Турбина на дизельном двигателе в масле: Почему турбина гонит или ест масло — причины

Содержание

7 причин почему гонит масло из турбины (все случаи). Их следствие и как решить

Масло из турбины может вылетать по самым разным причинам, в частности, из-за забитого воздушного фильтра или системы воздухозабора, моторное масло начало пригорать или оно изначально не соответствовало температурному режиму, закоксовывание масляных каналов двигателя. Более сложными причинами бывает поломка крыльчатки, значительный износ подшипников турбины, заклинивание ее вала, из-за чего крыльчатка не вращается вовсе. Однако в большинстве случаев течь масла из турбины обусловлена несложными в ремонтном отношении неисправностями, большинство из которых многие автовладельцы вполне способны устранить самостоятельно.

Содержание

Причины возникновения расхода масла в турбине

Перед тем как перейти к рассмотрению непосредственно причин, из-за которых возможно подтекание масла, необходимо определиться с его допустимым объемом. Дело в том, что любая, даже полностью исправная, турбина будет подъедать масло.

И этот расход будет тем больше, чем на больших оборотах будет работать как сам двигатель, так и турбина. Не вдаваясь в подробности этого процесса нужно отметить, что приблизительный нормальный расход масла турбированного мотора составляет около 1,5…2,5 литра на 10 тысяч километров пробега. А вот если значение аналогичного расхода перевалило за 3 литра, то это уже повод задуматься о поиске неисправности.

Большой расход масла

Если двигатель жрет масло, то это как минимум указывает на неисправность ЦПГ, износ маслоколпачков или забитую вентиляцию картера. Большой расход масла — признаки, причины и что нужно делать
Подробнее

 

Начнем с самых простых причин, почему может возникнуть ситуация, когда гонит масло из турбины. Как правило, ситуация связана с тем, что запорные кольца, которые, собственно, и не дают маслу вытекать из турбины, изнашиваются и начинают пропускать. Происходит это из-за того, что давление в агрегате падает, и в свою очередь масло капает из турбины туда, где меньше давление, то есть, наружу. Итак, перейдем к причинам.

Забитый воздушный фильтр. Это самая простая ситуация, которая, однако, может стать причиной указанной проблемы. Нужно проверить фильтр и при необходимости заменить его (в редких случаях получается его прочистить, но все же лучше не искушать судьбу и поставить новый, особенно если вы эксплуатируете машину на бездорожье). Зимой вместо или вместе с засорением в некоторых случаях возможно его замерзание (например, в условиях очень высокой влажности). В любом случае, обязательно нужно проверить состояние фильтра.

Коробка воздушного фильтра и/или его заборный патрубок. Тут ситуация аналогична. Даже если воздушный фильтр в порядке нужно проверить состояние указанных узлов. Если они забиты — нужно исправить ситуацию и прочистить их. Сопротивление поступающего воздуха должно быть не выше 20 мм водного столба при работе двигателя на холостом ходу (приблизительно 2 технические атмосферы, или около 200 кПа). В противном случае нужно выполнить ревизию и чистку систему или ее отдельных элементов.

Нарушение герметичности крышки воздушного фильтра. Если такая ситуация имеет место, то неизбежно попадание в воздушную систему пыли, песка и мелкого мусора. Все эти частички будут работать как абразив в турбине, постепенно «убивать» ее из строя вплоть до полного выхода из строя. Поэтому ни в коем случае нельзя допускать разгерметизации воздушной системы у двигателя с турбиной.

Некачественное или неподходящее масло. Любой двигатель внутреннего сгорания очень чувствителен к качеству моторного масла, а турбированные двигатели — тем более, поскольку скорости вращения и температура у них гораздо выше. Соответственно, во-первых, необходимо пользоваться тем маслом, которое рекомендует завод-изготовитель вашей машины. А во-вторых, нужно выбирать ту смазочную жидкость, которая является наиболее качественной, от более известного бренда, синтетическое или полусинтетическое, и не заливать в силовой агрегат всякий суррогат.

Жаростойкость масла. Масло для турбин обычно более жаростойкое, чем обычное, поэтому нужно пользоваться соответствующей смазывающей жидкостью. Такое масло не пригорает, не прикипает к стенкам элементов турбины, не засоряет масляные каналы и нормально смазывает подшипники. В противном случае турбина будет работать в экстремальных условиях и существует риск ее быстрого выхода из строя.

Интервал замены масла. В каждом двигателе масло нужно менять по регламенту! Для турбированных моторов это особенно актуально. Лучше выполнять соответствующую замену приблизительно на 10% раньше, чем это указано по регламенту изготовителем автомобиля. Это наверняка увеличит ресурс как двигателя, так и турбины.

Через сколько км менять масло в двигателе

Интервал замены моторного масла нужно рассматривать исходя из условий эксплуатации, пробега авто, качества расходников и еще 7-ми факторов. Периодичность 8-12 тыс. км. общий показатель
Подробнее

 

Состояние подводящих масляных патрубков. Если долго не менять масло или пользоваться некачественной смазывающей жидкостью (или попросту будет забит масляный фильтр), то существует риск того, что со временем масляные патрубки забьются и турбина будет работать в критическом режиме, что значительно снижает ее ресурс.

Попадание масла из турбины в интеркулер (впускной коллектор). Такая ситуация возникает нечасто, однако ее причиной может быть уже упомянутый выше забитый воздушный фильтр, его крышка или патрубки. Другой причиной в данном случае могут стать забитые масляные каналы. В результате этого происходит разность давления, из-за которой, собственно, масло и «выплевывается» в интеркулер.

Попадание масла в глушитель. Тут аналогично предыдущему пункту. В системе возникает разность давления, которая спровоцирована либо забитой воздушной системой (воздушным фильтром, патрубком, крышкой) или масляные каналы. Соответственно, в первую очередь необходимо проверить состояние описанных систем. Если это не помогло — возможно, сама турбина уже имеет значительный износ и нужно выполнять ее ревизию, но перед тем нужно выполнить проверку турбины.

В некоторых случаях такая проблема может следствием использования в процессе монтажа подающего и сливного маслопроводов герметиков. Их остатки могли раствориться в масле и стать причиной того, что масляные каналы закоксовались, в том числе могут частично выйти из строя подшипники компрессора. В данном случае необходимо выполнить чистку соответствующих каналов и отдельных частей турбины.

Нередко результатом попадания масла в глушитель и вообще в систему выхлопа будет синий дым из выхлопной трубы автомобиля.

Теперь переходим к более сложным причинам, соответственно, и дорогостоящим ремонтам. Они возникают в случае, если турбина очень сильно износилась вследствие ее неправильной эксплуатации или просто из-за своей «старости». Износ мог быть вызван чрезмерной нагрузкой на двигатель, использование неподходящего или некачественного масла, замена его не по регламенту, механическое повреждение и так далее.

Выход из строя крыльчатки. Такая ситуация возможна, если имел место значительный люфт на ее валу. Это возможно либо от старости либо от воздействия на вал абразивных материалов. В любом случае ремонту крыльчатка не подлежит, ее нужно только менять. При этом обычно выполняются сопутствующие ремонты. Самостоятельно их вряд ли имеет смысл выполнять, лучше обратиться за помощью в автосервис.

Износ подшипников. При этом наблюдается значительный расход масла. И оно может попадать в полость, в непосредственной близости от них. А поскольку подшипники не ремонтируются, то их нужно менять. Лучше также обратиться за помощью в автосервис. В некоторых случаях проблема состоит не столько в непосредственной замене подшипников, сколько в их подборе (например, на редкие машины нужно заказывать запчасти из-за рубежа и ждать значительное время, пока они будут доставлены).

Заклинивание вала крыльчатки. При этом она вообще не вращается, то есть, турбина не работает. Это одна из самых тяжелых ситуаций. Обычно его заклинивает по причине перекоса. В свою очередь, перекос может возникнуть из-за механического повреждения, значительного износа или выхода из строя подшипников. Тут нужна комплексная диагностика и ремонт, поэтому необходимо обратиться за помощью в автосервис.

Неисправности автомобильной турбины. Как устранить неполадки?

Полезные рекомендации по устранению неисправности турбины двигателя автомобиля. 3 частые причины неисправности турбины и основные признаки выхода из строя турбокомпрессора. А также как их устранить

Подробнее

 

Методы устранения поломки

Естественно, что выбор того или иного решения устранения неисправностей напрямую зависит от того, что именно стало причиной того, что масло капает или течет из турбины. Однако перечислим наиболее вероятные варианты, от простых к более сложным.

  1. Замена (в крайнем, не нежелательном случае, чистка) воздушного фильтра. Запомните, что желательно менять фильтр немного раньше регламента, приблизительно на 10%. В среднем же, его замену нужно проводить не реже, чем через каждые 8-10 тысяч километров пробега.
  2. Проверка состояния крышки воздушного фильтра и патрубков, при обнаружении засора нужно обязательно хорошенько прочистить их, удалив мусор.
  3. Проверка герметичности крышки воздушного фильтра и патрубков. При обнаружении трещин или других повреждений в зависимости от ситуации можно попробовать отремонтировать их, наложив хомуты или другие приспособления, в крайнем случае нужно купить новые детали вместо поврежденных. При этом обязательным условием будет то, что если разгерметизация была обнаружена, то перед сборкой системы с новыми комплектующими ее обязательно нужно тщательно прочистить от мусора и пыли, которые в ней находятся. Если этого не сделать — мусор будет играть роль абразива и значительно изнашивать турбину.
  4. Правильный подбор моторного масла и его своевременная замена. Это актуально для всех двигателей, а особенно для тех, которые снабжены турбонагнетателем. Лучше пользоваться качественными синтетическими или полусинтетическими маслами известных производителей, таких как Shell, Mobil, Liqui Moly, Castrol и других.
  5. Периодически необходимо контролировать состояние масляных патрубков с тем, чтобы они обеспечивали нормальное перекачивание масла по масляной системе, в частности, к турбине и от нее. В случае, если вы полностью меняете турбину, то в профилактических целях нужно выполнить их чистку, даже если на первый взгляд они относительно чистые. Лишним это не будет!
  6. Регулярно нужно выполнять контроль состояния вала, крыльчатки и подшипников, не допускать их значительного люфта. При малейших подозрениях на неисправность нужно выполнить диагностику. Лучше делать это в автосервисе, где имеется соответствующее оборудование и инструменты.
  7. В случае, если имеет место масло на выходе из турбины, то имеет смысл проверить состояние дренажной трубки, наличие в ней критических изгибов. При этом уровень масла в картере обязательно должен быть выше, чем у отверстия той трубочки. Также имеет смысл проверить вентиляцию картерных газов. Обратите внимание, что конденсат, образующийся в выпускном коллекторе из-за разности температур, зачастую принимают за масло, поскольку влага, смешиваясь с грязью, приобретает черный цвет. Нужно быть внимательным, и убедиться, что это действительно масло.
  8. Если наблюдается течь во впускную или выпускную систему двигателя, то также имеет смысл проверить состояние прокладок. Со временем и под воздействием высоких температур она может значительно износиться и выйти из строя. Соответственно, ее нужно поменять на новую. Делать это самостоятельно нужно лишь в случае, если вы уверены в своих знаниях и практическом опыте по выполнению подобных работ. В некоторых случаях вместо замены помогает простая подтяжка стягивающих болтов (но реже). Однако сильно перетягивать тоже нельзя, поскольку это может привести к обратным последствиям, когда прокладка вообще не будет держать давление.

