка передач имеет возможность автоматизации каждого узла, что делает трансмиссию перспективной. | Автоматизация ГМП не позволяет водителю полностью «прочувствовать» управление автомобилем. |
Гидромеханическая коробка передач будет работать безотказно долгие годы при регулярном техобслуживании и соблюдении условий эксплуатации.
Перспективы использования гидромеханической коробки передач
Гидромеханическая коробка передач постоянно совершенствуется:
- растёт число ступеней: ZF поставляет 9-ступенчатую ZF9НР для легковых автомобилей, Caterpillar устанавливает в спецтехнику 7-ступенчатые ГМП;
- меняются кинематические схемы;
- отрабатываются новые алгоритмы электронного управления;
- снижается расход топлива и выбросов;
- повышается скорость и плавность работы.
Большую перспективу имеет гидромеханическая коробка передач с планетарным механизмом. Трансмиссия подходит для маломощных и сверхмощных двигателей за счёт добавления новых планетарных рядов и варьирования передаточными числами. Новые технические решения повышают экономичность автомобиля. Добавление ступеней устраняет «провалы» в переключении скоростей, достигая максимальной плавности.
Производители выпускают ГМП разных типоразмеров для мощности двигателя от 50 до 1500 кВт. С ростом грузоподъёмности спецтехники увеличивается КПД и тяговые характеристики трансмиссии.
Развитие интеллектуальных автоматизированных систем управления и диагностики направлено на повышение эффективности автомобиля и обеспечения безопасности водителя. Гидромеханическая коробка передач приспособлена к автоматизации, что открывает большие возможности для расширения функциональности механизмов и систем.
Заключение
Гидромеханическая трансмиссия в автомобилях используется с 1940-х годов, а переход на электронное управление начался в 1980-х. С тех пор АКПП стала более функциональной, плавной, надёжной. Удачная конструкция позволяет совершенствовать систему управления и повышать технические характеристики, а значит расширять сферу применения гидромеханических коробок передач.
akppoff.ru
назначение, устройство и принцип работы
Чем дальше мы изучаем устройство автомобиля, тем больше возникает вопросов. Сегодня у нас на очереди гидротрансформатор. В этой статье мы разберемся что это, его основное предназначение, устройство и принцип работы. Погнали…
Назначение гидротрансформатора
Большинство современных коробок «автоматов» совмещены с гидротрансформатором, основное назначение которого передать вращение вала двигателя на вал коробки. Гидротрансформатор является самостоятельным агрегатом, но АКПП не способна работать без него. Цель разработки этого узла — сделать вождение более простым и комфортным за счет отсутствия необходимости пользоваться педалью сцепления. Устройство и принцип работы понять не сложно благодаря простоте конструкции.
Расположение гидротрансформатораГидравлический трансформатор в коробке «автомат» является аналогом сцепления, работающим автоматически.
Этот узел нужен для:
- Увеличения и передачи крутящего момента с двигателя на коробку.
- Защиты автомата при резком увеличении/снижении оборотов.
- Нормализации передачи вращения во время разгона (гашения двойного увеличения вращения).
- Прерывания связи между двигателем и трансмиссией при смене передачи (трансформатор забирает часть крутящего момента на себя).
Из-за характерного внешнего вида автомеханики этот агрегат часто называю «бубликом». Он тесно связан с коробкой, из которой получает трансмиссионную жидкость, необходимую для работы.
Устройство гидротрансформатора
Гидротрансформаторы устанавливаются на легковые и грузовые машины, автобусы, тракторы, спецтехнику вместе с коробкой автомат (реже с вариаторной коробкой). По конструкции это гидравлическая муфта со статором.
Устройство гидротрансформатора: 1 — блокировочная муфта; 2 — турбинное колесо; 3 — насосное колесо; 4 — реакторное колесо; 5 — механизм свободного хода.Гидротрансформатор состоит из:
- корпуса;
- реакторного колеса (статора) на муфте;
- насосного (центробежного) колеса;
- турбинного колеса;
- механизма блокировки.
Устройство лучше всего рассматривать в разрезе, так как в собранном виде корпус запаян. По краям располагаются турбинное и насосное колесо, между ними реакторное (реактивное). Турбинное колесо связано с валом коробки, насосное с коленвалом двигателя. Реакторное колесо с лопастями особой геометрии установлено на муфту, которая вращается лишь в одном направлении. Трансформатор заполнен трансмиссионной жидкостью, которая во время работы активно циркулирует.