Помните, что перегревание турбокомпрессора способствует образованию на его поверхности закоксования от моторного масла. Поэтому перед тем как заглушить турбированный двигатель, необходимо дать ему поработать на холостых оборотах некоторое время с тем, чтобы он немного остыл.

Также необходимо помнить, что работа при высоких нагрузках (на высоких оборотах) способствует не только чрезмерному износу турбокомпрессора, но и может привести к деформации подшипника вала ротора, подгоранию масла, и общему снижению ресурса отдельных его частей. Поэтому по возможности нужно избегать такого режима эксплуатации двигателя.

Редкие случаи

Теперь остановимся на более редких, частных, случаях, которые, однако, иногда беспокоят автолюбителей.

Механическое повреждение турбины. В частности, это может быть вследствие ДТП или другой аварии, попадание на крыльчатку какого-нибудь постороннего тяжелого предмета (например, болта или гайки, оставленного после монтажа), или попросту брак изделия. В этом случае, к сожалению, ремонт турбины вряд ли возможен, и лучше поменять ее, поскольку поврежденный узел все равно будет иметь гораздо более низкий ресурс, поэтому это будет невыгодно с экономической точки зрения.

Например, имеет место течь масла снаружи турбины со стороны компрессора. Если при этом диск диффузора прикрепляется к сердцевине при помощи болтов, например так как это реализовано в турбокомпрессорах Holset h2C или h2E, то, возможно, один из четырех крепежных болтов уменьшил момент натяжения или сломался. Реже возможна его потеря по причине вибрации. Однако если его просто нет — нужно установить новый и подтянуть все болты с необходимым моментом. Но когда болт сломался и внутренняя его часть попала в турбину, то ее нужно демонтировать и попытаться найти отломанную часть. В самом худшем случае — выполнить ее полную замену.

Течь из соединения диска диффузора с улиткой. Тут проблема состоит в том, что нужно убедиться, а масло ли вытекает из упомянутого соединения. Так как в старых моделях турбокомпрессоров использовалась специальная густая смазка, обеспечивающая их герметичность. Однако в процессе эксплуатации турбины, под воздействием высоких температур и повреждении уплотнений эта смазка может вытекать. Поэтому для дополнительной диагностики необходимо демонтировать улитку и выяснить, имеют ли место потеки масла внутри воздушных клапанов. Если их нет, а вместо них имеется лишь влажность, то можно не беспокоиться, вытереть ее ветошью, и собрать весь агрегат в исходное состояние. В противном случае необходимо выполнить дополнительную диагностику и воспользоваться одним из приведенных выше советов.

Высокий уровень масла в картере. Изредка в турбированных двигателях лишнее масло может выливаться из системы вследствие его высокого уровня в картере (выше отметки MAX). В данном случае необходимо слить излишки смазывающей жидкости до максимально допустимого уровня. Делать это можно либо в гаражных условиях, либо в автосервисе.

Конструкционные особенности двигателя. В частности, известны случаи, когда некоторые мотора в силу своей конструкции сами создавали сопротивление самотечному сливу масла из компрессора. В частности, это происходит потому, что противовес коленчатого вала двигателя своей массой как бы забрасывает масло обратно. И тут уже ничего поделать нельзя. Нужно лишь внимательно следить за чистотой мотора и уровнем масла.

Износ элементов цилиндропоршневой группы (ЦПГ). При этом возможна ситуация, когда отработанные газы прорываются в поддон картера и создают там повышенное давление. Особенно это усугубляется, если вентиляция картерных газов работает некорректно или не в полной мере. Соответственно, при этом самотечный слив масла затруднен, и турбина попросту выгоняет его из системы через слабые уплотнения. Особенно если последние уже старые и прохудившиеся.

Забитый сапунный фильтр. Он находится в системе вентиляции картерных газов и может также со временем забиваться. А это, в свою очередь, приводит к ее некорректной работе. Поэтому вместе с проверкой работоспособности вентиляции имеет место проверить и состояние указанного фильтра. При необходимости его нужно заменить.

Неправильная установка турбины. Или другой вариант — установка заведомо некачественной или неисправной турбины. Этот вариант, конечно, редкость, однако если вы выполняли ремонтные работы в автосервисе с сомнительной репутацией, то его также нельзя исключать.

Отключение клапана ЕГР (EGR). Некоторые автолюбители в ситуации, когда турбина «подъедает» масло, советуют отключить клапан EGR, то есть, клапан рециркуляции отработанных газов. На самом деле, действительно, такой шаг можно предпринять, однако необходимо дополнительно ознакомиться с последствиями этого мероприятия, поскольку он влияет на многие процессы в двигателе. Но помните, что даже если вы решитесь на такой шаг, все равно необходимо будет найти причину, из-за которой происходит «подъедание» масла. Ведь при этом его уровень постоянно падает, а работа двигателя в условиях масляного голодания очень вредна для силового агрегата и турбины.

Спрашивайте в комментариях. Ответим обязательно!

4 основные причины и ряд возможных решений

Оптимальная эксплуатация турбокомпрессора возможна лишь тогда, когда при использовании этого высокоточного механизма соблюдены правила, иначе возникают проблемы. Часто причиной поломок становится масло в турбине. Что предпринять, если турбокомпрессор гонит масло?

Типы проблем. Возможные решения

1. Масло поступает во впускную систему из компрессора

Возможные причины:

  • засорение патрубка;
  • обледенение или засорение воздушного фильтра;
  • повреждение сегмента впускного коллектора.

Для устранения неполадок необходимо проверить сопротивление поступающего воздуха. Параметры разрежения в области воздушного фильтра – не более 20 мм водного столба (на холостом ходу). Если остановить двигатель, резиновые патрубки вернут свою начальную форму. Напоследок необходимо освободить впускной коллектор иинтеркулер от масла. Если на крыльчатке нет царапин и биение подшипников не наблюдается, турбину менять не нужно.

2. Масло поступает во впускную систему двигателя

Возможна нехватка подкачанного воздуха в патрубках, интеркулере, коллекторе. Она возникает по причине утечки, которая увеличивает количество воздуха, идущее через компрессор, и уменьшает давление. В результате масло вытекает через компрессорную часть. Следует устранить утечку: заменить прокладки на новые, туже затянуть хомуты.

Необходимо проверить места, из которых масло может теряться по пути до турбины:

  • воздушный фильтр, наполненный маслом;
  • компрессор тормозной системы;
  • система замкнутой вентиляции.

3. Масло поступает в выпускную систему

Следует заглянуть в выпускной коллектор: скорее всего, это масляные пары или топливо. Конденсат, возникающий из-за разницы температур, часто принимают за следы масла. Если турбина на двигатель абсолютно новая, а в коллекторе обнаружено масло, возможно, что оно попало из двигателя.

4. Масло поступает в обе системы

Причин может быть две:

  1. Повреждение или засорение масляной магистрали, неправильное положение прокладки на стыке с турбиной.
  2. Неисправность картера двигателя, а именно засорение системы вентиляции. Возможно появление избытка газов из-за неполадок в двигателе или износа деталей. В этом случае для начала следует устранить неисправности. Если потеки масла слабые, скорее всего, виновата не турбина, а системы двигателя.

Рекомендации по установке турбины | Polbel

При установке турбины на автомобиль необходимо выполнить следующие операции:

1. Заменить масло в двигателе и масляный фильтр

Масло играет очень важную роль в работе турбокомпрессора. Именно от качества и чистоты масла зависит долговечность работы турбины. В процессе работы двигателя масло загрязняется продуктами сгорания топлива и теряет свои смазывающие свойства. В масле появляются мелкие твердые частицы сажи, продукты износа масляного насоса, вкладышей коленвала и других частей двигателя.

Весь этот «мусор» очень сильно изнашивает вал и подшипники турбокомпрессора. Вал турбины вращается в так называемом «масляном клине» т.е. между валом и подшипниками находится масляная пленка, и если в масляной пленке будут присутствовать посторонние предметы, то это приведет к потере смазывающих свойств и интенсивному износу деталей турбины.

Своевременная замена масла и масляного фильтра уменьшит износ деталей турбины и продлит срок их эксплуатации. Большинство турбин выходят из строя именно из-за некачественного или грязного масла.

2. Очистить поддон картера двигателя

В поддоне картера двигателя оседают продукты сгорания топлива и масла, стружка и частицы износа деталей двигателя. Эта накопившаяся «грязь» не сливается вместе с маслом при его замене и со временем образует смолянистый слой на дне картера. Это приводит к быстрому загрязнению чистого масла. Поэтому, периодически необходимо снимать и чистить поддон картера двигателя.

3. Очистить (или заменить) фильтра(сапуны) и каналы вентиляции картерных газов

Система вентиляции картера предназначена для уменьшения выброса вредных веществ из картера двигателя в атмосферу. При работе двигателя из камер сгорания в картер просачиваются отработавшие газы. В картере также находятся пары масла, топлива и воды. Все вместе они называются картерными газами. Скопление картерных газов ухудшает свойства и состав моторного масла, разрушает металлические части двигателя.

При засорении системы вентиляции картерных газов они скапливаются в нижней части двигателя и создают сопротивление сливу масла из турбокомпрессора в картер. В результате чего масло начинает протекать в холодную и горячую части турбины. Из холодной части турбины масло попадает в интеркулер и двигатель, а из горячей в выхлопную систему. В горячей части под воздействием высокой температуры масло коксуется, образуя нагар, что приводит к износу и выходу турбины из строя. Даже, абсолютно исправная турбина начинает течь, если картерных газов слишком много (изношен двигатель или не работает система вентиляции картерных газов).

4. Очистить (или заменить) интеркулер.

Очень часто при поломке старой турбины масло в большом количестве попадает в интеркулер. Если интеркулер не очистить от этого масла, то после установки новой турбины оно смешается с воздухом и попадет в двигатель. Для дизельного двигателя такая масляно-воздушная смесь является дополнительным топливом и двигатель может «пойти в разнос» . Чтобы этого не случилось необходимо очистить или заменить (официальные фирменные сервисы только меняют) интеркулер от масла.

5. Очистить (или заменить) катализатор и(или) DPF/FAP фильтра.

Катализатор и DPF/FAP фильтра — это устройства выхлопной системы автомобиля, предназначенные для снижения выброса вредных веществ в атмосферу с отработавшими газами. Срок службы автомобильного катализатора главным образом зависит от качества топлива. При определенных условиях катализатор можно «убить», выездив полный бак некачественной солярки. Средний срок службы катализатора 180-200 тыс.км. В процессе работы катализатор засоряется выхлопными газами, уменьшается площадь проходного сечения, создается препятствие выходу выхлопных газов. В результате чего повышаются осевые нагрузки на вал турбины и опорный подшипник. Появляется осевой люфт в турбокомпрессоре и он выходит из строя.

6. Очистить (или заменить) воздушный фильтр.

Некоторые автолюбители относятся к воздушному фильтру весьма равнодушно и ездят, пока он не станет на вид, вроде половой тряпки.

Для качественного сгорания горючей смеси необходимо, чтобы в ней содержалось воздуха больше, чем топлива от 15 до 20 раз. Обычный автомобиль на 100 км пробега потребляет 12 — 15 м3 воздуха из атмосферы. В воздухе постоянно находятся пыль, мелкие камни, вылетающие из под колёс автомобиля, семена растений, насекомые и пр. Если этот воздух не очищать, то эти частицы могут попасть во впускной коллектор, турбину и в двигатель, и будут действовать на детали как абразив, ускоряя их износ. Весьма скоро работа турбокомпрессора ухудшится и, в конце концов, он преждевременно выйдет из строя.

У фильтрующего элемента имеется еще один важный показатель — предельное сопротивление засасываемому воздуху. Чем более засорен фильтрующий элемент, тем выше его сопротивление воздушному потоку, и тем меньше воздуха поступает на смесеобразование. В некоторых режимах это ведет к большему обогащению смеси и к неполному ее сгоранию. Таким образом, мощность двигателя снижается, а расход топлива увеличивается. Сопротивление всасыванию воздуха создает дополнительную нагрузку на детали турбины и уменьшает их срок службы.

Помимо своего основного предназначения, воздушный фильтр также выполняет функцию глушителя шума, который распространяется по впускному тракту.

Мы рекомендуем производить замену(или очистку) воздушного фильтра каждые 10 тыс.км. пробега автомобиля, а в сельской местности 5-8 тыс.км.

7. Проверить герметичность и чистоту патрубков всасывания воздуха в турбокомпрессор.

Перед тем как установить новую турбину и завести двигатель, необходимо внимательно проверить состояние патрубков, идущих от воздушного фильтра к турбокомпрессору. Очень часто в этом патрубке остаются фрагменты компрессорного колеса и гайка от старой разрушенной турбины. Эти элементы прилипают к маслу, скопившемуся внутри патрубка, и не всегда их можно просто стряхнуть или выдуть. Такая застрявшая гайка становится «миной замедленного действия». Турбина может её втянуть мгновенно, а может пройти и месяц. Итог один – повреждение компрессорного колеса и выход турбокомпрессора из строя. Патрубки и корпус воздушного фильтра не должны иметь трещин и разрывов, все соединения должны быть герметичны. Это предотвратит попадание посторонних предметов в область всасывания турбокомпрессора.

8. Проверить давление подачи масла в турбокомпрессор.

Как известно, вращаться валу турбины с огромной скоростью (250 000 об/мин.) позволяет наличие «масляного клина» между валом и подшипниками скольжения. Недостаточное давление в масляной магистрали приводит к возникновению сухого трения в местах контакта вала и подшипников. Резко повышается температура и подшипники наплавляются на вал и опорные втулки. При проведении дефектации такой турбины это будет видно по характерным цветам побежалости и кольцевым следам наплавленных подшипников. Помимо смазки, масло выполняет роль отвода тепла от вала турбины. Поэтому важно не только давление, но и количество масла, проходящего через турбину в единицу времени. Закоксованность и деформация шлангов приводят к уменьшению потока масла и перегреву турбокомпрессора. Перед подсоединением маслоподающей магистрали к турбине необходимо проверить давление и поток масла. Для этого можно опустить маслоподающую трубку в пластиковую бутылку и прокрутить двигатель стартером, но не заводить его. Струя масла должна быть плотной и равномерной. Метод «дедовский», но он работает.

9. Проверить и очистить каналы слива масла из турбокомпрессора.

Недостаточное давление масла приводит к сухому трению, а избыточное давление приводит к протеканию масла в области холодной и горячей улитки. Забитость каналов слива создает препятствие сливу масла в картер двигателя. Повышается давление внутри корпуса турбины. В турбине нет сальников. Масло удерживается внутри корпуса бесконтактным динамическим уплотнением лабиринтного типа. При такой конструкции защита от протекания масла происходит не на 100%, но этого достаточно для нормальной работы сбалансированного по давлению механизма. При повышении давления внутри корпуса турбины лабиринты начинают пропускать масло из корпуса наружу. Турбина течет. Перед монтажом нового турбокомпрессора необходимо вычистить каналы слива масла и устранить различные их изломы и деформации.

10. Перед первым стартом наполнить маслом маслоподающую магистраль.

Одна из грубейших ошибок которую допускают неопытные мастера — незаполненная маслоподающая магистраль. Достаточно одной секунды «масляного голодания» чтобы «убить» турбину.

В наших требованиях, предъявляемых к установке турбокомпрессора, нет ничего невыполнимого и сложного. Это стандартные общепринятые правила необходимые для нормальной работы механизма называемого турбина.


Масла для двигателей с турбонаддувом

Содержание

Производители двигателей с турбонаддувом предъявляют к смазочным материалам целый ряд специфических требований. Они должны иметь повышенную стабильность при высоких температурах, а также улучшенные антифрикционные и противоизносные характеристики. Это связано с тем, что турбонаддув увеличивает нагрузку на детали двигателя, и эксплуатационные условия масла гораздо более жесткие, чем в обычном моторе. До появления турботаймеров владельцам турбированных машин приходилось давать двигателю поработать несколько минут на холостых оборотах, прежде чем его заглушить. Это давало возможность турбине остыть, не прерывая подачу масла. С появлением турботаймеров и систем водяного охлаждения турбины автомобили стали проще в эксплуатации для их владельцев. Но высокие требования к маслу для двигателей с турбонаддувом ничуть не снизились.

Характеристики

В системе классификации моторных масел API стали появляться требования к смазочным материалам дизельных двигателей с турбонаддувом. Самым первым классом качества был API CC. Актуальный на сегодняшний день — CJ-4. Для бензиновых турбодвигателей обязательных требований в стандарте пока что нет. Необходимые свойства есть у масел класса SG и выше. Если использовать в машине масла классом ниже, то с большой вероятностью менять их придется чаще. Многие современные масла можно лить и в бензиновый, и в дизельный двигатель. По стандартам API, производитель указывает обозначения характеристик через косую черту. Например, масла SINTEС обозначатся LUX SAE 10W-40 API SL/CF или ЭКСТРА SAE 20W-50 API SG/CD, где класс S относится к бензиновым, а класс С – к дизельным ДВС.

Рекомендации по выбору масла

При выборе масла первое, на что необходимо обратить внимание, — требования самого автопроизводителя. Они указаны в сервисной книжке. Второе — на индекс вязкости SAE. В обозначениях 0W-30 или 10W-40 первая цифра указывает на температуру, при которой масло сохранит текучесть, и относится к зимним условиям эксплуатации. Вторая цифра указывает на вязкость смазки после прогрева мотора. Если при наступлении холодов залить слишком вязкое масло, оно быстро загустеет. Летом тоже могут возникнуть проблемы — излишняя вязкость масла может привести к перегреву ДВС. Более вязкие смазки рекомендованы только для автомобилей с пробегом 100 тыс. км и более. В этом случае вязкость смазки компенсирует естественный износ ДВС. Жидкие масла облегчают запуск двигателя зимой, но разогретому мотору может не хватить толщины масляной пленки. В результате под нагрузками увеличится износ.

Выбор основы

При выборе между синтетикой, полусинтетикой и минеральным маслом нужно знать следующее:

  • Синтетические масла имеют более стабильные свойства в течение всего времени эксплуатации, но они и самые дорогие.
  • Полусинтетика считается оптимальной по соотношению цены, качества и свойств.
  • Минеральные масла применяются тогда, когда величина вязкости и класс их качества соответствуют нормам, установленным производителем. Такая смазка не вредит деталям дизельного двигателя и в разогретом виде имеет высокую текучесть. Но нужно помнить, что при низких температурах такое масло густеет и осложняет пуск.

Общие рекомендации по эксплуатации турбированного автомобиля

Владельцы машин с турбированными двигателями должны обязательно следить за уровнем масла. У таких машин более высокий расход смазочных материалов по сравнению с обычными. Нехватка масла может привести к быстрому износу и выходу дорогого турбокомпрессора из строя. Если двигатель не оснащен турботаймером, глушить его сразу после поездки нельзя. Нужно дать ему поработать на холостом ходу 3–5 минут. Иначе остановится циркуляция масла и охлаждение. Остатки масла в раскаленной турбине коксуются и способствуют более быстрому износу ДВС. То же самое касается прогрева двигателя перед поездкой. Это обязательно делать даже летом и только на холостом ходу. Если торопиться, газовать и поднимать обороты во время прогрева, турбину можно быстро вывести из строя.

Масла SINTEC для двигателей с турбонаддувом

Компания поставляет минеральные масла для автомобилей с бензиновыми и дизельными двигателями — легковых, легких коммерческих машин и автобусов.

  • SINTEC LUX SAE 10W-40 API SL/CF

    Полусинтетическое масло предназначено для новых моделей бензиновых и дизельных двигателей с турбонаддувом и катализатором. Его отличные эксплуатационные свойства обеспечиваются высокотехнологичными присадками.

  • SINTEC ЭКСТРА SAE 20W-50 API SG/CD

    Это минеральное масло произведено из высококачественной базы с добавлением присадок и предназначено для форсированных бензиновых моторов и дизельных двигателей с умеренным наддувом.

  • SINTEC ТУРБО ДИЗЕЛЬ SAE 20W-50 API CD

    Для производства этого всесезонного минерального масла используется база высокой степени очистки и пакет присадок последнего поколения. Оно предназначено для скоростных дизельных моторов с турбонаддувом и без него и тех, которые работают в тяжелых эксплуатационных условиях, также сельхозтехники и тракторов.

Масло моторное Eneos Turbo Diesel 5w30 минеральное, CG-4, для дизельного двигателя, 20л

Масло моторное Eneos Turbo Diesel 5w30 CG-4 минеральное, для дизельного двигателя

ОБЛАСТЬ ПРИМЕНЕНИЯ

Минеральное моторное масло для дизельных двигателей. Предназначено для высокооборотных турбодизельных и дизельных двигателей. Рекомендовано к применению в легковых автомобилях, внедорожной техники, микроавтобусах и высокомощных дизельных двигателях японского, американского, европейского и российского производства.

ОБЩИЕ СВЕДЕНИЯ

Обладает стабильными смазывающими свойствами, обеспечивает устойчивую масляную пленку в цилиндро-поршневой группе в условиях высоких температур.

ОСНОВНЫЕ ЭКСПЛУАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ

Обладает высоким щелочным числом, обеспечивающим эффективную нейтрализацию серы, содержащейся в дизельном топливе, отличными моющими свойствами и улучшенными эксплуатационными характеристиками. Препятствует высокотемпературному окислению.

ФИЗИКО-ХИМИЧЕСКИЕ ПОКАЗАТЕЛИ

Плотность при 15 °С, g/ml: 0.8592 ASTM D4052 KS M ISO 12185
Точка вспышки СОС, °С: 222 ASTM D92 KS M ISO 2592
Кинематическая вязкость при 40 °С, mm²/s: 58.86 ASTM D445 KS M ISO 3104
Кинематическая вызкость при 100 °С, mm²/s: 10.34 ASTM D445 KS M ISO 3104
Индекс вязкости: 166 ASTM D2270 KS M ISO 2909
Точка потери текучести, °С: -39.0 ASTM D97 KS M ISO 3016
Щелочное число, mgKOH/g: 12.70 ASTM D2896 KS M ISO 3771
Цвет ASTM: L2.0 ASTM D1500 KS M ISO 2049

О БРЕНДЕ

ENEOS — масло №1 в Японии, бренд крупнейшей японской нефтяной корпорации JXTG Nippon Oil & Energy. ENEOS — это лидер нефтяной промышленности Японии, крупнейшая в Японии сеть АЗС (14 000 станций — 51% рынка), Золотой партнер Олимпийских игр 2020 в Токио.