Принцип работы гидротрансформатора
Принцип работы сравнительно простой, и наглядно показан на видео-уроке, ниже.
- Крутящий момент от двигателя через насосное колесо и трансмиссионную жидкость АТФ (без жесткой связи) передается на турбинное колесо, которое в свою очередь жорстко связано с коробкой передач. То есть поток создает насосное колесо, после попадания жидкости на турбинное колесо оно начинает вращаться.
- При увеличении оборотов двигателя сила потока тоже увеличивается. Масло, отбиваясь от турбинного колеса, попадает обратно на насосное, только уже через реактивное колесо, которое в свою очередь усиливает поток жидкости. Таким образом происходит увеличение крутящего момента (трансформация) — от этого и названия агрегата.
- Трансформация происходит до тех пор, пока скорость вращения насосного и турбинного колеса не сравняются. В этом случае реакторное колесо начинает крутится свободно, не увеличивая поток жидкости. В итоге гидротрансформатор начинает работать в режиме гидромуфты. Собственно в этом и их отличие — гидромуфта не трансформирует крутящий момент.
Блокировка гидротрансформатора (ГДТ)
Гидротрансформатор важен для коробки до достижения определенного показателя скорости, при которой насосное и турбинное колесо вращаются с одинаковой скоростью, вращение реактора обеспечивает муфта. В результате все колеса вращаются вместе, крутящий момент перестает увеличиваться. В этом случае передача крутящего момента через жидкость не целесообразна. В этом случае, на современных гидротрансформаторах электроника соединяет входной и выходной валы ГДТ, блокирует бублик, и для передачи момента включается жесткая сцепка. При такой блокировке существенно экономится расход топлива.
Устройство гидротрансформатора с муфтой блокировкиТакже на современных авто, блокировка включается на любых передачах и даже для торможения двигателем. Делается это для эффективного и динамичного разгона и торможения автомобиля. Схема блокирующего устройства простая. На входном и выходном валах есть система фрикционных дисков, которые в определенный момент, после команды блока управления, специальный клапан прижимает их друг к другу. Крутящий момент начинает передаваться без участия жидкости.
Неисправности гидротрансформатора, их причины
Гидротрансформатор считается неразъемным узлом, но в мастерских сварочный шов срезают, после ремонта «бублик» сваривают. ГДТ устроен так, что все поломки условно можно разделить на 2 группы:
- Неисправности трансформатора (износ валов и соединений между ними, засорение или износ клапанов, подающих масло).
- Неисправности блочной плиты (сбои в работе масляного насоса, выход из строя датчиков, отвечающих за подачу масла, засорение каналов и фильтров системы подачи масла).
Признаков неисправности много:
- Автомобиль немного пробуксовывает в начале движения.
- Во время движение слышится жужжание, стуки.
- При смене передачи ощущаются толчки, мотор глохнет.
- Замедленный разгон, сопровождающийся шуршанием.
- Перегрев бублика.
- Появление запаха горения пластмассы.
- Вибрация трансформатора.
- Недостаточный уровень трансмиссионной жидкости.
Причины проявления симптомов:
- Механический шум во время холостого хода появляется при износе подшипников.
- При появлении вибраций необходимо проверить качество трансмиссионной жидкости и степень загрязненности фильтра (вибрация исчезает после очистки фильтра и замены жидкости).
- Характеристики разгона меняются из-за износа муфты, на которой закреплен статор (деталь нужно заменить).
- Скрежет, стук во время движения появляется при разрушении лопастей колес (бублик чаще всего меняется из-за нецелесообразности ремонта).
- Расплавленной пластмассой пахнет при засорении системы охлаждения коробки или уменьшении объема трансмиссионной жидкости.
- Автомобиль глохнет при смене передачи, если вышла из строя электроника, блокирующая трансформатор, требуется профессиональная диагностика.
- Авто самопроизвольно останавливается при выходе из строя электроники, срезании шлиц, засорении клапана блокировки, бублик необходимо поменять.
- Уровень трансмиссионной жидкости снижается, если нарушена герметичность корпуса, агрегат чаще всего меняется.
В автомастерскую следует обращаться при проявлении любого из симптомов. После диагностики будет проведен ремонт, если восстановление невозможно, ГДТ заменят. В противном случае не исключена вероятность выхода из строя коробки. Самостоятельно провести ремонт гидротрансформатора сложно из-за герметичного корпуса. Чтобы заменить детали, его необходимо разрезать, потом запаять, что в бытовых условиях сделать практически невозможно.