Производитель оставляет за собой право без уведомления менять характеристики, внешний вид, комплектацию товара и место его производства.

В случае, если в описании товара прямо не указано обратное, гарантийный срок на такой товар не установлен.

Масло моторное Eneos Turbo Diesel 15w40 минеральное, CG-4, для дизельного двигателя, 6л, арт. 1431

Масло моторное Eneos Turbo Diesel 15w40 CG-4 минеральное, для дизельного двигателя

ОБЛАСТЬ ПРИМЕНЕНИЯ

Минеральное моторное масло для дизельных двигателей с турбонаддувом. Рекомендовано к применению в легковых автомобилях, внедорожной техники, микроавтобусах и высокомощных дизельных двигателях японского, американского, европейского и российского производства.

ОБЩИЕ СВЕДЕНИЯ

Обладает стабильными смазывающими свойствами, обеспечивает устойчивую масляную пленку в цилиндро-поршневой группе в условиях высоких температур.

ОСНОВНЫЕ ЭКСПЛУАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ

Обладает высоким щелочным числом, обеспечивающим эффективную нейтрализацию серы, содержащейся в дизельном топливе, отличными моющими свойствами и высокими эксплуатационными качествами. Препятствует высокотемпературному окислению.

ФИЗИКО-ХИМИЧЕСКИЕ ПОКАЗАТЕЛИ

Плотность при 15 °С, g/ml: 0.8637 ASTM D1298 KS M ISO 12185
Точка вспышки СОС, °С: 228 ASTM D92 KS M ISO 2592
Кинематическая вязкость при 40 °С, mm²/s: 91.20 ASTM D445 KS M ISO 3104
Кинематическая вызкость при 100 °С, mm²/s: 14.30 ASTM D445 KS M ISO 3104
Индекс вязкости: 162 ASTM D2270 KS M ISO 2909
Точка потери текучести, °С: -33.0 ASTM D97 KS M ISO 3016
Щелочное число, mgKOH/g: 13.25 ASTM D2896 KS M ISO 3771
Цвет ASTM: L2.0 ASTM D1500 KS M ISO 2049

О БРЕНДЕ

ENEOS — масло №1 в Японии, бренд крупнейшей японской нефтяной корпорации JXTG Nippon Oil & Energy. ENEOS — это лидер нефтяной промышленности Японии, крупнейшая в Японии сеть АЗС (14 000 станций — 51% рынка), Золотой партнер Олимпийских игр 2020 в Токио.

Производитель оставляет за собой право без уведомления менять характеристики, внешний вид, комплектацию товара и место его производства.

В случае, если в описании товара прямо не указано обратное, гарантийный срок на такой товар не установлен.

Масло в интеркулере дизельного двигателя: причины

Попадание масла в интеркулер дизельного или бензинового ДВС является частой неисправностью, которая присуща исключительно моторам с турбонаддувом. В том случае, если моторное масло гонит в интеркулер, наблюдается снижение мощности двигателя, на различных режимах работы ДВС при нажатии на педаль газа происходят провалы. Данная проблема напрямую связана с особенностями устройства и принципом работы системы наддува посредством турбокомпрессора.

Содержание статьи

Что такое промежуточный охладитель

Как известно, принудительный наддув воздуха под давлением позволяет сжечь больше топлива и добиться существенного прироста мощности ДВС без увеличения физического объема цилиндров. Данное решение широко используется практически на всех современных дизельных моторах, а также применяется в конструкции форсированных бензиновых агрегатов.

Интеркулер является составным элементом, который входит в общую схему реализации турбонаддува. Дело в том, что воздух сильно сжимается турбокомпрессором, в результате чего происходит его нагрев. Если сразу подать в цилиндры разогретый воздух, тогда его объема будет недостаточно для эффективного и полноценного сгорания порции топлива. Мощность мотора снижается, расход горючего также заметно возрастает.

Для чего нужен интеркулер

Охладитель представляет собой своеобразный радиатор. Задачей устройства является охлаждение сжатого воздуха перед подачей в цилиндры ДВС. Охлаждение позволяет поместить большее количество воздуха в цилиндр, в результате чего удается сжечь больше горючего. Мощность двигателя при подаче холодного воздуха под давлением оказывается намного выше. Местом установки интеркулера закономерно выступает участок после турбины. Использование охладителя на дизеле позволило добиться прироста мощности, снизить токсичность отработавших газов, получить полное сгорание топливно-воздушной смеси, уменьшить расход топлива. Дизельный мотор с турбонаддувом стал более оборотистым, возросла моментная характеристика «на низах» и КПД двигателя, максимальная скорость дизелей стала выше.

Установка интеркулера на дизельный мотор обусловлена тем, что двигатели данного типа крайне требовательны к температуре рабочей смеси по сравнению с бензиновыми ДВС. Охладитель способен снизить температуру наддувочного воздуха до 55-70 градусов Цельсия. 

Охлаждение воздуха в системе может происходить по следующим схемам:

  • воздушное охлаждение;
  • жидкостное охлаждение;
  • комбинированная схема;
  1. В первом случае воздух нагнетается турбокомпрессором и далее проходит по сотам интеркулера, отдавая избытки тепла в атмосферу. Данная схема напоминает работу радиатора системы охлаждения двигателя.
  2. Охлаждение по второй схеме предполагает прохождение воздуха через устройство, заполненное жидкостью для охлаждения. Подобное решение сложнее конструктивно и дороже, так как требует установки дополнительного насоса для прокачки жидкости, а также отдельных электронных блоков управления.
  3. Комбинированное охлаждение используется в конструкции турбонаддува на высокофорсированных гоночных автомобилях. Схема охлаждения надувочного воздуха в таких машинах включает в себя сразу несколько интеркулеров, одни из которых работают по принципу воздушного охлаждения, а другие представляют собой варианты жидкостных радиаторов. Охладители в комбинированных схемах задействуются последовательно.

Охлаждение по принципу воздух-воздух менее эффективно сравнительно со схемами воздух-вода и комбинированными решениями. При этом главным преимуществом воздушного радиатора является простота и доступность данного решения, что и обусловило повсеместную установку интеркулеров подобного типа на серийные дизельные и бензиновые автомобили.

Диагностика и устранение неисправности

Моторное масло может попадать как в воздушный, так и в жидкостной интеркулер. В результате качество охлаждения наддувочного воздуха снижается, система турбонаддува не обеспечивает должной производительности.

В том случае, если турбина бросает масло в интеркулер, стоит начать с диагностики неисправностей турбокомпрессора. Масло часто гонит на интеркулер в случае проблем с маслопроводом. Указанный маслопровод является сливным патрубком и соединяет турбокомпрессор и картер двигателя. Необходимо визуально оценить состояние элемента на предмет наличия трещин, загибов и т.д.

Маслопровод со временем может деформироваться, уплотнительные элементы также могут прийти в негодность. Пережатый маслопровод будет означать, что в системе турбонаддува создается слишком высокое давление, а масло выдавливается через уплотнительные кольца. В случае обнаружения дефектов рекомендуется полностью заменить деталь и уплотнители. Если маслопровод изогнут, но повреждений нет, тогда решением проблемы может быть простое выравнивание данного элемента и надежная фиксация.   

Во время осмотра стоит отдельно учитывать вероятность трещин самого корпуса интеркулера. Если таковые обнаружены, тогда возможно их устранение при помощи сварки. При наличии масла на интеркулере также обязательно производится осмотр воздуховода, который подводит воздух к турбине. Осмотрите элемент на наличие трещин и других дефектов.

Дополнительно понадобится проверить состояние воздушного фильтра. Если воздуховод поврежден и/или фильтр сильно забит, тогда достаточное количество воздуха не поступит в турбину. В турбокомпрессоре образуется разрежение, моторное масло «высасывается», уплотнители разрушаются и смазка попадает в интеркулер. Неисправность устраняется заменой/чисткой фильтра и исправлением дефектов/заменой воздуховода.

Еще одной причиной появления масла в интеркулере и в его патрубке выступает закупорка маслопровода, которая возникает в процессе эксплуатации турбодизеля или турбобензина. Для решения проблемы осуществляется демонтаж маслопровода и его тщательная промывка. Во время очистки необходимо соблюдать осторожность, так как существует риск повреждения стенок маслопровода.

Сильное загрязнение охладителя маслом может указывать на то, что в картере двигателя слишком высокий уровень смазки. Избыток смазочного материала заставляет турбину кидать масло на радиатор охлаждения воздуха. Данная ситуация может возникнуть по нескольким причинам:

  • значительный перелив моторного масла;
  • проблемы с системой вентиляции картера;
  • попадание ОЖ или топлива в систему смазки;

В первом случае будет достаточно удалить лишнее масло из двигателя, оставив в картере рекомендуемый объем. Второй случай относится к более серьезным неисправностям, так как попадание масла через маслопровод в турбину указывает на высокое давление картерных газов. Высокое давление свидетельствует о неисправностях системы вентиляции картера, а также может говорить об износе ЦПГ, разрушении поршневых колец, самого поршня или стенок цилиндра.

Отработавшие газы переполняют картер и начинают выдавливать моторное масло по сливной трубке в турбину, откуда смазка и попадает в интеркулер. Для устранения проблемы может потребоваться очистка системы вентиляции, а также вполне возможна необходимость капитального ремонта ДВС.

Самостоятельная очистка интеркулера дизельного двигателя

После устранения неисправностей, которые привели к выбросу масла в охладитель, необходимо осуществить очистку интеркулера. Данная процедура нужна для того, чтобы воздух нормально охлаждался, а остатки моторного масла в воздушном радиаторе не смешивались с подаваемым турбиной воздухом.

Попадание смеси масла и воздуха в цилиндры снижает эффективность работы дизельного двигателя, приводит к сильному нагарообразованию и коксованию, изменяются условия сгорания  топливно-воздушной смеси и т.д. В критических случаях возможно даже возгорание моторного масла в цилиндрах и перегрев дизельного двигателя.

  1. Чтобы почистить интеркулер своими руками потребуется его демонтаж. Очистка от моторного масла предполагает использование специальных клинеров-очистителей, которые широко представлены в продаже. Перед использованием обязательно соберите информацию о том, можно ли использовать выбранное средство для очистки интеркулера конкретного автомобиля.
  2. Не рекомендуется промывать интеркулер бензином или керосином, различными растворителями и другими агрессивными составами. Определенные охладители могут состоять из таких материалов, которые легко разрушаются под воздействием агрессивных средств очистки. В подобной ситуации существует риск полностью вывести устройство из строя.
  3. Что касается воздушных охладителей, для их снятия нужно выкрутить крепежные болты и снять хомуты. Демонтаж жидкостного охладителя потребует тщательного изучения инструкции.
  4. Промывать охладитель необходимо в строгом соответствии с указаниями производителя, которые указаны на упаковке очистителя. После промывки необходимо тщательно смыть остатки химии при помощи проточной воды.
  5. Многие автолюбители для очистки подкапотного пространства используют Керхер. В случае с мойкой охладителя можно также использовать данный способ. Необходимо отметить, что подавать воду нужно строго под небольшим давлением. Соты охладителя достаточно хрупкие, вода может повредить устройство при интенсивной подаче.
  6. Промывку необходимо повторять до того момента, пока из радиатора не начнет вытекать чистая вода. По окончании необходимо хорошо просушить охладитель, чтобы исключить вероятность присутствия воды. Для ускорения процесса сушки интеркулер внутри аккуратно продувают сжатым воздухом с минимальным давлением.
  7. Необходимо также тщательно промыть наружную сторону охладителя от пыли, грязи и остатков моторного масла. Завершающим этапом станет обратная установка очищенного устройства.

Полезные советы и рекомендации

  • Периодическая наружная очистка сот интеркулера является профилактической мерой и позволяет улучшить эффективность работы системы турбонаддува.
  • Появление даже незначительного количества моторного масла в охладителе требует прекращения эксплуатации ДВС до момента устранения причины.
  • Активное использование автомашины с заведомо неисправной системой турбонаддува может привести к более серьезным поломкам силового агрегата.

Читайте также

Двигатель внутреннего сгорания

и газовая турбина — гибкость топлива

Электростанции, которые могут надежно работать на различных газообразных или жидких топливах, обеспечивают энергетическую безопасность в случае перебоев в поставках топлива. Многотопливные двигатели Wärtsilä могут мгновенно переключать топливо, сохраняя при этом полную мощность и высокий КПД. Такая гибкость обеспечивает ключевое преимущество перед газовыми турбинами, которые имеют пониженную готовность и выходную мощность при работе на жидком топливе. Благодаря гибкости в отношении топлива электростанции Wärtsilä могут удовлетворять растущие потребности диспетчеризации и оперативно реагировать на изменения в наличии топлива.

Энергетическая безопасность остается серьезной проблемой для многих стран мира. Потенциальные угрозы
включают геополитическую нестабильность, перебои с поставками топлива и колебания цен на топливо. Наличие натурального
газа растет, особенно из-за глобального расширения инфраструктуры поставок СПГ, но негибкость в
цепочки поставок и колебания цен вызывают неопределенность. Нехватка топлива, перебои с поставками
и ценовые ограничения — пусть и временные — создают значительную экономическую и электрическую надежность
риски.Чтобы снизить топливный риск, некоторые страны теперь определяют возможность использования нескольких видов топлива для новой электростанции
. заводов, осознавая, что гибкость в отношении топлива имеет жизненно важное значение для обеспечения надежного источника электроэнергии.

Что такое гибкость топлива?

Топливная гибкость — это способность сжигать различные виды топлива и сразу же переключать виды топлива во время работы без снижения нагрузки или снижения эксплуатационной готовности электростанции. Жидкие топлива и альтернативные газовые топлива, которые могут использоваться для производства электроэнергии, включают сжиженный нефтяной газ (LPG), сырую нефть, остаточное жидкое топливо (RFO) и дистиллятное топливо, включая легкое жидкое топливо (LFO), нафту и дизельное топливо.Однако не все электростанции предназначены для работы на жидком топливе в течение продолжительных периодов времени. Когда из-за нехватки природного газа газовые турбины сжигают мазут в качестве резервного, требуются дополнительные проверки и техническое обслуживание, что приводит к более частым отключениям. Двигатели внутреннего сгорания Wärtsilä предназначены для сжигания различных газообразных и жидких видов топлива без необходимости увеличивать объем технического обслуживания или снижения эксплуатационной готовности, обеспечивая эффективное и надежное энергоснабжение 24/7/365.

В то время как газовые турбины часто рекламируются как обладающие гибкостью топлива, около 90 процентов газовых турбин во всем мире работают на природном газе или сжиженном природном газе (СПГ) из-за его чистоты и легкости сгорания.Только около 400 газовых турбин GE во всем мире работают на сырой нефти, нафте или тяжелом топливе. Парк заводов Wärtsilä, работающих на мазуте, включает более 4000 заводов с 8900 двигателями в 165 странах, как показано на Рисунке 1. Ряд электростанций Wärtsilä были спроектированы для работы на жидком топливе, в то время как инфраструктура природного газа была построена или расширена с использованием нескольких -возможность топлива для удовлетворения как краткосрочных, так и долгосрочных потребностей в электроэнергии.

Рисунок 1: Обширный глобальный парк электростанций Wärtsilä, работающих на мазуте

Помимо жидкого топлива, Wärtsilä предлагает многотопливные решения, в которых в качестве топлива используется сжиженный нефтяной газ, а также жидкое топливо
или природный газ в качестве альтернативного топлива.СНГ становится все более привлекательным топливом для выработки электроэнергии
, особенно на островах и в небольших энергосистемах, из-за его широкой доступности и низких затрат на инфраструктуру.

Вопросы технического обслуживания газовых турбин, работающих на мазуте

Жидкое топливо представляет множество проблем для газовых турбин, поскольку оно может содержать водорастворимые соли, высокие концентрации тяжелых металлов и других примесей. Сырая и остаточная нефть более вязкие и содержат более высокие концентрации следов металлов, чем дистилляты.Металлы и соли являются абразивными для турбинных лопаток и могут образовывать отложения золы, которые приводят к загрязнению и коррозии компонентов тракта горячего газа. Поскольку в газовых турбинах сгорание происходит непрерывно, блок необходимо отключить для проверки и технического обслуживания. Для газовых турбин, работающих на жидком топливе, требуется сочетание подготовки топлива (очистка, смешивание, нагрев и повышение давления) и более частых циклов технического обслуживания. Катализаторы могут быть добавлены для улучшения сгорания, и в некоторых случаях тяжелое жидкое топливо (HFO) или сырая нефть могут быть смешаны с более чистым жидким топливом для достижения допустимого содержания серы, золы и металлов.Для топлива, содержащего ванадий или свинец, растворимые в масле и не удаляемые промывкой или центрифугированием, требуются ингибиторы коррозии для использования в газовых турбинах. Обычно считается, что дистиллятное топливо относительно не содержит загрязняющих веществ, но загрязнение во время транспортировки и доставки топлива привело к возникновению коррозии в газовых турбинах.

Капитальный ремонт газовой турбины, предназначенной для сжигания жидкого топлива на природном газе, является дорогостоящим и требует корректировки контроля температуры горения, пересмотренных процедур запуска и останова, а также циклов автономной очистки для удаления отложений золы.В результате снижается доступность газотурбинной электростанции. Поскольку некоторые жидкие топлива содержат летучие компоненты с низкой температурой вспышки (например, нафта), взрывозащита также часто требуется для газовых турбин. Таким образом, способность большинства газовых турбин работать на жидком топливе очень ограничена с точки зрения характеристик топливных масел, которые можно использовать, и количества времени, в течение которого турбина может работать на таких видах топлива.

Варианты жидкого топлива для газовых турбин различаются в зависимости от производителя и модели, при этом в некоторых газовых турбинах можно использовать только No.2 дистиллята. Для работы с различными видами топлива используются несколько систем подачи топлива и камеры сгорания. GE предлагает пакет HFO для своих газовых турбин 7E и 9E; газовая турбина Siemens SGT-500 может сжигать сырую нефть, HFO и бионефти; и Alstom предлагает возможность использования жидкого топлива на своих моделях GT24 и GT26.

Техническое обслуживание двигателя

Wärtsilä не зависит от типа топлива, поскольку двигатели не чувствительны к металлам или солям в жидком топливе. Никаких ингибиторов коррозии не требуется, и требуется лишь минимальная подготовка топлива (центробежные сепараторы и фильтры) для сжигания топлива более низкого качества, включая HFO / RFO и сырую нефть.Поскольку в двигателях внутреннего сгорания сгорание происходит с перерывами с выбросом продуктов сгорания во время такта выпуска, предотвращается накопление золы.

В то время как использование золообразующего топлива (например, HFO) снижает мощность газовой турбины на 4-5 процентов по сравнению с работой на природном газе, многотопливные двигатели Wärtsilä сохраняют ту же мощность и высокий КПД независимо от того, работают ли они на природном газе, LFO или HFO. . Если подача природного газа прерывается, многотопливная электростанция Wärtsilä мгновенно переключается на резервный мазут и поддерживает нагрузку без каких-либо штрафов за техническое обслуживание.Когда требуется текущее обслуживание, модульная архитектура электростанций Wärtsilä позволяет отключать двигатель, сохраняя при этом большую часть мощности электростанции.

В двухтопливных двигателях Wärtsilä (DF) используется технология сжигания обедненной смеси при работе на газе и нормальный процесс дизельного топлива при работе на мазуте. Двигатели Wärtsilä DF имеют три системы подачи топлива, которые работают параллельно: система впрыска пилотного топлива, система подачи жидкого топлива и система впуска газа. Система жидкого резервного топлива позволяет двигателю автоматически и мгновенно переключаться с работы на газе на работу на жидком топливе при любой нагрузке.Подача трех видов топлива также позволяет мгновенно переключаться с LFO на HFO. Гибкость в использовании топлива была основным фактором при выборе технологии многотопливных двигателей Wärtsilä для решения проблем с энергоснабжением в Иордании. Электростанция IPP3 мощностью 573 МВт, состоящая из 38 двигателей Wärtsilä 50DF, которые могут использовать природный газ, LFO и HFO, является крупнейшей трехтопливной электростанцией в мире, обеспечивающей Иорданию надежной мощностью.

В то время как газовым турбинам требуется около 10 минут для переключения с газа базовой нагрузки на мазут, многотопливные двигатели Wärtsilä могут мгновенно переключаться с природного газа на мазут.Переход на газ с жидкого топлива занимает примерно 90 секунд без снижения нагрузки. Как показано в Таблице 1 ниже, многотопливные двигатели Wärtsilä обладают многочисленными преимуществами по сравнению с газовыми турбинами для гибких топливных решений, включая способность работать на широком диапазоне видов топлива без ущерба для работоспособности электростанции или дополнительных затрат на техническое обслуживание. Такая топливная гибкость обеспечивает экономию средств, поскольку электростанция Wärtsilä может гарантировать надежное энергоснабжение, поскольку запасы топлива меняются с течением времени.

Таблица 1. Топливная гибкость двигателей Wärtsilä по сравнению с газовыми турбинами

Характеристика топливной гибкости Двигатели Wärtsilä DF Газовые турбины
Возможность работы на природном газе, сырой нефти, HFO и LFO
Мгновенное переключение с газа на мазут
Переключить топливо при полной нагрузке
Нечувствительность к металлам и солям в жидком топливе
Нет необходимости в повышенном техническом обслуживании при работе на мазуте

(PDF) Сравнение бортовых судов с газотурбинными двигателями, работающими на природном газе и дизельном топливе

Сравнение бортовых судов, работающих на природном газе и дизельном топливе… 125

CV Теплотворная способность кДж / кг WC Всего компрессора кДж /

ч энтальпия кДж / кг Вт Работа компрессора кДж /

LC Низшая теплотворная способность кДж / кг WP Мощность турбины кДж /

м.

Массовый расход топлива кг / с Вт

Коэффициент работы —

м.

Массовый расход воздуха, кг / с WT Общая работа, кДж /

м.вх. Массовый расход выхлопа, кг / с ηc

КПД цикла —

R Сжатие — ε Пиковые температуры —

sfc Удельный расход топлива г / кВт. λ Коэффициент избытка воздуха —

Ссылки

Banawan, A.A., El Gohary, M.M. и Садек И. (2010) Экологические и экономические выгоды

от перехода с судового дизельного топлива на газовое топливо для маломерных пассажирских судов большой дальности

, Дж.Инженерия для морской среды, 224 (2): 103-113.

Бин Линь, Чернг и Юань Линь. (2005) Соответствие международным нормам по выбросам:

Снижение загрязнения воздуха торговыми судами, Journal of Marine Policy, 30: 220-

230.