Преимущества и недостатки гидротрансформатора
На автомобилях с гидротрансформаторами устанавливаются менее мощные двигатели, что позволяет сэкономить при покупке и на топливе. Но как и все агрегаты ГДТ имеет свои плюсы и минусы.
К преимуществам можно отнести:
- Плавное троганье с места, в том числе на сыпучем грунте и подъеме.
- Ход без рывков.
- Удобство управления в городе, в том числе в пробках.
- Снижение нагрузок и вибраций на трансмиссию при неравномерной работе двигателя.
- Избавление от прогорания сцепления.
- Отсутствие пробуксовываний.
- Гидротрансформатор предотвращает возникновение условий, способствующих изгибанию валов, поэтому на них можно ставить подшипники меньших размеров.
- ГДТ небольшие, поэтому узел с коробкой компактный.
Недостатки гидравлических трансформаторов:
- Низкий КПД из-за проскальзывания турбинного и насосного колес.
- Снижение динамики из-за затрат мощности на создание движения потока жидкости.
- Высокая стоимость узла.
- Дорогое обслуживание (жидкость стоит дорого, ее нужно много, причем охлажденной при помощи специальной системы, масло и фильтр необходимо часто менять).
- На грузовиках узлы коробок объемные из-за больших размеров колес.
- Дорогой ремонт и замена.
Заключение
Исходя из устройства и принципа работы гидротрансформатора можно сделать вывод, что срок службы можно продлить, если использовать качественную трансмиссионную жидкость, своевременно менять не только ее, но и сальники, прокладки, фильтр. Свое назначение этот узел выполняет дольше при регулярной диагностике и обслуживании.
vaznetaz.ru
АКПП принцип работы
Одним из существенных недостатков двигателей внутреннего сгорания, а также двигателей дизеля заключается в передаче на колеса максимального крутящего момента лишь в небольшом диапазоне оборотов. Для ликвидации этого недостатка их работы и была придумана трансмиссия.
Автоматическая коробка переключения передач или АКПП появилась сравнительно давно. Основной целью ее создания было избавление водителя от постоянной необходимости работы сцеплением и ручкой переключения передач. Автомобиль, таким образом, должен был стать комфортнее и безопаснее. Первые разработки в этой сфере начались в 1930 году в Америке, и к шестидесятым годам двадцатого века автоматические трансмиссии приобрели привычный нам вид, стали надежными и долговечными. АКПП распространились по миру, но в Европе они получили свое распространение совсем недавно, на конец двадцатого века автомобилей с АКПП было не более 20%. В СССР автомобили с АКПП массово не производились и пришли к нам только после распада советского союза. Редкие исключения составляли специализированные Чайки и Волги, некоторые автобусы, тракторы и БелАЗы. В XXI веке автомобили гражданского пользования с АКПП, наконец, начали производить и у нас.
Принцип работы АКПП
Состоит классический автомат из гидротрансформатора, фрикционных и обгонных муфт, а также соединительных валов, электронного блока управления и планетарной передачи.
Для обеспечения передаточных отношений используются планетарные передачи, которые состоят из водила, солнечной и кольцевой шестерни, сателлитов. За счет вращения одних и фиксации других элементов и происходит смена передаточного числа. Вокруг солнечной шестерни вращаются сателлиты, между ними устанавливается планетарное водило, сверху – коронная шестерня. Фиксация осуществляется за счет тормозных лент и фрикционов. При блокировке коронной шестерни передаточное отношение растет. Уменьшается при блокировке солнечной шестерни. Переключение передачи происходит посредством давления масла на гидравлический толкатель.
Масляный насос поддерживает необходимое для работы коробки давление всегда, пока двигатель работает.
В современных АКПП гидроблок и электронный блок управления объединены в один узел. Гидравлическая плита представляет собой лабиринт каналов, через которые и происходит воздействие масла на фрикционы или тормозные ленты. Внутри каналов устанавливаются регуляторы, клапана и соленоиды. Электрическая часть состоит из различных датчиков и компьютера.
Принцип работы гидротрансформатора АКПП
Механизм гидротрансформатора заменяет АКПП сцепление, он представляет собой большое колесо и его основная задача – передавать крутящий момент с двигателя на колеса, посредством вращения потоков масла, то есть АКПП не связана с двигателем жестко. Переключение передач происходит путем блокировки муфт. Процессом переключения руководит электронный блок управления, основываясь на показаниях датчиков оборота двигателя, его скорости, показаний гироскопа и других датчиков. Помимо гидравлических АКПП, принцип гидротрансформатора используется для работы бесступенчатых трансмиссий – вариаторов. Сфера применения гидротрансформатора очень велика – от привычных нам легковых автомобилей до сверхтяжелой специальной техники.
Гидротрансформатор включает турбинное, насосное и реакторное колеса. Насосное колесо соединяется с валом двигателя, а турбинное – с коробкой. Между ними находится реакторное колесо, которое связано с насосным через обгонную муфту. Принцип работы гидротрансформатора заключается в следующем: при начале движения начинает вращаться насосное колесо, тем самым закручивая потоки масла. Оно, в свою очередь, начинает вращать реакторное колесо, усиливая вращение за счет своих лопастей. Далее, на турбинное колесо передается поток масла и оттуда уже на колеса.
Блокировка гидротрансформатора. Принцип работы современного гидротрансформатора включает использование блокировки. Насосное и турбинное колеса жестко связаны. Ранее блокировка активировалась на 70 км/ч, но современные автомобили используют ее с самых маленьких скоростей. Блокировка гидротрансформатора позволяет экономить топливо, эффективно тормозить двигатель. Однако из-за нее куда быстрее изнашивается фрикцион гидротрансформатора, уменьшается плавность хода и в целом АКПП изнашивается быстрее. КПД по ходу работы гидротрансформатора теряется на перемешивание масла и его нагрев.
Гидромуфта работает для передачи момента, но не изменяет его величину. Для его изменения предназначено реакторное колесо. Реактор остается неподвижным пока скорость вращения турбинного колеса не сравняется с вращательной скоростью насосного колеса, затем оно освобождается. Таким образом, снижаются потери, и крутящий момент увеличивается до 300%.
Использование АКПП
Классическая АКПП имеет орган управления – селектор, на котором представлены несколько «передач»:
P – режим парковки, АКПП заблокирована механически. Завести автомобиль можно только на P и R. При отсутствии уклона этого режима достаточно, чтобы удержать автомобиль на месте;
R – режим заднего хода. Активируется только после того, как автомобиль полностью остановится;
N – нейтраль, используется для буксировки, АКПП выключена, но колеса не заблокированы;
D – переключение передач с 1 по последнюю последовательно;
S – переключение до второй передачи;
L – Езда на первой передаче.
Кроме этого, современные АКПП имеют еще и различные режимы функционирования коробки:
Sport – спортивный режим характеризуется тем, что переключение передач осуществляется на более высоких оборотах, автомобиль разгоняется быстрее;
Snow – зимний режим АКПП. В данном режиме машина начинает свое движение со 2-й передачи, снижая пробуксовки;
ECO – экономичный режим, топливная экономия;
O/D – запрет на переключение более высокой передачи, как правило, применяется для обгона;
Kickdown – режим быстрого ускорения для обгона, который активируется быстрым двойным нажатием на педаль акселератора, при этом автомат переключается на ступень вниз.
Плюсы АКПП
- Комфорт для водителя, меньше действий для управления машиной, больше времени на дорогу.
- АКПП не позволяет излишне нагружать двигатель, увеличивая его ресурс.
- Современные АКПП переключаются быстрее, чем любой водитель переключает МКПП.
- Огромный ресурс при правильной эксплуатации.
- Из-за отсутствия жесткой связи двигателя с трансмиссией ударные нагрузки на нее исключены.
Минусы АКПП
- Более дорогие в производстве по сравнению с МКПП.
- Более дорогой и сложный ремонт в случае поломки.
- Из-за передачи крутящего момента жидкостью больше потери мощности на двигатели, выше расход.
- АКПП не позволяет использовать двигатель на полную.
- Критична к пробуксовкам, меньше проходимость на моноприводных автомобилях.
- Нельзя запустить с толкача.
Эксплуатация и обслуживание АКПП
Как и любой узел автомобиля АКПП необходимо эксплуатировать правильно, если этого не делать ресурс коробки можно сократить в несколько раз.
Эксплуатация в зимний период. Перед началом поездки АКПП необходимо прогревать не менее 5 минут при минусовой температуре. Автомату необходимо прогреться и разогнать по своим внутренностям загустевшее масло. Эксперты рекомендуют поставить автомобиль на тормоз и прогнать все положения селектора АКПП, задерживаясь в каждом на срок до минуты. До прогрева автомобиля и АКПП до рабочей температуры не следует допускать пробуксовок и резких разгонов.