Коэн, Х., Роджерс, Г. и Сараванамутто, Х. ( 1996) «Теория газовых турбин — 4-е издание»,

Longman Group Ltd.

DNV (2007) Установки с газовыми двигателями, Правила классификации судов, Часть 6, глава 13.

Эль-Гохари, М. и Эль-Шериф, Х. (2006) Будущее водорода как экологически чистой энергии в морских приложениях

, WREC IX, Флоренция, Италия.

Эль-Гохари, М. (2007) Проект водородной морской газовой турбины, Александрийский инженерный журнал

(AEJ) 46 (3): 273-280

Эйнанг, М. (2007) МАРИНТЕК, Норвегия, «газовое топливо» корабли », доклад 25-й конференции CIMAC

NO.261, Вена.

Харрингтон, Р.Л. (Ред.) (1992) «Морская инженерия», Общество морской архитектуры и морского флота

Публикация инженерного дела (SNAME).

Ибрагим, А. (1996) «Двигатели внутреннего сгорания», Дар Эль-Маареф, Александрия, Египет.

IMO (2009) Временное руководство по безопасности для двигателей, работающих на природном газе, на судах,

Комитет по безопасности на море (MSC) 285 (86).

Kyrkjebø, L.H. и Seatrans, A. (2007) Будущее СПГ глазами судовладельца, конференция Magalog

.

Лэмб, Т. (ред.), (2004) Проектирование и строительство судов, Общество морской архитектуры и морского флота

Инженерное дело (SNAME).

Sandker, K.M. (2008) Использование природного газа в качестве топлива для судов »Elidesvik offshore ASA, мастерская

по морской технологии — Панель 1, Норвегия.

Tomczak, HJ, Benelli, G., Carrai, L. и Cecchini, D. ( 2002) Исследование системы сжигания газовой турбины

, работающей на смесях природного газа и водорода », IFRF Combustion

Journal.

Велдхуис, И., Ричардсон, Р. и Стоун, Х. (2005) водородное газотурбинное судно с высокой скоростью

, Контейнеровоз, Транспортные материалы международной конференции по Fast

Sea.

Райт, А.А. (2005) Выхлопные газы от оборудования для сжигания, Морской институт

Инженерное дело, наука и технологии (IMarEST).

Würsig, G. (2011) Комитет по безопасности на море (MSC.285) (86) и Кодекс для газовых судов

(IGF-Code) — технические проблемы и перспективы »- Germanischer Lloyd AG,

Gastech, 21 -24 марта.

Как выбирать и обслуживать турбинные масла

На вопрос «Как долго прослужит это турбинное масло?» следует ответить звуковой инженерной реакцией «это зависит от обстоятельств».”

Поставщики турбинного масла могут дать довольно широкие оценки, скажем, от 5 до 15 лет для применения в газовых турбинах. Любая попытка получить более точную оценку требует учета такого количества переменных, что становится в некоторой степени бесполезной. Вода, тепло, загрязнения, часы работы и методы технического обслуживания будут иметь значительное влияние на долговечность турбинного масла.

Нельзя отрицать, что надлежащим образом протестированные и обслуживаемые, более качественные турбинные масла обеспечат более длительный срок службы, чем плохо проверенные и обслуживаемые продукты более низкого качества.Ниже приводится обсуждение новых эксплуатационных характеристик турбинного масла, которые будут способствовать более длительной и безотказной работе.

Более 100 тонн стали, вращающихся со скоростью 3600 об / мин, поддерживаются подшипниками скольжения на масляной подушке, которая тоньше человеческого волоса. На электростанциях по всему миру одна и та же гидродинамика происходит изо дня в день без особого уведомления.

Упущенная выгода во время сезонных пиков может исчисляться миллионами долларов.Средняя коммунальная компания продает электроэнергию по цене около 50 долларов за МВт в час в непиковые периоды и до 1000 долларов за МВт в час в периоды пиковой нагрузки. Неправильный выбор и техническое обслуживание турбинного масла может привести к производственным потерям, превышающим 500 000 долларов США в день.

При выборе турбинного масла для паровых, газовых, гидро- и авиационных турбин в рамках процесса выбора следует оценивать услуги поставщика масла и обязательства перед заказчиком.

Найдите подходящий инструмент для работы

Перед тем, как приступить к процессу выбора, важно иметь представление о физических и химических характеристиках турбинных масел по сравнению с другими смазочными маслами.

Паровые, газовые и гидротурбины работают на семействе смазочных масел, известных как масла R&O (масло с ингибитором ржавчины и окисления). Геометрия турбинного оборудования, рабочие циклы, методы технического обслуживания, рабочие температуры и возможность загрязнения системы предъявляют особые требования к смазочным маслам по сравнению с другими смазочными маслами, такими как бензиновые и дизельные двигатели.

Объем отстойников паровых и газовых турбин может составлять от 1 000 до 20 000 галлонов, что является экономическим стимулом для смазочного масла с длительным сроком службы.Низкие нормы подпитки турбинного масла (примерно пять процентов в год) также способствуют потребности в высококачественных смазочных материалах с длительным сроком службы. Без значительных проблем с загрязнением масла срок службы турбинного масла в первую очередь определяется устойчивостью к окислению.

На окислительную стабильность отрицательно влияют тепло, вода, аэрация и загрязнение твердыми частицами. Антиоксиданты, ингибиторы ржавчины и деэмульгирующие присадки смешиваются с базовым маслом высшего качества для продления срока службы масла. С этой же целью в системах смазки турбин устанавливаются охладители смазочного масла, системы удаления воды и фильтры.

В отличие от большинства бензиновых и дизельных моторных масел, турбинное масло предназначено для отвода воды и позволяет твердым частицам оседать там, где они могут быть удалены через дренажные системы отстойника или системы фильтрации почек во время работы. Чтобы способствовать отделению загрязнений, большинство турбинных масел не содержат добавок с высоким содержанием детергентов или диспергаторов, которые очищают и уносят загрязнения. Турбинные масла не подвергаются воздействию топлива или сажи, поэтому их не нужно часто сливать и заменять.

Рекомендуемые рабочие характеристики турбинного масла зависят от области применения паровых турбин

Хорошо обслуживаемое масло для паровых турбин с умеренными темпами подпитки должно прослужить от 20 до 30 лет. Когда масло для паровой турбины выходит из строя на ранней стадии из-за окисления, это часто происходит из-за загрязнения водой. Вода снижает стойкость к окислению и способствует образованию ржавчины, которая, помимо прочего, действует как катализатор окисления.

Различные количества воды будут постоянно попадать в системы смазки паровой турбины из-за утечки сальникового уплотнения.Поскольку вал турбины проходит через корпус турбины, необходимы паровые уплотнения низкого давления, чтобы минимизировать утечку пара или попадание воздуха в вакуумный конденсатор.

Вода или конденсированный пар обычно отводится от системы смазки, но неизбежно некоторое количество воды проникает в корпус и попадает в систему смазочного масла. Состояние сальникового уплотнения, давление пара сальникового уплотнения и состояние дымососа сальникового уплотнения влияют на количество воды, попадающей в систему смазки.

Обычно системы отвода пара и высокоскоростное нисходящее масло создают вакуум, который может втягивать пар через уплотнения вала в подшипник и масляную систему. Вода также может попадать из-за отказов охладителя смазочного масла, неправильной очистки электростанции, загрязнения водой подпиточного масла и конденсированной влаги из окружающей среды.

Во многих случаях влияние плохого разделения масла и воды можно компенсировать правильным сочетанием и качеством присадок, включая антиоксиданты, ингибиторы ржавчины и присадки, улучшающие деэмульгируемость.

Избыточная вода также может быть удалена на постоянной основе за счет использования водоотделителей, центрифуг, коалесцеров, дегидраторов свободного пространства резервуара и / или вакуумных дегидраторов. Если деэмульгируемость турбинного масла не удалась, воздействие окисления смазочного масла, связанного с водой, будет зависеть от производительности систем отделения воды.

Тепло также приведет к сокращению срока службы турбинного масла из-за повышенного окисления. В паровых турбинах общего пользования температура подшипников обычно составляет от 120 до 160 ° F (от 49 до 71 ° C), а температура масляного поддона составляет 120 ° F (49 ° C).Обычно считается, что воздействие тепла удваивает скорость окисления на каждые 18 градусов выше 140ºF (на 10 градусов выше 60ºC).

Обычное минеральное масло начинает быстро окисляться при температуре выше 180 ° F (82 ° C). Большинство опорных подшипников с оловянным покрытием начинают выходить из строя при температуре 250 ° F (121 ° C), что значительно превышает температурный предел для обычных турбинных масел. Высококачественные антиоксиданты могут замедлить термическое окисление, но необходимо свести к минимуму избыток тепла и воды, чтобы продлить срок службы турбинного масла.

Газовые турбины

Для большинства крупных газотурбинных агрегатов с рамой высокая рабочая температура является основной причиной преждевременного выхода из строя турбинного масла. Стремление к более высокому КПД турбин и температурам сгорания в газовых турбинах было основным стимулом для тенденции к более термостойким турбинным маслам. Современные крупногабаритные рамы работают с температурами подшипников в диапазоне от 160 до 250 ° F (от 71 до 121 ° C).

Сообщается, что рамы нового поколения работают при еще более высоких температурах.Производители газовых турбин увеличили свои рекомендуемые ограничения на характеристики RPVOT — ASTM D2272 (испытание на окисление в сосуде под давлением при вращении) и TOST — ASTM D943 (Устойчивость к окислению турбинного масла), чтобы соответствовать этим более высоким рабочим температурам.

По мере того как газовые турбины нового поколения появляются на рынке коммунальных услуг, изменения в рабочих циклах также создают новые препятствия для смазывания. Проблемы со смазкой, характерные для газовых турбин, работающих в циклическом режиме, начали возникать в середине 1990-х годов.Более высокие температуры подшипников и цикличность работы приводят к засорению гидравлики системы, что задерживает запуск оборудования.

Правильно подобранные гидрокрекинговые турбинные масла были разработаны для решения этой проблемы и увеличения интервалов замены масла в газовых турбинах. Такие продукты, как Exxon Teresstic GTC и Mobil DTE 832, продемонстрировали отличные характеристики в течение почти пяти лет службы в газовых турбинах с циклическим режимом работы, где обычные минеральные масла часто выходили из строя в течение одного-двух лет.

Гидротурбины

В гидротурбинах обычно используются масла ISO 46 или 68 R&O. Деэмульгируемость и гидролитическая стабильность являются ключевыми рабочими параметрами, влияющими на срок службы турбинного масла из-за постоянного присутствия воды. Колебания температуры окружающей среды в гидроэнергетике также делают стабильность вязкости, измеряемую индексом вязкости, важным критерием эффективности.

Авиационные газовые турбины

Авиационные газовые турбины представляют собой уникальные проблемы с турбинными маслами, которые требуют масел с гораздо более высокой стойкостью к окислению.Основное беспокойство вызывает тот факт, что смазочное масло в авиационных турбинах находится в прямом контакте с металлическими поверхностями в диапазоне от 204 до 316 ° C (400–600 ° F). Температура смазочного масла в поддоне может составлять от 160 до 250 ° F (от 71 до 121 ° C).