Преодоление препятствий. Испытание сельскими, размытыми, грязными дорогами или снежно-ледяной коркой в России привычно для любого автовладельца. Приключения могут начинаться каждое утро в собственном дворе из-за «отличной» работы коммунальщиков и дорожных служб. АКПП не любит пробуксовок и выхода «раскачкой», таким образом её можно сжечь. Для преодоления препятствий лучше использовать режим SHOW/WINTER, если его нет – переключить передачу в положение L или S (на некоторых автомобилях может обозначаться 1 или D1) и стараться не останавливаться. Если колеса угодили в ямку, раскачку можно изобразить с помощью движения вперед, отпускания газа, съезда в ямку естественным ходом и снова набиранием оборотов, то есть, не переключаясь на задний ход. Если выбраться сразу не получается – дайте АКПП остыть и отдохнуть. В конце концов, существует масса других приемов для преодоления препятствий, например, помощь другого участника движения. Не забывайте отключать TRC или ESP, они снижают обороты двигателя при пробуксовках, что совсем не поможет, если автомобиль уже застрял.
Использование нейтрали. Переключать АКПП в нейтраль стоит только при простое свыше двух минут, в остальных случаях это сильно изнашивает АКПП и совсем ей не помогает. При съезде с горы, переключение в нейтраль не дает никакой экономии. Нейтраль существует только для буксировки неисправного автомобиля.
Буксировка прицепа либо же другого авто изнашивает автомобиль с АКПП значительно быстрее, буксировка не должна превышать расстояние в 20 километров.
Режим Кикдауна и разгоны. Если автомобиль изначально не позиционируется как спортивный, то постоянные разгоны ему только навредят. Если владелец автомобиля гонщик, то он может сразу готовить деньги на ремонт автомата. АКПП следует эксплуатировать в режимах, не превышающих 5 тыс. оборотов.
Запрещено переключать движущийся автомобиль на парковку или реверс, нажимать педаль газа и тормоза одновременно. Ездить на пониженной передаче и продолжать использовать ушедшую в аварию АКПП также запрещается.
Удаление царапин на кузове автомобиля без покраски.
НЕ ТРАТЬТЕ ДЕНЬГИ НА ПЕРЕКРАСКУ!
Теперь Вы сами сможете всего за 5 секунд убрать любую царапину с кузова вашего автомобиля.
Читать далее >>
Режим парковки. Данным режимом следует пользоваться исключительно на горизонтальной плоскости. Если автомобиль стоит под уклоном, необходимо пользоваться ручным тормозом, а иначе весь вес автомобиля ляжет на блокиратор коробки, который тоже имеет свой ресурс. Причем сначала надо активировать ручник, потом уже переводить в положение парковки.
Контроль уровня и замена масла. Как и двигатель, АКПП способна проработать без масла всего несколько часов. От качества и чистоты масла зависит, насколько будет хорошо и долго работать АКПП. На различных АКПП масло меняется от 20 тыс. до 120 тыс. километров пробега.
Фильтр. Фильтр – это узел АКПП, ответственный за очистку масла от продуктов износа механизмов коробки. Современные фетровые фильтры меняются при каждой замене масла или ремонте, уже устаревшие, металлические, могли использоваться вплоть до капитального ремонта АКПП.
Современные АКПП. RAV4
Айсин – японская компания, специализирующаяся на производстве автоматических коробок передач, дочернее предприятие Японии. АКПП от Айсин по своей надежности и долговечности уступают лишь некоторым старым американским разработкам. Ресурс некоторых АКПП от Айсин доходит до 1500000 километров. В то время как многие производители ударились в эксперименты по созданию вариаторов и роботизированных коробок передач, Айсин и не думала о них забывать. С 2009 года Айсин начала выпускать АКПП модели U760E для автомобилей Лексус и Тойота Камри, Рав4 и других. Шестиступенчатые АКПП U760E и некоторые другие аналоги от других производителей называют убийцами механических и роботизированных коробок передач. Характеристики этой разработки догнали и перегнали механические коробки передач. Они переключаются быстрее, более плавно, комфортнее, достигнута большая топливная экономия, лучше управляются и при этом достаточно надежны. Но цена и ресурс АКПП и МКПП по-прежнему не сравнимы. На Рав4 и других автомобилях блокировка гидротрансформатора срабатывает с невысоких оборотов, КПД коробки значительно повышено, автомат не «протупливает», позволяет быстрее разгоняться, но при этом фрикцион гидротрансформатора изнашивается очень быстро.
Переключения АКПП Рав4 и других автомобилей занимают всего 0,2 секунды, их конкурент ДСГ немного быстрее, но совсем некомфортен при быстрой езде.
Автор: Д. Спирин
akppgid.ru