Эти компактные газовые турбины используют масло для смазки и передачи тепла обратно в масляный поддон. Кроме того, их циклический режим работы вызывает значительные термические и окислительные нагрузки на смазочное масло. Эти самые сложные условия требуют использования синтетических смазочных масел высокой чистоты.Средний расход смазочного масла 0,15 галлона в час поможет омолодить турбомасло в этих сложных условиях.

Турбинные масла современной технологии для турбин наземной энергетики описываются как турбомасла 5 сСт. Турбины на базе авиационных двигателей работают с гораздо меньшими маслосборниками, обычно 50 галлонов или меньше. Ротор турбины работает на более высоких скоростях, от 8000 до 20 000 об / мин, и поддерживается подшипниками качения.

Синтетические турбомасла разработаны для удовлетворения требований газовых турбомоторов военных самолетов, определенных в формате военных спецификаций.Эти спецификации MIL составлены, чтобы гарантировать, что аналогичные по качеству и полностью совместимые масла доступны во всем мире и указаны в спецификациях смазочных материалов OEM.

Турбомасла типа II были коммерциализированы в начале 1960-х годов для удовлетворения требований ВМС США по улучшенным характеристикам, в результате чего был создан MIL — L (PRF) — 23699. Большинство авиационных производных в энергетике сегодня используют эти масла Type II, MIL — L. (PRF) — 23699, базовое масло на основе сложного эфира полиола, синтетические турбомасла.Эти масла типа II обладают значительными эксплуатационными преимуществами по сравнению с более ранними синтетическими турбо-маслами на основе диэфиров типа I.

Усовершенствованные турбомасла типа II были коммерциализированы в начале 1980-х годов для удовлетворения требований ВМС США по лучшей устойчивости к высоким температурам. Это привело к созданию новой спецификации MIL — L (PRF) — 23699 HTS. В 1993 году Mobil JetOil 291 было коммерциализировано как первое турбомасло четвертого поколения, удовлетворяющее современным условиям высоких температур и высоких нагрузок реактивных масел.Продолжаются улучшения в технологии смазочных материалов с турбонаддувом.

В подшипниковых узлах генератора обычно используется масло ISO 32 R&O или гидравлическое масло. Более низкие температуры застывания гидравлического масла по сравнению с маслом R&O могут диктовать необходимость использования гидравлического масла в холодных условиях.

Написание стандарта

на закупку турбинного масла

Масла для паровых, газовых и гидротурбинных двигателей представляют собой смесь высокоочищенных или гидроочищенных базовых масел на основе нефти, обычно ISO VG 32 и 46 или 68. Поставщики смазочных материалов разработали турбинные масла для удовлетворения различных требований турбин в силовых установках и производстве электроэнергии.

Эти составы были разработаны в соответствии со спецификациями производителей турбин. Многие производители турбин отказались от утверждения конкретных торговых марок турбинных масел из-за усовершенствованных технологий в своих турбинах и соответствующих улучшений турбинных масел. Производители оригинального оборудования определили предлагаемые или рекомендуемые критерии проверки характеристик смазочного масла и, как правило, оговаривают, что масло, которое, как известно, успешно работает в полевых условиях, все равно можно использовать, даже если все рекомендуемые значения не были соблюдены.

Стендовые испытания смазочного масла, соответствующие отраслевым стандартам, могут дать хорошее представление об эксплуатационных характеристиках и ожидаемом сроке службы турбинных масел. Однако производители турбин и поставщики масел в целом согласны с тем, что прошлые успешные эксплуатационные характеристики конкретного масла в аналогичных условиях являются наилучшим общим представлением качества и производительности.

Независимо от типа или срока службы турбинного масла, качество базовых масел и химический состав присадок будут иметь решающее значение для его долговечности.Высококачественные базовые компоненты характеризуются более высоким процентным содержанием насыщенных веществ, более низким процентным содержанием ароматических углеводородов и более низким содержанием серы и азота. Характеристики присадок должны быть тщательно проверены. Их также необходимо смешивать с маслом в строго контролируемом процессе.

Ключом к превосходному турбинному маслу является сохранение свойств. Было обнаружено, что некоторые составы турбинного масла дают хорошие данные лабораторных испытаний, но могут испытывать преждевременное окисление из-за выпадения присадки и окисления базового масла.

Опять же, лабораторный анализ смазочного масла может поддержать ваши усилия по определению долговечности турбинного масла, но прямой практический опыт должен иметь приоритет. Обратите внимание, что поставщики турбинного масла будут предлагать типичные данные анализа смазочного масла, чтобы помочь оценить прогнозируемые характеристики. Используются типичные данные, потому что смазочные масла незначительно отличаются от партии к партии из-за незначительных изменений базовых компонентов.

Промышленные паровые и газотурбинные масла могут быть как минеральными (Группа 1), так и гидрообработанными (Группа 2).Высококачественные традиционные масла на минеральной основе хорошо зарекомендовали себя как в паровых, так и в газовых турбинах более 30 лет. Тенденция к более высокому КПД циклических газовых турбин стимулировала разработку турбинных масел Группы 2, подвергнутых гидрообработке.

Большинство турбинных масел, подвергнутых гидрообработке, будут иметь лучшие начальные показатели RPVOT и TOST, чем обычные турбинные масла. Это преимущество в стойкости к окислению подходит для применения в газовых турбинах, работающих в тяжелых условиях.

Преимущества окислительной способности турбинного масла, подвергнутого гидрообработке, могут не потребоваться во многих менее требовательных применениях паровых и газовых турбин. Известно, что обычные масла на минеральной основе обладают лучшей растворимостью, чем масла, подвергнутые гидрообработке, которые могут обеспечивать лучшее удерживание пакета присадок и повышенную способность растворять продукты окисления, которые в противном случае потенциально могли бы привести к образованию лаков и шламов.

При написании спецификации турбинного масла для систем, недоступных для полного слива и промывки, также следует рассмотреть вопрос о проверке совместимости марок турбинного масла.Неправильный химический состав присадок или низкое качество масла в процессе эксплуатации могут препятствовать смешиванию различных и несовместимых турбинных масел. Ваш поставщик масла должен провести испытания на совместимость, чтобы подтвердить пригодность для дальнейшей эксплуатации.

Это испытание должно касаться состояния масла в процессе эксплуатации по сравнению с различными возможными смесями с предлагаемым новым маслом. Эксплуатационное масло следует проверить на пригодность для дальнейшей эксплуатации. Затем смесь 50/50 должна быть протестирована на устойчивость к окислению (RPVOT ASTM D2272), деэмульгируемость (ASTM D1401), пену (ASTM D892, последовательность 2) и отсутствие выпадения пакета присадок, что засвидетельствовано в ходе семидневного испытания на совместимость при хранении.

Промывка системы смазочного масла турбины

Промывку системы смазочного масла турбины и первоначальную фильтрацию следует решать одновременно с выбором турбинного масла. Промывка системы смазки может быть либо вытеснительной промывкой после слива и заливки, либо промывкой с высокой скоростью для первоначальной заливки турбинного масла. Промывка вытеснением выполняется одновременно во время замены турбинного масла, а промывка с высокой скоростью предназначена для удаления загрязняющих веществ, попадающих при транспортировке и вводе в эксплуатацию новой турбины.

Промывка вытеснением с использованием отдельного промывочного масла выполняется для удаления остаточного продукта окисления масла, который не удаляется сливом или вакуумом. Промывка вытеснением проводится с использованием циркуляционных насосов системы смазки без каких-либо изменений в обычных путях циркуляции масла, за исключением возможной фильтрации почечного контура.

Эта промывка обычно выполняется на основе временного интервала в зависимости от чистоты (уровней частиц), чтобы облегчить удаление растворимых и нерастворимых загрязняющих веществ, которые обычно не удаляются системными фильтрами.

Большинство производителей турбин предлагают рекомендации по высокоскоростной промывке и фильтрации. Некоторые подрядчики и поставщики масла также предлагают инструкции по промывке и фильтрации. Часто при вводе турбины в эксплуатацию эти руководящие принципы сокращаются, чтобы сократить затраты и время. Есть общие элементы высокоскоростной промывки, которые обычно поддерживаются заинтересованными сторонами. Есть также некоторые процедурные проблемы, которые могут отличаться и должны решаться на основе соотношения риска и вознаграждения.

Общие элементы взаимного согласия при высокоскоростной промывке следующие:

  • Емкости для подачи и хранения должны быть чистыми, сухими и без запаха.Промывка дизельным топливом недопустима.

  • Скорость жидкости в два-три раза выше нормальной, достигаемая с помощью внешних насосов большого объема или путем последовательной сегментирующей промывки через перемычки подшипников.

  • Удаление масла после промывки завершено для проверки и ручной очистки (безворсовой ветошью) внутренних поверхностей системы смазочного масла турбины.

  • Высокоэффективная гидросистема байпасной системы исключает риск повреждения мелкими частицами.

Возможные дополнительные или альтернативные элементы высокоскоростной промывки:

  • Использование отдельного промывочного масла для удаления растворимых в масле загрязняющих веществ, которые могут повлиять на пену, деэмульгируемость и устойчивость к окислению

  • Необходимо отфильтровать начальную заправку масла до уровня, соответствующего спецификации фильтрации

    .
  • Термоциклирование масла при промывке

  • Вибраторы для трубопроводов и использование резиновых молотков на коленах труб

  • Установка специальных фильтров для проверки чистоты и отверстий для отбора проб

  • Желаемые критерии чистоты для выкупа смыва

  • Лаборатория ISO 17/16/14 — 16/14/11 допустимый диапазон твердых частиц

  • Использование локальных оптических счетчиков частиц

  • Сетчатый фильтр 100 меш, частицы не обнаруживаются невооруженным глазом

  • Патч-тест Millipore

Предварительное планирование и встречи со строителями, запуском, поставщиком нефти и конечным пользователем должны быть запланированы заранее, чтобы достичь консенсуса по этим процедурам промывки.

Хорошей практикой для документации характеристик турбинного масла является отбор пробы объемом 1 галлон из резервуара подачи, а затем пробы второго галлона из резервуара турбины после 24 часов работы. Рекомендуемые испытания соответствуют испытаниям для оценки состояния турбинного масла:

Прошлый опыт, рекомендации производителей турбин, отзывы клиентов и репутация поставщика масла — ключевые элементы, которые следует учитывать при выборе турбинного масла. Правильный первоначальный выбор турбинного масла и продолжающееся техническое обслуживание с кондиционированием должны подготовить почву для многих лет безотказной эксплуатации.На многих заводах закон Мерфи действует в самый неподходящий момент. Это когда вы по-настоящему оцените турбинное масло с превосходными эксплуатационными характеристиками и поставщика масла с обширной технической поддержкой.

Список литературы
1. Ассоциация инженеров черной металлургии AISE. (1996). Руководство для инженеров по смазке — второе издание. Питтсбург, Пенсильвания.

2. Блох, Х. П. (2000). Практическая смазка для промышленных объектов. Литберн, Джорджия: Fairmont Press.

3. Корпорация Exxon Mobil. Руководство по осмотру турбины. Фэрфакс, Вирджиния.

4. Свифт, С.Т., Батлер Д.К. и Девальд В. (2001).
Требования к качеству турбинного масла и практическому применению. Смазка турбин в 21 веке ASTM STP 1407. West Conshohocken, PA.

5. ASTM. (1997). Стандартная практика мониторинга минеральных турбинных масел для паровых и газовых турбин в процессе эксплуатации ASTM D4378-97. Ежегодная книга стандартов ASTM Vol. 05.01.

Газовая турбина или газовый двигатель? Сравнение | Энергетика

Топливо будущего также можно разделить на углеродно-нейтральное, например

.

е-метан и е-метанол, не содержащие углерода, например зеленый водород или

аммиака зеленого цвета, в зависимости от производственного процесса.Топливная гибкость

Значение

будет возрастать при переходе на декарбонизированную энергию

Система

. Использование менее углеродоемкого или безуглеродного электронного топлива составляет очень

.

обещает достичь углеродной нейтральности в электроэнергетике. Причитается

Быстрый всплеск роста возобновляемой энергии с прерывистым режимом работы

Поколение

, аспекты безопасности и доступности энергии

трилеммы становятся все более сложными. Надежное (резервное) питание

Поколение

с низким уровнем выбросов углекислого газа имеет решающее значение для поддержки

Потребительские потребности.

Газовые турбины являются наиболее чистым традиционным источником энергии, а их топливная гибкость идеально подходит для поддержки перехода как на централизованные, так и на децентрализованные сети. По сравнению с газовыми двигателями, газовые турбины имеют значительно более низкую концентрацию загрязнителей воздуха (CO₂, NOx, SOx, твердые частицы) в их выбросах. Двигатели потребляют меньше топлива и выделяют меньший объем газа, но производят более высокую концентрацию загрязняющих веществ.

Газовые турбины могут работать на широком диапазоне видов топлива с переключением топлива в оперативном режиме для обеспечения надежности энергоснабжения.Эти виды топлива представляют собой не только обычные ископаемые виды топлива, такие как природный газ, сжиженный нефтяной газ и дизельное топливо, но также обрабатывают отходящие газы, такие как коксовый газ (COG) и нефтеперерабатывающий газ (RFG), а также топлива с низким и нулевым содержанием углерода, такие как водород, биогаз и возобновляемые источники энергии. природный газ (RNG). Многие из них можно сжечь без значительного снижения производительности, при этом сохраняя минимально возможное воздействие на окружающую среду.

Газовые двигатели могут работать на топливе с очень низкой теплотворной способностью (LHV), таком как синтез-газ (4,5 МДж / Нм³). Они также могут сжигать биогаз, свалки и газы с более высокой НТС (факельный газ), пропан и сжиженный нефтяной газ, у которых НТС около 110 МДж / Нм3, хотя производительность может отличаться от тех, которые достигаются на природном газе.

Каждая инвестиция в производство электроэнергии, каждый приобретенный сегодня газовый двигатель или газовая турбина будет использовать водород в качестве топлива на протяжении всей своей жизни. Клиенты должны быть уверены, что приобретают готовые к будущему продукты, чтобы избежать возможности остаться с неработающими активами.

Влияние состава топлива на работу газотурбинного двигателя | J. Eng. Газовая турбина Power

Системные эффекты термохимии топлива очевидны в других связанных исследованиях применения сжигания ископаемого топлива.Альтернативные виды биотоплива были исследованы Rubie et al. [21] с учетом авиационных приложений. В исследовании рассматривались биотопливо из морских водорослей, парафинового керосина Camelina (CSPK) и парафинового керосина Jatropha (JSPK). Все они по молекулярной массе и H / C близки к струе A, которую они предназначены для имитации. В исследовании описывается создание этого синтезированного топлива из сырья водорослей, камелины, ятрофы и животного жира. Эти виды топлива использовались для «добавления» и пополнения струи А в увеличивающихся смешанных соотношениях.Различия в характеристиках оценивались с учетом моделирования двигателя F404-GE-400, контролирующего фиксированную скорость газогенератора. Три различных топлива показали лишь незначительные изменения в производительности, что указывает на то, что все виды топлива являются жизнеспособной альтернативой реактивному двигателю A. Для сравнения, промышленный двигатель, как показано в этой статье, более приемлем для использования широкого спектра видов топлива, поскольку двигатель является заземленным. на основе, может колебаться доступная мощность для большинства приложений и не имеет ограничений профиля полета самолета.Бэ и Ким [22] рассмотрели возможные альтернативные виды топлива для автомобильных двигателей как для двигателей с искровым зажиганием, так и для двигателей с воспламенением от сжатия. Топливо включало сжатый природный газ, водород, сжиженный нефтяной газ и спирт для двигателей с искровым зажиганием, а также биодизель, диметиловый эфир и реактивное топливо-8 (JP-8) для двигателей с воспламенением от сжатия. Эти виды топлива оценивались на предмет их свойств сгорания, таких как октановое и цетановое число, физических свойств, которые влияли на образование распыляемой смеси / смеси для сгорания, более низкую теплотворную способность и совместимость с двигателем.Они подчеркнули сотрудничество между производителями автомобильных двигателей и нефтеперерабатывающей промышленностью в направлении создания более эффективных и экологически чистых двигателей внутреннего сгорания. Это относительно похоже на разработку промышленных газовых турбин, где двигатели и системы сгорания спроектированы для большей топливной гибкости, чтобы приспособиться к побочным видам топлива и другим видам топлива низкого качества. Например, Гёкалп и Лебас [23] подчеркивают, что промышленные газы, которые определяются как выбросы с нефтеперерабатывающих заводов или других химических промышленных процессов, являются отличными кандидатами на топливо для промышленных газотурбинных двигателей.Они также исследовали другие альтернативные виды топлива, такие как биогаз и сложные эфиры растительных масел, и оценили их на основе их физических / химических характеристик.

Электроэнергия в США — Управление энергетической информации США (EIA)

Электроэнергия в США производится (генерируется) с использованием различных источников энергии и технологий

Соединенные Штаты используют множество различных источников энергии и технологий для производства электроэнергии.Источники и технологии менялись с течением времени, и некоторые из них используются чаще, чем другие.

Три основных категории энергии для производства электроэнергии — это ископаемое топливо (уголь, природный газ и нефть), ядерная энергия и возобновляемые источники энергии. Большая часть электроэнергии вырабатывается паровыми турбинами с использованием ископаемого топлива, ядерной энергии, биомассы, геотермальной и солнечной тепловой энергии. Другие основные технологии производства электроэнергии включают газовые турбины, гидротурбины, ветряные турбины и солнечные фотоэлектрические установки.

Нажмите для увеличения

Ископаемое топливо — крупнейший источник энергии для производства электроэнергии

Природный газ был крупнейшим источником — около 40% — выработки электроэнергии в США в 2020 году. Природный газ используется в паровых турбинах и газовых турбинах для выработки электроэнергии.

Уголь

был третьим по величине источником энергии для производства электроэнергии в США в 2020 году — около 19%. Почти все угольные электростанции используют паровые турбины.Несколько угольных электростанций преобразуют уголь в газ для использования в газовой турбине для выработки электроэнергии.

Нефть была источником менее 1% выработки электроэнергии в США в 2020 году. Остаточное жидкое топливо и нефтяной кокс используются в паровых турбинах. Дистиллятное или дизельное топливо используется в дизельных генераторах. Остаточное жидкое топливо и дистилляты также можно сжигать в газовых турбинах.

Ядерная энергия обеспечивает одну пятую электроэнергии США

Ядерная энергия была источником около 20% U.S. Производство электроэнергии в 2020 году. Атомные электростанции используют паровые турбины для производства электроэнергии за счет ядерного деления.

Возобновляемые источники энергии обеспечивают растущую долю электроэнергии в США

Многие возобновляемые источники энергии используются для выработки электроэнергии и составили около 20% от общего объема производства электроэнергии в США в 2020 году.

Гидроэлектростанции произвели около 7,3% от общего объема производства электроэнергии в США и около 37% электроэнергии из возобновляемых источников энергии в 2020 году. 1 Гидроэлектростанции используют проточную воду для вращения турбины, соединенной с генератором.

Энергия ветра была источником около 8,4% от общего объема производства электроэнергии в США и около 43% электроэнергии из возобновляемых источников энергии в 2020 году. Ветровые турбины преобразуют энергию ветра в электричество.

Биомасса была источником около 1,4% от общего объема производства электроэнергии в США в 2020 году. Биомасса сжигается непосредственно на пароэлектрических электростанциях или может быть преобразована в газ, который можно сжигать в парогенераторах, газовых турбинах или внутреннем сгорании. двигатели-генераторы.

Солнечная энергия обеспечила около 2,3% всей электроэнергии США в 2020 году. Фотоэлектрическая (PV) и солнечно-тепловая энергия — два основных типа технологий производства солнечной электроэнергии. Преобразование PV производит электричество непосредственно из солнечного света в фотоэлектрических элементах. В большинстве гелиотермических систем для выработки электроэнергии используются паровые турбины.

Геотермальные электростанции произвели около 0,5% от общего объема производства электроэнергии в США в 2020 году. Геотермальные электростанции используют паровые турбины для выработки электроэнергии.

1 Включая обычные гидроэлектростанции.

Последнее обновление: 18 марта 2021 г.

Сырая нефть в качестве топлива для газовых турбин

Вязкость является одним из ключевых параметров, используемых при оценке жидкого топлива для использования в промышленных газовых турбинах, и обычно должна составлять <10 сСт при 50 ° C (большинство обычных дизельных топлив <7,5 сСт при 40 ° C) . Однако есть некоторые модели газовых турбин, которые могут работать на жидком топливе с гораздо более высокой вязкостью, и могут, используя нагрев или смешивание топлива, работать на топливе с вязкостью примерно до 1000 сСт при 50 ° C.

Эта статья содержит выдержки из доклада Майкла Велча и Брайана Иго из компании Siemens Industrial Turbomachinery «Сжигание, топливо и выбросы для промышленных газовых турбин», представленного на симпозиуме по турбомашинному оборудованию в 2014 году.

Есть случаи, когда ни дизельное, ни газообразное топливо недоступно или экономично в использовании, а единственным подходящим «топливом» является сырая нефть. Это создает проблемы, которые необходимо решать с помощью функций предварительной обработки топлива и системы впрыска топлива {12}.Во-первых, нагревание топлива снижает вязкость, но с учетом ограничений: во-первых, это 100 ° C, при котором вода выкипает (все жидкие топлива содержат небольшое количество воды), вызывая кавитацию в топливных насосах.

Повышение давления подачи жидкого топлива позволяет увеличить нагрев до значений, превышающих 100 ° C, но ограничивается температурными пределами в системе подачи топлива. Дальнейшее нагревание может привести к растрескиванию топлива и закоксовыванию в топливной системе и горелках в зависимости от компонентов сырой нефти.

Сырая нефть требует обработки, чтобы соответствовать ограничениям промышленных газовых турбин на содержание металлических и других примесей в топливе. Сырая нефть часто содержит большое количество щелочных металлов (Na, K) и тяжелых металлов (V, Ni и т. Д.), Которые при попадании в систему сгорания могут привести к ускоренному образованию отложений и высокотемпературной коррозии в компонентах тракта горячего газа газовой турбины.

Основные коррозионные компоненты включают пятиокись ванадия (V2O5), сульфат натрия (Na2SO4) и агрессивные легкоплавкие формы в системах Na2SO4 — V2O5 и Na2O-V2O5.

Определение температуры прилипания золы обычно является хорошей функцией, и она должна быть> 900 ° C, если необходимо избежать прилипания к лезвию. Воду и осадок можно удалить или уменьшить путем фильтрации и разделения на центрифуге. Это то же самое для любого жидкого топлива и предотвращает образование коррозионных элементов и рост бактерий, что является предвестником деградации топлива.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *